首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The systemic administration of high-dose recombinant IL 2 mediated significant reductions of established 3-day pulmonary micrometastases from both weakly immunogenic and nonimmunogenic sarcomas. However, when treatment with IL 2 was delayed for 10 days after the injection of tumor cells in an attempt to treat grossly visible pulmonary macrometastases, only those established from weakly immunogenic sarcomas remained susceptible. Established 10-day pulmonary nodules from the nonimmunogenic sarcomas became refractory to IL 2 therapy. We utilized selective depletion of lymphocyte subsets in vivo by the systemic administration of specific monoclonal antibodies to cells bearing either the L3T4 or Lyt-2 marker or a heteroantiserum to cells bearing the ASGM-1 glycosphingolipid to identify lymphocytes involved in IL 2-induced tumor regression. Cells with potent lymphokine-activated killer (LAK) activity against fresh tumor targets in vitro were identified in the lungs of IL 2-treated mice. By flow cytometry analysis, the majority of these effector cells were Thy-1+, L3T4-, Lyt-2-, ASGM-1+. Depletion in vivo of ASGM-1+ cells before the onset of IL 2 administration eliminated the successful therapy of 3-day pulmonary metastases from nonimmunogenic sarcomas, with concurrent elimination of LAK cell activity in the lungs. In mice with 3-day pulmonary metastases from weakly immunogenic sarcomas, both Lyt-2+ cells and ASGM-1+ cells were involved in IL 2-mediated tumor regression, but Lyt-2+ cells appeared to be the more potent mediator in the response. Lyt-2+ cells were also involved in the elimination of grossly visible 10-day macrometastases from these weakly immunogenic tumors. Depletion of L3T4+ cells had no effect on tumor regression. Thus, although LAK effectors derived from ASGM-1+ precursors can eliminate pulmonary micrometastases regardless of tumor immunogenicity, Lyt-2+ cells are predominant effectors in the elimination of both pulmonary micro- and macrometastases from weakly immunogenic sarcomas.  相似文献   

2.
We previously reported that cytokine gene transfer into weakly immunogenic tumor cells could enhance the generation of precursor cells of tumor-reactive T cells and subsequently augment antitumor efficacy of adoptive immunotherapy. We investigated whether such potent antitumor effector T cells could be generated from mice bearing poorly immunogenic tumors. In contrast to similarly modified weakly immunogenic tumors, MCA102 cells, which are chemically induced poorly immunogenic fibrosarcoma cells transfected with cDNA for IL-2, IL-4, IL-6, IFN-gamma, failed to augment the host immune reaction. Because priming of antitumor effector T cells in vivo requires two important signals provided by tumor-associated Ags and costimulatory molecules, these tumor cells were cotransfected with a B7-1 cDNA. Transfection of both IFN-gamma and B7-1 (MCA102/B7-1/IFN-gamma) resulted in regression of s.c. tumors, while tumor transfected with other combinations of cytokine and B7-1 showed progressive growth. Cotransfection of IFN-gamma and B7-1 into other poorly immunogenic tumor B16 and LLC cells also resulted in the regression of s.c. tumors. Cells derived from lymph nodes draining MCA102/B7-1/IFN-gamma tumors showed potent antitumor efficacy, eradicating established pulmonary metastases, but this effect was not seen with parental tumors. This mechanism of enhanced antitumor efficacy was further investigated, and T cells with down-regulated L-selectin expression, which constituted all the in vivo antitumor reactivity, were significantly increased in lymph nodes draining MCA102/B7-1/IFN-gamma tumors. These T cells developed into potent antitumor effector cells after in vitro activation with anti-CD3/IL-2. The strategy presented here may provide a basis for developing potent immunotherapy for human cancers.  相似文献   

