首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photobiomodulation therapy (PBMT) employing laser light has been emerging as a safe strategy to challenge viruses. In this study the effect of blue and near-infrared (NIR) laser light was assessed in an in vitro model of SARS-CoV-2 infection. PBMT at blue wavelength inhibited viral amplification when the virus was directly irradiated and then transferred to cell culture and when cells already infected were treated. The NIR wavelength resulted less efficacious showing a minor effect on the reduction of the viral load. The cells receiving the irradiated virus or directly irradiated rescued their viability to level comparable to not treated cells. Virion integrity and antigenicity were preserved after blue and NIR irradiation, suggesting that the PBMT antiviral effect was not correlated to viral lipidic envelope disruption. Our results suggested that PBMT can be considered a valid strategy to counteract SARS-CoV-2 infection, at least in vitro.  相似文献   

2.
In the presence of 0.2 μ M IAA both the wild type and the aurea mutant of Lycopersicon esculentum Mill, showed a low but significant percentage of bud formation in the dark, whereas no bud formation occurred in the dark when 20 μ M IAA was present in the medium. In both systems blue light always showed a strong promoting effect on bud regeneration, both as final percentage of regeneration and by shortening the initial lag period, suggesting the action of a specific blue light photoreceptor. Red and far-red light increased the percentage of bud differentiation in wild type explants, with both the IAA concentrations. In the aurea mutant only red at the lowest IAA concentration had such an effect. The final percentage of bud regeneration under red light was greater or equal to that found under blue light in the wild type as well as in the aurea mutant explants cultured in the presence of the lowest IAA concentration.  相似文献   

3.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) damages lung epithelial stem/progenitor cells. Ideal anti-SARS-CoV-2 drug candidates should be screened to prevent secondary injury to the lungs. Here, we propose that in vitro three-dimensional organoid and lung injury repair mouse models are powerful models for the screening antiviral drugs. Lung epithelial progenitor cells, including airway club cells and alveolar type 2 (AT2) cells, were co-cultured with supportive fibroblast cells in transwell inserts. The organoid model was used to evaluate the possible effects of hydroxychloroquine, which is administered as a symptomatic therapy to the coronavirus disease 2019 (COVID-19) patients, on the function of mouse lung stem/progenitor cells. Hydroxychloroquine was observed to promote the self-renewal of club cells and differentiation of ciliated and goblet cells in vitro. Additionally, it inhibited the self-renewal ability of AT2 cells in vitro. Naphthalene- or bleomycin-induced lung injury repair mouse models were used to investigate the in vivo effects of hydroxychloroquine on the regeneration of club and AT2 cells, respectively. The naphthalene model indicated that the proliferative ability and differentiation potential of club cells were unaffected in the presence of hydroxychloroquine. The bleomycin model suggested that hydroxychloroquine had a limited effect on the proliferation and differentiation abilities of AT2 cells. These findings suggest that hydroxychloroquine has limited effects on the regenerative ability of epithelial stem/progenitor cells. Thus, stem/progenitor cell-derived organoid technology and lung epithelial injury repair mouse models provide a powerful platform for drug screening, which could possibly help end the pandemic.  相似文献   

4.
A comparison has been made of the relative effectiveness of light quality and quantity and gibberellic acid (GA3) treatment on the elongation growth of the coleoptile and the first foliage leaf in durum wheat (Triticum durum Desf. cvs. Cappelli and Creso). The cultivar Creso is a shortstrawed variety carrying the Gai 1 gene on chromosome 4A, which influences both plant height and insensitivity to applied gibberellins. The main conclusions are as follows: 1) coleoptile elongation growth appears to be modulated via the fluencerate-dependent action of a blue-light receptor and via a low energy response of phytochrome; 2) the inhibition of first-foliage-leaf growth depends on the operation of a single blue-light-responsive photoreceptor; 3) high energy blue light produces the same inhibitory effect on the two wheat cultivars, whereas at relatively low fluences of white and blue light, the cultivar Creso is more sensitive; 4) the insensitivity to applied GA3 exerted by the gene Gai 1 in Creso is independent of light; 5) in Cappelli, the action of light on coleoptiles appears to be independent of the applied GA3, whereas the hormone is able to change the pattern of growth inhibition of the first-foliage-leaf.Abbreviations BL blue light - FR far-red light - GA gibberellin - GA3 gibberellic acid - R red light - WL white light  相似文献   

