首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pigeonpea (Cajanus cajan), an important food legume crop in the semi-arid regions of the world and the second most important pulse crop in India, has an average crop productivity of 780 kg/ha. The relatively low crop yields may be attributed to non-availability of improved cultivars, poor crop husbandry and exposure to a number of biotic and abiotic stresses in pigeonpea growing regions. Narrow genetic diversity in cultivated germplasm has further hampered the effective utilization of conventional breeding as well as development and utilization of genomic tools, resulting in pigeonpea being often referred to as an ‘orphan crop legume’. To enable genomics-assisted breeding in this crop, the pigeonpea genomics initiative (PGI) was initiated in late 2006 with funding from Indian Council of Agricultural Research under the umbrella of Indo-US agricultural knowledge initiative, which was further expanded with financial support from the US National Science Foundation’s Plant Genome Research Program and the Generation Challenge Program. As a result of the PGI, the last 3 years have witnessed significant progress in development of both genetic as well as genomic resources in this crop through effective collaborations and coordination of genomics activities across several institutes and countries. For instance, 25 mapping populations segregating for a number of biotic and abiotic stresses have been developed or are under development. An 11X-genome coverage bacterial artificial chromosome (BAC) library comprising of 69,120 clones have been developed of which 50,000 clones were end sequenced to generate 87,590 BAC-end sequences (BESs). About 10,000 expressed sequence tags (ESTs) from Sanger sequencing and ca. 2 million short ESTs by 454/FLX sequencing have been generated. A variety of molecular markers have been developed from BESs, microsatellite or simple sequence repeat (SSR)-enriched libraries and mining of ESTs and genomic amplicon sequencing. Of about 21,000 SSRs identified, 6,698 SSRs are under analysis along with 670 orthologous genes using a GoldenGate SNP (single nucleotide polymorphism) genotyping platform, with large scale SNP discovery using Solexa, a next generation sequencing technology, is in progress. Similarly a diversity array technology array comprising of ca. 15,000 features has been developed. In addition, >600 unique nucleotide binding site (NBS) domain containing members of the NBS-leucine rich repeat disease resistance homologs were cloned in pigeonpea; 960 BACs containing these sequences were identified by filter hybridization, BES physical maps developed using high information content fingerprinting. To enrich the genomic resources further, sequenced soybean genome is being analyzed to establish the anchor points between pigeonpea and soybean genomes. In addition, Solexa sequencing is being used to explore the feasibility of generating whole genome sequence. In summary, the collaborative efforts of several research groups under the umbrella of PGI are making significant progress in improving molecular tools in pigeonpea and should significantly benefit pigeonpea genetics and breeding. As these efforts come to fruition, and expanded (depending on funding), pigeonpea would move from an ‘orphan legume crop’ to one where genomics-assisted breeding approaches for a sustainable crop improvement are routine.  相似文献   

3.
4.
Pigeonpea (Cajanus cajan L.) is an important food legume crop of rainfed agriculture. Owing to exposure of the crop to a number of biotic and abiotic stresses, the crop productivity has remained stagnant for almost last five decades at ca. 750?kg/ha. The availability of a cytoplasmic male sterility (CMS) system has facilitated the development and release of hybrids which are expected to enhance the productivity of pigeonpea. Recent advances in genomics and molecular breeding such as marker-assisted selection (MAS) offer the possibility to accelerate hybrid breeding. Molecular markers and genetic maps are pre-requisites for deploying MAS in breeding. However, in the case of pigeonpea, only one inter- and two intra-specific genetic maps are available so far. Here, four new intra-specific genetic maps comprising 59-140 simple sequence repeat (SSR) loci with map lengths ranging from 586.9 to 881.6?cM have been constructed. Using these four genetic maps together with two recently published intra-specific genetic maps, a consensus map was constructed, comprising of 339 SSR loci spanning a distance of 1,059?cM. Furthermore, quantitative trait loci (QTL) analysis for fertility restoration (Rf) conducted in three mapping populations identified four major QTLs explaining phenotypic variances up to 24?%. To the best of our knowledge, this is the first report on construction of a consensus genetic map in pigeonpea and on the identification of QTLs for fertility restoration. The developed consensus genetic map should serve as a reference for developing new genetic maps as well as correlating with the physical map in pigeonpea to be developed in near future. The availability of more informative markers in the bins harbouring QTLs for sterility mosaic disease (SMD) and Rf will facilitate the selection of the most suitable markers for genetic analysis and molecular breeding applications in pigeonpea.  相似文献   