3.
We recently reported that the CD4(+) T cell subset with low L-selectin expression (CD62L(low)) in tumor-draining lymph nodes (TDLN) can be culture activated and adoptively transferred to eradicate established pulmonary and intracranial tumors in syngeneic mice, even without coadministration of IL-2. We have extended these studies to characterize the small subset of L-selectin(low) CD8(+) T cells naturally present in TDLN of mice bearing weakly immunogenic tumors. Isolated L-selectin(low) CD8(+) T cells displayed the functional phenotype of helper-independent T cells, and when adoptively transferred could consistently eradicate, like L-selectin(low) CD4(+) T cells, both established pulmonary and intracranial tumors without coadministration of exogenous IL-2. Whereas adoptively transferred L-selectin(low) CD4(+) T cells were more potent on a cell number basis for eradicating 3-day intracranial and s.c. tumors, L-selectin(low) CD8(+) T cells were more potent against advanced (10-day) pulmonary metastases. Although the presence of CD4(+) T cells enhanced generation of L-selectin(low) CD8(+) effector T cells, the latter could also be obtained from CD4 knockout mice or normal mice in vivo depleted of CD4(+) T cells before tumor sensitization. Culture-activated L-selectin(low) CD8(+) T cells did not lyse relevant tumor targets in vitro, but secreted IFN-gamma and GM-CSF when specifically stimulated with relevant tumor preparations. These data indicate that even without specific vaccine maneuvers, progressive tumor growth leads to independent sensitization of both CD4(+) and CD8(+) anti-tumor T cells in TDLN, phenotypically L-selectin(low) at the time of harvest, each of which requires only culture activation to unmask highly potent stand-alone effector function.  相似文献   

4.
Tumor cell vaccines have been successful at inducing immunity in naïve mice, but only in a few reports has vaccination alone induced regression of established tumors and, generally, only when they are very small. Clinically, vaccinations alone may not be able to cause regression of established human cancers, which tend to be weakly immunogenic. We hypothesized that pharmacologic ex vivo amplification of a vaccination-induced immune response with subsequent adoptive immunotherapy (AIT) to tumor-bearing animals would be more effective in treatment of these animals than vaccination alone. The 4T1 and 4T07 mammary carcinomas are derived from the same parental cell line, but 4T1 is much less immunogenic and more aggressive than 4T07. Vaccination with either 4T1, 4T1-IL-2, or 4T07-IL-2 was not effective as treatment for established 4T1 tumors. However, 4T1 or 4T07-IL-2-vaccine-sensitized draining lymph node (DLN) cells, activated ex vivo with bryostatin 1 and ionomycin and expanded in culture, induced complete tumor regressions when adoptively transferred to 4T1 tumor-bearing animals. This was effective against small tumors as well as more advanced tumors, 10 days after tumor cell inoculation. Furthermore, as would be required for this approach to be used clinically, vaccine-DLN cells obtained from mice with established progressive 4T1 tumors (inoculated 10 days before vaccination) also induced regression of 4T1 tumors in an adoptive host. In none of these experiments was exogenous IL-2 required to induce tumor regression. The response to tumor cell vaccine can be amplified by ex vivo pharmacologic activation of sensitized T cells, which can then cure an established, weakly immunogenic and highly aggressive tumor that was resistant to vaccination alone.  相似文献   

5.
Therapeutic efficacy of adoptive immunotherapy of malignancies is proportional to the number of effector T cells transferred. Traditionally, exogenous IL-2 treatment has been used to promote the survival and function of transferred cells. Recently, we described the therapeutic effects of in vivo ligation of the costimulatory receptor, OX-40R, on activated T cells during early tumor growth. In this study, we examined the effects of IL-2 and OX-40R mAb on adoptive immunotherapy of advanced tumors. For treatment of 10-day 3-methylcholanthrene 205 pulmonary metastases, systemic transfer of 50 x 10(6) activated tumor-draining lymph node T cells resulted in >99% reduction of metastatic nodules. With either IL-2 or OX-40R mAb conjunctional treatment, only 20 x 10(6) cells were required. Advanced 10-day 3-methylcholanthrene 205 intracranial tumors could be cured by the transfer of 15 x 10(6) L-selectin(low) T cells derived from draining lymph nodes. In this situation, IL-2 administration inhibited therapeutic effects of the transferred cells. By contrast, 5 x 10(6) T cells were sufficient to cure all mice if OX-40R mAb was administrated. Studies on trafficking of systemically transferred T cells revealed that IL-2, but not OX-40R mAb, impeded tumor infiltration by T cells. Tumor regression required participation of both CD4 and CD8 T cells. Because only CD4 T cells expressed OX-40R at cell transfer, direct CD4 T cell activation is possible. Alternatively, OX-40R might be up-regulated on transferred T cells at the tumor site, rendering them reactive to the mAb. Our study suggests OX-40R mAb to be a reagent of choice to augment T cell adoptive immunotherapy in clinical trials.  相似文献   

6.
Summary The role of an immune response in recombinant-human-tumor-necrosis-factor(rHTNF)-mediated regression of a weakly immunogenic, MCA-106 sarcoma in vivo was examined. C57BL/6 mice bearing established 10-day s.c. tumor were treated with single i.v. doses (8 g) of rHTNF. rHTNF administration resulted in marked hemorrhagic necrosis and subsequent regression of tumor in treated mice. Mice cured of MCA-106 sarcoma by rHTNF specifically rejected a subsequent challenge (5×105 cells) of the same tumor (P<0.01) but not of the antigenically distinct, syngeneic MCA-105 sarcoma. Tumor bearers were depleted in vivo of selective T-cell subsets by the systemic administration of specific monoclonal antibodies before rHTNF therapy. rHTNF-induced regression, but not hemorrhagic necrosis of the MCA-106 sarcoma was blocked in mice depleted of Lyt-2+ cells, but not of L3T4+ cells. The in vivo role of T-cell subsets in rHTNF-mediated tumor regression is discussed.Howard Hughes Medical Institute Research Scholar  相似文献   

7.
Liu Z  Fan H  Wu Y  Chen B 《Cytotherapy》2005,7(4):353-362
BACKGROUND: DC are potent APC that can activate both CD4 and CD8 T cells in vitro and in vivo. Although the efficacy of DC-based cancer vaccines is currently being evaluated in clinical trials, the systemic immune suppression in cancer patients negatively impacts the clinical benefit of this therapeutic approach. Therefore, in this study we tested the feasibility and anti-tumor effect of adoptive immunotherapy using in vitro-activated CD62L(low) lymph node cells that were isolated from DC-vaccinated draining lymph nodes (VDLN). METHODS: DC were prepared from BM cells and loaded with tumor lysate for inoculating into naive mice. Subsequently, the VDLN were removed and CD62L(low) cells in the VDLN population isolated, expanded in vitro by 5-day culture with IL-2 and immobilized anti-CD3 stimulation, then injected into mice with established pulmonary tumors. Eighteen days after treatment, mice were killed in order to enumerate pulmonary tumor nodes. RESULTS: DC phagocytosed the tumor lysate efficiently and induced detectable T-cell responses and significant cell expansion in the draining lymph nodes. After induction of maturation by LPS treatment, DC expressed higher levels of CD40, CD86 and MHC class II molecules. When CD62L(low) VDLN cells that had been isolated and expanded in vitro were transferred into tumor-bearing mice, as few as 3 x 10(6) cells were able to cure metastatic pulmonary tumors in vivo. DISCUSSION: DC-based VDLN T cells are an important source of anti-tumor effector for adoptive immunotherapy. This study provides a novel and an effective protocol using T-cell adoptive immunotherapy for application in cancer patients; therefore, clinical trials based on this protocol may be warranted.  相似文献   