5.
The expressed sequence tags (ESTs) of common bean were BLAST aligned with barred medic genome sequence and developed 1196 conserved intron spanning primers (CISPs) to facilitate genetic studies in legumes. Randomly selected 288 CISPs, representing loci on barrel medic genome, were tested on 10 selected members of legume family. On the source taxa, the highest single copy amplification success rates of 61.8% (barrel medic) and 56.2% (common bean) was obtained. The success rate of markers was 54.5% in cowpea followed by 53.5% in pigeonpea and chickpea, signifying cross taxon amplification and their potential use in comparative genomics. However, relatively low percentages of primer set amplified (40–43%) in soybean, urdbean and peanut. Further, these primers were tested on different varieties of chickpea, pigeonpea and cowpea. The PCR products were sequenced and aligned which resulted in detection of 26 SNPs and eight INDeLs in cowpea, seven SNPs and two INDeLs in chickpea and 27 SNPs and 14 INDeLs in pigeonpea. These SNPs were successfully converted in to size variation for gel-based genotyping. The CISP markers developed in this study are expected to aid in map saturation of legumes and in marker-assisted selection for accelerated crop improvement.  相似文献   

6.
7.

Background  

Pigeonpea (Cajanus cajan (L.) Millsp) is one of the major grain legume crops of the tropics and subtropics, but biotic stresses [Fusarium wilt (FW), sterility mosaic disease (SMD), etc.] are serious challenges for sustainable crop production. Modern genomic tools such as molecular markers and candidate genes associated with resistance to these stresses offer the possibility of facilitating pigeonpea breeding for improving biotic stress resistance. Availability of limited genomic resources, however, is a serious bottleneck to undertake molecular breeding in pigeonpea to develop superior genotypes with enhanced resistance to above mentioned biotic stresses. With an objective of enhancing genomic resources in pigeonpea, this study reports generation and analysis of comprehensive resource of FW- and SMD- responsive expressed sequence tags (ESTs).  相似文献   

8.
9.
The small genome size (740 Mb), short life cycle (3 months) and high economic importance as a food crop legume make chickpea (Cicer arietinum L.) an important system for genomics research. Although several genetic linkage maps using various markers and genomic tools have become available, sequencing efforts and their use are limited in chickpea genomic research. In this study, we explored the genome organization of chickpea by sequencing approximately 500 kb from 11 BAC clones (three representing ascochyta blight resistance QTL1 (ABR-QTL1) and eight randomly selected BAC clones). Our analysis revealed that these sequenced chickpea genomic regions have a gene density of one per 9.2 kb, an average gene length of 2,500 bp, an average of 4.7 exons per gene, with an average exon and intron size of 401 and 316 bp, respectively, and approximately 8.6% repetitive elements. Other features analyzed included exon and intron length, number of exons per gene, protein length and %GC content. Although there are reports on high synteny among legume genomes, the microsynteny between the 500 kb chickpea and available Medicago truncatula genomic sequences varied depending on the region analyzed. The GBrowse-based annotation of these BACs is available at http://www.genome.ou.edu/plants_totals.html . We believe that our work provides significant information that supports a chickpea genome sequencing effort in the future.  相似文献   