8.
We have previously demonstrated that following the adoptive transfer of immune cells, the regression of established pulmonary metastases from a weakly immunogenic sarcoma, MCA 105, required the collaboration of two T cell subsets. In this study, we found that the critical role played by L3T4+ immune cells was to provide a helper function since tumor regression proceeded in the absence of L3T4+ immune cells if exogenous interleukin 2 (IL-2) was administered. To extend these observations, we analyzed the events leading to the induction and generation of L3T4+ and Lyt-2+ immune T cells after immunization of mice with viable tumor cells admixed with Corynebacterium parvum. The basic protocol involved immunization, surgical excision of the immunization site on day 7, and challenge with viable tumor cells on day 21. The ability of mice to reject tumor challenge provided a means to evaluate the occurrence of a systemic antitumor immunity. With the use of this experimental protocol, we have found that depletion of T cell subsets in vivo with either L3T4 or Lyt-2 monoclonal antibodies after active immunization abrogated the development of antitumor immunity. Mice immunized and depleted of L3T4+ but not Lyt-2+ T cells were able to reject tumor challenge if exogenous IL-2 was given for 7 days. However, the rejection of tumor challenge required 3 days of additional exogenous IL-2 administration. These results indicate that the induction of Lyt-2+ immune T cells depended on the helper function of L3T4+ T cells via the secretion of IL-2. In the absence of L3T4+ immune lymphocytes, the expression of antitumor immunity by Lyt-2+ immune cells could be facilitated by in vivo administration of exogenous IL-2. The induction of L3T4+ immune T cells, on the other hand, occurred independently of the Lyt-2+ T cell response because the transfer of spleen cells from Lyt-2+ cell-depleted, immunized animals was able to restore antitumor reactivity in L3T4+ cell-depleted, immunized mice. These results demonstrate the intricate cellular interactions leading to the induction as well as the expression of antitumor immunity.  相似文献   

9.
Despite evidence that antitumor immunity can be protective against renal cell carcinoma (RCC), few patients respond objectively to immunotherapy and the disease is fatal once metastases develop. We asked to what extent combinatorial immunotherapy with Adenovirus-encoded murine TNF-related apoptosis-inducing ligand (Ad5mTRAIL) plus CpG oligonucleotide, given at the primary tumor site, would prove efficacious against metastatic murine RCC. To quantitate primary renal and metastatic tumor growth in mice, we developed a luciferase-expressing Renca cell line, and monitored tumor burdens via bioluminescent imaging. Orthotopic tumor challenge gave rise to aggressive primary tumors and lung metastases that were detectable by day 7. Intra-renal administration of Ad5mTRAIL+CpG on day 7 led to an influx of effector phenotype CD4 and CD8 T cells into the kidney by day 12 and regression of established primary renal tumors. Intra-renal immunotherapy also led to systemic immune responses characterized by splenomegaly, elevated serum IgG levels, increased CD4 and CD8 T cell infiltration into the lungs, and elimination of metastatic lung tumors. Tumor regression was primarily dependent upon CD8 T cells and resulted in prolonged survival of treated mice. Thus, local administration of Ad5mTRAIL+CpG at the primary tumor site can initiate CD8-dependent systemic immunity that is sufficient to cause regression of metastatic lung tumors. A similar approach may prove beneficial for patients with metastatic RCC.  相似文献   

10.
This study, using the MBT-2 murine bladder tumor model, mainly investigated the role of interleukin-12 (IL-12) in the specific antitumor immune response of a tumor-bearing host when systemically administrated after surgery. Day 17 tumor-bearing mice (D17TBM) along with non-tumor bearing naive mice were treated with daily intraperitoneal (i.p.) injection of IL-12 (0.25 microg/mouse) from day 18 to day 24 for a total of 7 doses. Their splenocytes were obtained on Day 31 for natural killer cells (NK), lymphokine activated killer cells (LAK) and cytotoxic T lymphocyte (CTL) activity assay and lymphocyte subsets phenotypic analysis. The tumor suppression effect of systemic IL-12 administration was evaluated based on the tumor outgrowth of the higher number of tumor cells rechallenged 24 hours after resectioning of the primary tumor. After evaluation on Day 31, the result of in vitro cytotoxicity assay revealed that systemic administration of IL-12 mainly enhanced the splenic LAK and CTL activities in non-tumor-primed naive mice, and the NK activity in tumor-primed D17TBM, respectively. However, in vivo administration of IL-12 with or without IL-2 failed to upgrade the proportions of either CD4+ CD44+ or CD8+ CD44+ T cells subsets in the spleens and regional inguinal lymph nodes (LNs) of both the D17TBM and naive mice. However, the splenic CD8+ CD44+ T-cell subset in the IL-12-treated D17TBM increased prominently after further culturing in the presence of IL-2 400 units/ml plus IL-12 25 ng/ml for 4 days. The fact that systemic administration of IL-12 significantly suppressed the outgrowth of Day-18 challenged tumor cells, especially in D17TBM, clearly indicates that the established specific antitumor immunity in tumor-primed D17TBM was efficiently augmented. From the results of this study, we conclude that, after surgical resection of a primary tumor, systemic administration of IL-12 can be an effective adjuvant therapy because it demonstrates a significant augmentation effect on the tumor-specific immune response in the tumor-primed host.  相似文献   

11.
Therapeutic use of IL-2 can generate antitumor immunity; however, a variety of different mechanisms have been reported. We injected IL-2 intratumorally (i.t.) at different stages of growth, using our unique murine model of mesothelioma (AE17; and AE17 transfected with secretory OVA (AE17-sOVA)), and systematically analyzed real-time events as they occurred in vivo. The majority of mice with small tumors when treatment commenced displayed complete tumor regression, remained tumor free for >2 mo, and survived rechallenge with AE17 tumor cells. However, mice with large tumors at the start of treatment failed to respond. Timing experiments showed that IL-2-mediated responses were dependent upon tumor size, not on the duration of disease. Although i.t. IL-2 did not alter tumor Ag presentation in draining lymph nodes, it did enhance a previously primed, endogenous, tumor-specific in vivo CTL response that coincided with regressing tumors. Both CD4(+) and CD8(+) cells were required for IL-2-mediated tumor eradication, because IL-2 therapy failed in CD4(+)-depleted, CD8(+)-depleted, and both CD4(+)- and CD8(+)-depleted C57BL/6J animals. Tumor-infiltrating CD8(+) T cells, but not CD4(+) T cells, increased in association with a marked reduction in tumor-associated vascularity. Destruction of blood vessels required CD8(+) T cells, because this did not occur in nude mice or in CD8(+)-depleted C57BL/6J mice. These results show that repeated doses of i.t. (but not systemic) IL-2 mediates tumor regression via an enhanced endogenous tumor-specific CTL response concomitant with reduced vasculature, thereby demonstrating a novel mechanism for IL-2 activity.  相似文献   

12.
In vivo administration of Ly-6 mAb which recognize lymphoid differentiation Ag encoded for by the Ly-6 gene complex were found to have significant beneficial immunotherapeutic effects in tumor-bearing mice. The effectiveness of the mAb treatment in mice bearing sarcomas, leukemias, or melanomas was dependent on the host and not the tumor Ly-6 phenotype. The treatment was effective in nu/nu mice, although a more pronounced inhibition of tumor growth occurred in immunocompetent mice. The effectiveness of the therapy in immunocompetent mice was dependent on the dose of mAb and was influenced by the immunogenicity of the tumor. It ranged from significant growth inhibition of weakly immunogenic tumors to complete rejection of strongly immunogenic tumors. The results of cell-mediated cytotoxic assays of splenocytes from mAb-treated mice indicated that Ly-6 mAb treatment induced and/or augmented tumor-specific CTL as well as NK cell activity in these mice. Ly-6 mAb treatment represents a novel method for tumor immunotherapy using mAb recognizing lymphoid differentiation Ag with functional activities.  相似文献   