10.
Tomato (Solanum lycopersicum) is considered a model plant species for a group of economically important crops, such as potato, pepper, eggplant, since it exhibits a reduced genomic size (950 Mb), a short generation time, and routine transformation technologies. Moreover, it shares with the other Solanaceous plants the same haploid chromosome number and a high level of conserved genomic organization. Finally, many genomic and genetic resources are actually available for tomato, and the sequencing of its genome is in progress. These features make tomato an ideal species for theoretical studies and practical applications in the genomics field. The present review describes how structural genomics assist the selection of new varieties resistant to pathogens that cause damage to this crop. Many molecular markers highly linked to resistance genes and cloned resistance genes are available and could be used for a high-throughput screening of multiresistant varieties. Moreover, a new genomics-assisted breeding approach for improving fruit quality is presented and discussed. It relies on the identification of genetic mechanisms controlling the trait of interest through functional genomics tools. Following this approach, polymorphisms in major gene sequences responsible for variability in the expression of the trait under study are then exploited for tracking simultaneously favourable allele combinations in breeding programs using high-throughput genomic technologies. This aims at pyramiding in the genetic background of commercial cultivars alleles that increase their performances. In conclusion, tomato breeding strategies supported by advanced technologies are expected to target increased productivity and lower costs of improved genotypes even for complex traits.Key Words: Solanum lycopersicum, genetic and genomic resources, molecular markers, microarray, resistance to pathogens, fruit quality.  相似文献   

11.
We developed 21,499 genome-wide insertion–deletion (InDel) markers (2- to 54-bp in silico fragment length polymorphism) by comparing the genomic sequences of four (desi, kabuli and wild C. reticulatum) chickpea [Cicer arietinum (L.)] accessions. InDel markers showing 2- to 6-bp fragment length polymorphism among accessions were abundant (76.8%) in the chickpea genome. The physically mapped 7,643 and 13,856 markers on eight chromosomes and unanchored scaffolds, respectively, were structurally and functionally annotated. The 4,506 coding (23% large-effect frameshift mutations) and regulatory InDel markers were identified from 3,228 genes (representing 11.7% of total 27,571 desi genes), suggesting their functional relevance for trait association/genetic mapping. High amplification (97%) and intra-specific polymorphic (60–83%) potential and wider genetic diversity (15–89%) were detected by genome-wide 6,254 InDel markers among desi, kabuli and wild accessions using even a simpler cost-effective agarose gel-based assay. This signifies added advantages of this user-friendly genetic marker system for manifold large-scale genotyping applications in laboratories with limited infrastructure and resources. Utilizing 6,254 InDel markers-based high-density (inter-marker distance: 0.212 cM) inter-specific genetic linkage map (ICC 4958 × ICC 17160) of chickpea as a reference, three major genomic regions harboring six flowering and maturity time robust QTLs (16.4–27.5% phenotypic variation explained, 8.1–11.5 logarithm of odds) were identified. Integration of genetic and physical maps at these target QTL intervals mapped on three chromosomes delineated five InDel markers-containing candidate genes tightly linked to the QTLs governing flowering and maturity time in chickpea. Taken together, our study demonstrated the practical utility of developing and high-throughput genotyping of such beneficial InDel markers at a genome-wide scale to expedite genomics-assisted breeding applications in chickpea.  相似文献   

12.
近年来花生微卫星标记的开发取得了一定的进展, 初步揭示了花生在DNA水平上的遗传多样性。花生微卫星标记的开发途径主要包括通过构建小片段基因组文库开发基因组SSR标记, 根据花生EST序列开发EST-SSR标记, 根据豆科植物序 列信息和SSR标记开发花生SSR标记, 将SSR标记与其它分子标记结合开发新的DNA标记, 以及基于SSR核心序列开发ISSR标记。花生微卫星标记主要应用于遗传多样性研究、遗传图谱与品种指纹图谱构建以及分子标记辅助育种等领域。本文综述了花生SSR标记开发研究的进展及应用。  相似文献   