13.
Experiments were undertaken to determine whether the depletion of CD4+ T cells from mice bearing an advanced immunogenic SA-1 sarcoma would result in an enhanced ability of interleukin-2 (IL-2) to cause tumor regression. The results show that whereas IL-2 therapy given as a 5-day course starting on day 10 of tumor growth caused complete regression of the tumor, it failed to cause regression if started on day 15 of tumor growth. However, in mice depleted of CD4+ T cells by treatment with anti-CD4 monoclonal antibody (mAb), IL-2 therapy started on day 15 resulted in appreciable tumor regression in most animals, and the therapeutic effect was greatly increased if two consccutive courses of anti-CD4 mAb and IL-2 therapy were given. On the other hand, treatment with anti-CD4 mAb alone had no effect on tumor growth. It was shown that the therapeutic action of combination therapy with anti-CD4 mAb and IL-2 was mediated by CD8+ T cells, because the therapeutic effect was completely ablated in mice depleted of CD8+ T cells with anti-CD8 mAb. Taken together these results suggest that, at a late stage of growth of an immunogenic tumor, depletion of CD4+ T cells can enhance the antitumor effect of IL-2 therapy by releasing CD8+-T-cell-mediated immunity from T-cell-mediated suppression.  相似文献   

14.
We have shown previously that IFN-gamma-inducing cytokines such as IL-12 can mediate potent antitumor effects against murine solid tumors. IL-27 is a newly described IL-12-related cytokine that potentiates various aspects of T and/or NK cell function. We hypothesized that IL-27 might also mediate potent antitumor activity in vivo. TBJ neuroblastoma cells engineered to overexpress IL-27 demonstrated markedly delayed growth compared with control mice, and complete durable tumor regression was observed in >90% of mice bearing either s.c. or orthotopic intra-adrenal tumors, and 40% of mice bearing induced metastatic disease. The majority of mice cured of their original TBJ-IL-27 tumors were resistant to tumor rechallenge. Furthermore, TBJ-IL-27 tumors were heavily infiltrated by CD8(+) T cells, and draining lymph node-derived lymphocytes from mice bearing s.c. TBJ-IL-27 tumors are primed to proliferate more readily when cultured ex vivo with anti-CD3/anti-CD28 compared with lymphocytes from mice bearing control tumors, and to secrete higher levels of IFN-gamma. In addition, marked enhancement of local IFN-gamma gene expression and potent up-regulation of cell surface MHC class I expression are noted within TBJ-IL-27 tumors compared with control tumors. Functionally, these alterations occur in conjunction with the generation of tumor-specific CTL reactivity in mice bearing TBJ-IL-27 tumors, and the induction of tumor regression via mechanisms that are critically dependent on CD8(+), but not CD4(+) T cells or NK cells. Collectively, these studies suggest that IL-27 could be used therapeutically to potentiate the host antitumor immune response in patients with malignancy.  相似文献   

15.
Type 2 CD8 T cells (Tc2) secrete IL-4 and IL-5 and display perforin-dependent cytolysis in vitro. Using an OVA-transfected B16-melanoma model, we show that tumor-reactive Tc2 effector cells accumulated at the tumor site and induced tumor regression that enhanced survival in mice with pulmonary tumors. Transfer of perforin-deficient Tc2 cells generated from perforin gene knockout mice showed no differences in therapeutic efficiency when compared with wild-type Tc2 cells. In contrast, Tc2 cells derived from select cytokine gene-deficient mice showed that therapeutic effects were dependent on effector cell-derived IL-4 and IL-5 that led to a local elevation in lung-derived chemoattractants and accumulation of activated host-derived CD8/CD44(high), CD4/CD44(high), and OVA-specific tetramer-positive CD8 cells in vivo. Host-derived T and non-T immune cells increased in the lung over time and correlated with an elevated production of type 1-related chemokines. Conversely, donor Tc2 cell numbers markedly diminished at later times, suggesting that prolonged therapeutic responses were due to host-derived mechanisms. Moreover, type 1 host responses were detectable with increased levels of IFN-gamma production by lung-derived CD4 and CD8 T cells from surviving Tc2-treated mice. Transfer of Tc2 cells into IFN-gamma-deficient tumor-bearing mice was markedly less effective then into wild-type mice, suggesting that host-derived IFN-gamma-dependent mechanisms play a role in Tc2-mediated antitumor responses.  相似文献   