13.
Completion of the genome analysis followed by extensive comprehensive studies on a variety of genes and gene families of rice (Oryza sativa) resulted in rapid accumulation of information concerning the presence of many complex traits that are governed by a number of genes of distinct functions in this most important crop cultivated worldwide. The genetic and molecular biological dissection of many important rice phenotypes has contributed to our understanding of the complex nature of the genetic control with respect to these phenotypes. However, in spite of the considerable advances made in the field, details of genetic control remain largely unsolved, thereby hampering our exploitation of this useful information in the breeding of new rice cultivars. To further strengthen the field application of the genome science data of rice obtained so far, we need to develop more powerful genomics-assisted methods for rice breeding based on information derived from various quantitative trait loci (QTL) and related analyses. In this review, we describe recent progresses and outcomes in rice QTL analyses, problems associated with the application of the technology to rice breeding and their implications for the genetic study of other crops along with future perspectives of the relevant fields.Key words: QTL, near-isogenic lines, chromosome segment substitution lines, marker-assisted selection, map-based cloning  相似文献   

14.
Undoubtedly, drought is one of the prime abiotic stresses in the world. Crop yield losses due to drought stress are considerable. Although a variety of approaches have been used to alleviate the problem of drought, plant breeding, either conventional breeding or genetic engineering, seems to be an efficient and economic means of tailoring crops to enable them to grow successfully in drought-prone environments. During the last century, although plant breeders have made ample progress through conventional breeding in developing drought tolerant lines/cultivars of some selected crops, the approach is, in fact, highly time-consuming and labor- and cost-intensive. Alternatively, marker-assisted breeding (MAB) is a more efficient approach, which identifies the usefulness of thousands of genomic regions of a crop under stress conditions, which was, in reality, previously not possible. Quantitative trait loci (QTL) for drought tolerance have been identified for a variety of traits in different crops. With the development of comprehensive molecular linkage maps, marker-assisted selection procedures have led to pyramiding desirable traits to achieve improvements in crop drought tolerance. However, the accuracy and preciseness in QTL identification are problematic. Furthermore, significant genetic × environment interaction, large number of genes encoding yield, and use of wrong mapping populations, have all harmed programs involved in mapping of QTL for high growth and yield under water limited conditions. Under such circumstances, a transgenic approach to the problem seems more convincing and practicable, and it is being pursued vigorously to improve qualitative and quantitative traits including tolerance to biotic and abiotic stresses in different crops. Rapid advance in knowledge on genomics and proteomics will certainly be beneficial to fine-tune the molecular breeding and transformation approaches so as to achieve a significant progress in crop improvement in future. Knowledge of gene regulation and signal transduction to generate drought tolerant crop cultivars/lines has been discussed in the present review. In addition, the advantages and disadvantages as well as future prospects of each breeding approach have also been discussed.  相似文献   

15.
Groundnut (Arachis hypogaea L.) is an important food and cash crop grown mainly in semi-arid tropics (SAT) regions of the world where drought is the major constraint on productivity. With the aim of understanding the genetic basis and identification of quantitative trait loci (QTL) for drought tolerance, two new recombinant inbred line (RIL) mapping populations, namely ICGS 76?×?CSMG 84-1 (RIL-2) and ICGS 44?×?ICGS 76 (RIL-3), were used. After screening of 3,215 simple sequence repeat (SSR) markers on the parental genotypes of these populations, two new genetic maps were developed with 119 (RIL-2) and 82 (RIL-3) SSR loci. Together with these maps and the reference map with 191 SSR loci based on TAG 24?×?ICGV 86031 (RIL-1), a consensus map was constructed with 293 SSR loci distributed over 20 linkage groups, spanning 2,840.8?cM. As all these three populations segregate for drought-tolerance-related traits, a comprehensive QTL analysis identified 153 main effect QTL (M-QTL) and 25 epistatic QTL (E-QTL) for drought-tolerance-related traits. Localization of these QTL on the consensus map provided 16 genomic regions that contained 125 QTL. A few key genomic regions were selected on the basis of the QTL identified in each region, and their expected role in drought adaptation is also discussed. Given that no major QTL for drought adaptation were identified, novel breeding approaches such as marker-assisted recurrent selection (MARS) and genomic selection (GS) approaches are likely to be the preferred approaches for introgression of a larger number of QTL in order to breed drought-tolerant groundnut genotypes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9660-0) contains supplementary material, which is available to authorized users.  相似文献   

16.