16.
Cross-presentation of cell-bound Ags from established, solid tumors to CD8 cells is efficient and likely to have a role in determining host response to tumor. A number of investigators have predicted that when tumor Ags are derived from apoptotic cells either no response, due to Ag "sequestration," or CD8 cross-tolerance would ensue. Because the crucial issue of whether this happens in vivo has never been addressed, we induced apoptosis of established hemagglutinin (HA)-transfected AB1 tumors in BALB/c mice using the apoptosis-inducing reagent gemcitabine. This shrank the tumor by approximately 80%. This induction of apoptosis increased cross-presentation of HA to CD8 cells yet neither gross deletion nor functional tolerance of HA-specific CD8 cells were observed, based on tetramer analysis, proliferation of specific CD8 T cells, and in vivo CTL activity. Interestingly, apoptosis primed the host for a strong antitumor response to a second, virus-generated HA-specific signal in that administration of an HA-expressing virus after gemcitabine administration markedly decreased tumor growth compared with viral administration without gemcitabine. Thus tumor cell apoptosis in vivo neither sequesters tumor Ags nor cross-tolerizes tumor-specific CD8 cells. This observation has fundamental consequences for the development of tumor immunotherapy protocols and for understanding T cell reactivity to tumors and the in vivo immune responses to apoptotic cells.  相似文献   

17.
We have established a defect in CCR6-/- mice in response to a cockroach allergen airway challenge characterized by decreased IL-5 production, reduced CD4+ T and B cells as well as decreased eosinophil accumulation. To determine the nature of the defect in CCR6-/- mice T lymphocyte populations from allergen-sensitized wild-type mice were transferred into sensitized CCR6-/- mice. The reconstituted response was characterized by an increase in IL-5 levels, eosinophil accumulation, and serum IgE levels in recipient CCR6-/- mice. Analysis of lymphocytes from draining lymph nodes of CCR6+/+ and CCR6-/- sensitized or challenged mice demonstrated a significant decrease in IL-5 and IL-13 production in CCR6-/- mice. In contrast, the systemic response in allergen-rechallenged spleen cells demonstrated no significant alteration in allergen-induced cytokine production. Transfer of isolated splenic T lymphocytes from sensitized CCR6+/+ mice induced airway hyperresponsiveness in wild-type but not CCR6-/- naive mice, suggesting that T cells alone were not sufficient to induce airway hyperresponsiveness in CCR6-/- mice. Additional analysis demonstrated decreased CD11c+, CD11b+ and CD11c, and B220 subsets of dendritic cells in the lungs of CCR6-/- mice after allergen challenge. Using in vitro cell mixing studies with isolated pulmonary CD4+ T cells and CD11c+ cells from CCR6+/+ or CCR6-/- mice, we demonstrate alterations in both CCR6-/- T cells and CCR6-/- pulmonary APCs to elicit IL-5 responses. Altogether, the defect in CCR6-/- mice appears to be primarily due to an alteration in T cell activation, but also appears to include local pulmonary APC defects.  相似文献   

18.
The systemic adoptive transfer of tumor-sensitized T cells, activated ex vivo, can eliminate established intracranial tumors. Regression of MHC class II negative MCA 205 fibrosarcomas occurs optimally following adoptive transfer of both CD4 and CD8 tumor-sensitized T cells, indicating an important function for tumor-infiltrating APC. Here, we demonstrate that during an effector response, indirect presentation of tumor Ags to transferred T cells is sufficient to mediate intracranial tumor regression. BALB/c --> CB6F1 (H-2bxd) bone marrow chimeras were challenged with the MCA 205 fibrosarcoma (H-2b). The tumor grew progressively in the H-2b-tolerant chimeras and stimulated an immune response in tumor-draining lymph nodes. Tumor-sensitized lymph node T cells were activated ex vivo with anti-CD3 and IL-2, then adoptively transferred to sublethally irradiated BALB/c or C57BL/6 recipients bearing established intracranial MCA 205 tumors. The transferred T cells eradicated MCA 205 tumors in BALB/c recipients and demonstrated tumor specificity, but had no therapeutic efficacy in the C57BL/6 recipients. These data establish that tumor-associated host cell constituents provide sufficient Ag presentation to drive effector T cell function in the complete absence of direct tumor recognition. This effector mechanism has an evident capacity to remain operative in circumstances of immune escape, where the tumor does not express the relevant MHC molecules, and may have importance even at times when direct CTL recognition also remains operative.  相似文献   

19.
The GD2 ganglioside expressed on neuroectodermal tumor cells is weakly immunogenic in tumor-bearing patients and induces predominantly IgM antibody responses in the immunized host. Using a syngeneic mouse challenge model with GD2-expressing NXS2 neuroblastoma, we investigated novel strategies for augmenting the effector function of GD2-specific antibody responses induced by a mimotope vaccine. We demonstrated that immunization of A/J mice with DNA vaccine expressing the 47-LDA mimotope of GD2 in combination with IL-15 and IL-21 genes enhanced the induction of GD2 cross-reactive IgG2 antibody responses that exhibited cytolytic activity against NXS2 cells. The combined immunization regimen delivered 1 day after tumor challenge inhibited subcutaneous (s.c.) growth of NXS2 neuroblastoma in A/J mice. The vaccine efficacy was reduced after depletion of NK cells as well as CD4+ and CD8+ T lymphocytes suggesting involvement of innate and adaptive immune responses in mediating the antitumor activity in vivo. CD8+ T cells isolated from the immunized and cured mice were cytotoxic against syngeneic neuroblastoma cells but not against allogeneic EL4 lymphoma, and exhibited antitumor activity after adoptive transfer in NXS2-challenged mice. We also demonstrated that coimmunization of NXS2-challenged mice with the IL-15 and IL-21 gene combination resulted in enhanced CD8+ T cell function that was partially independent of CD4+ T cell help in inhibiting tumor growth. This study is the first demonstration that the mimotope vaccine of a weakly immunogenic carbohydrate antigen in combination with plasmid-derived IL-15 and IL-21 cytokines induces both innate and adaptive arms of the immune system leading to the generation of effective protection against neuroblastoma challenge. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by the Roswell Park Alliance Foundation, funds to commemorate Dr. Goro Chihara’s research activity, and by a research grant R21 AI060375 from the National Institutes of Health.  相似文献   

20.
The presence or absence of CD4(+) T cell help can determine the direction of adaptive immune responses toward either cross-priming or cross-tolerance. It has been demonstrated that interactions of CD40-CD40 ligand can replace CD4(+) T cell help and enable dendritic cells to prime cytotoxic T cells. Here, we demonstrate that antitumor reactivity induced in regional lymph nodes (LNs) by s.c. injection of CD40 ligand (CD40L)-transduced tumor (MCA205 CD40L) showed far superior therapeutic efficacy against established brain tumors of a weakly immunogenic fibrosarcoma, MCA205, when adoptively transferred. Coinjection of apoptotic, but not necrotic parental tumor cells with CD40L-expressing tumor cells caused a strong synergistic induction of antitumor reactivity in tumor-draining LNs. Freshly isolated T cells from LNs immunized with apoptotic parental tumor cells and MCA205 CD40L were capable of mediating regression of the parental tumor in vivo. In contrast, T cells derived from LNs immunized without MCA205 CD40L required ex vivo anti-CD3/IL-2 activation to elicit therapeutic activity. On anti-CD3/IL-2 activation, cells from LNs immunized with MCA205 CD40L exhibited superior per cell antitumor reactivity. An in vitro depletion study revealed that either CD4(+) or CD8(+) T cells could mediate therapeutic efficacy but that the antitumor efficacy mediated by CD4(+) T cells was far superior. Cytosolic flow cytometric analyses indicated that priming of CD4(+) cells in LNs draining CD40L-expressing tumors was polarized to the Th1 type. This is the first report that fully potent antitumor CD4(+) T cell priming was promoted by s.c. injection of CD40L-transduced tumor in the presence of apoptotic tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号