Key message

Given recent advances in pulse molecular biology, genomics-driven breeding has emerged as a promising approach to address the issues of limited genetic gain and low productivity in various pulse crops.

Abstract

The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability.  相似文献   

17.
Genetic analysis across a whole plant genome based on pedigree information offers considerable potential for enhancing genetic gain from plant breeding programs through quantitative trait loci (QTL) mapping and marker-assisted selection. Here, we report its application for graphically genotyping varieties used in Chinese japonica rice (Oryza sativa L.) pedigree breeding programs. We identified 34 important chromosomal regions from the founder parent that are under selection in the breeding programs, and by comparing donor genomic regions that are under selection with QTL locations of agronomic traits, we found that QTL clustered in important genomic regions, in accordance with association analyses of natural populations and other previous studies. The convergence of genomic regions under selection with QTL locations suggests that donor genomic regions harboring key genes/QTL for important agronomic traits have been selected by plant breeders since the 1950s from the founder rice plants. The results provide better understanding of the effects of selection in breeding programs on the traits of rice cultivars. They also provide potentially valuable information for enhancing rice breeding programs through screening candidate parents for targeted molecular markers, improving crop yield potential and identifying suitable genetic material for use in future breeding programs.  相似文献   

18.
A rapid high-resolution genome-wide strategy for molecular mapping of major QTL(s)/gene(s) regulating important agronomic traits is vital for in-depth dissection of complex quantitative traits and genetic enhancement in chickpea. The present study for the first time employed a NGS-based whole-genome QTL-seq strategy to identify one major genomic region harbouring a robust 100-seed weight QTL using an intra-specific 221 chickpea mapping population (desi cv. ICC 7184 × desi cv. ICC 15061). The QTL-seq-derived major SW QTL (CaqSW1.1) was further validated by single-nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker-based traditional QTL mapping (47.6% R2 at higher LOD >19). This reflects the reliability and efficacy of QTL-seq as a strategy for rapid genome-wide scanning and fine mapping of major trait regulatory QTLs in chickpea. The use of QTL-seq and classical QTL mapping in combination narrowed down the 1.37 Mb (comprising 177 genes) major SW QTL (CaqSW1.1) region into a 35 kb genomic interval on desi chickpea chromosome 1 containing six genes. One coding SNP (G/A)-carrying constitutive photomorphogenic9 (COP9) signalosome complex subunit 8 (CSN8) gene of these exhibited seed-specific expression, including pronounced differential up-/down-regulation in low and high seed weight mapping parents and homozygous individuals during seed development. The coding SNP mined in this potential seed weight-governing candidate CSN8 gene was found to be present exclusively in all cultivated species/genotypes, but not in any wild species/genotypes of primary, secondary and tertiary gene pools. This indicates the effect of strong artificial and/or natural selection pressure on target SW locus during chickpea domestication. The proposed QTL-seq-driven integrated genome-wide strategy has potential to delineate major candidate gene(s) harbouring a robust trait regulatory QTL rapidly with optimal use of resources. This will further assist us to extrapolate the molecular mechanism underlying complex quantitative traits at a genome-wide scale leading to fast-paced marker-assisted genetic improvement in diverse crop plants, including chickpea.  相似文献   

19.
20.
大麦(Hordeum vulgare L.)是世界上重要的谷类作物之一,其二倍体特性使其成为麦类作物基因组研究的重要材料。随着大量分子标记图谱、BACs文库、突变集合和DNA阵列技术的应用,大麦基因组测序工作已不断深入,越来越多的大麦基因组信息使综合分析大麦基因组结构和功能,了解基因表达网络同重要农艺性状之间的关系成为可能。就大麦基因组研究内容,如ESTs系统、物理图谱的构建、功能基因组学研究和大麦分子育种研究作简要综述,为进一步阐述大麦基因组结构和功能特性,提高大麦分子育种能力提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号