5.
Low‐level laser therapy (LLLT) using superpulsed near‐infrared light can penetrate deeper in the injured tissue and could allow non‐pharmacological treatment for chronic wound healing. This study investigated the effects of superpulsed laser (Ga‐As 904 nm, 200 ns pulse width; 100 Hz; 0.7 mW mean output power; 0.4 mW/cm2 average irradiance; 0.2 J/cm2 total fluence) on the healing of burn wounds in rats, and further explored the probable associated mechanisms of action. Irradiated group exhibited enhanced DNA, total protein, hydroxyproline and hexosamine contents compared to the control and silver sulfadiazine (reference care) treated groups. LLLT exhibited decreased TNF‐α level and NF‐kB, and up‐regulated protein levels of VEGF, FGFR‐1, HSP‐60, HSP‐90, HIF‐1α and matrix metalloproteinases‐2 and 9 compared to the controls. In conclusion, LLLT using superpulsed 904 nm laser reduced the inflammatory response and was able to enhance cellular proliferation, collagen deposition and wound contraction in the repair process of burn wounds.

Photomicrographs showing no, absence inflammation and faster wound contraction in LLLT superpulsed (904 nm) laser treated burn wounds as compared to the non‐irradiated control and silver sulfadiazine (SSD) ointment (reference care) treated wounds  相似文献   


6.
Photobiomodulation (PBM) is a simple, efficient and cost‐effective treatment for both acute and chronic pain. We previously showed that PBM applied to the mouse head inhibited nociception in the foot. Nevertheless, the optimum parameters, location for irradiation, duration of the effect and the mechanisms of action remain unclear. In the present study, the pain threshold in the right hind paw of mice was studied, after PBM (810 nm CW laser, spot size 1 or 6 cm2, 1.2–36 J/cm2) applied to various anatomical locations. The pain threshold, measured with von Frey filaments, was increased more than 3‐fold by PBM to the lower back (dorsal root ganglion, DRG), as well as to other neural structures along the pathway such as the head, neck and ipsilateral (right) paw. On the other hand, application of PBM to the contralateral (left) paw, abdomen and tail had no effect. The optimal effect occurred 2 to 3 hours post‐PBM and disappeared by 24 hours. Seven daily irradiations showed no development of tolerance. Type 1 metabotropic glutamate receptors decreased, and prostatic acid phosphatase and tubulin‐positive varicosities were increased as shown by immunofluorescence of DRG samples. These findings elucidate the mechanisms of PBM for pain and provide insights for clinical practice.   相似文献   

7.
Moritoshi Iino 《Planta》1982,156(1):21-32
Brief irradiation of intact etiolated seedlings of maize (Zea mays L.) with red light (R; 30 W cm-2, 10 min) reduces the amounts of diffusible and free (solvent-extractable) indole-3-acetic acid (IAA) obtainable from excised coleoptile tips. The effect is transient, the lowest level (30% of the dark control) occurring at about 3 h after irradiation. The free-IAA content of the whole coleoptile and the diffusible-IAA yield from the base of the same organ are similarly reduced, whereas the conjugated-IAA content of the coleoptile is not affected. These results support the view that R inhibits the production of IAA at the coleoptile tip. It is further shown that R inhibits biosynthesis of [3H]IAA from [3H]tryptophan supplied to the coleoptile tip. The shapes of the fluence-response curves obtained for the reduction of the diffusible-IAA yield by R and far-red light (FR) indicate the participation of two photoreactive systems. One has thresholds at 10-3 W s cm2 of R, five orders of magnitude less than the minimum required for the appearance of spectrophotometrically measurable far-red-absorbing form of phytochrome (Pfr) in vivo, and 10-1 W s cm-2 of FR; its response is linear to the logarithm of fluence exceeding five orders of magnitude. The other system is seen above 102 W s cm-2 as an increase in the slope of the fluenceresponse curve; its response is FR reversible and related to the Pfr level of total photoreversible phytochrome. Both systems inhibit biosynthesis of IAA from tryptophan. Elongation of the coleoptile is stimulated by R; the stimulation is most apparent in the apical region, and is saturated with a fluence at which bo detectable pfr is formed. Farred light can also saturate this response. Since the endogenous IAA concentration in the coleoptile appears not to be in the inhibitory range, it is concluded that the stimulation of coleoptile elongation is not the result of changes in free-IAA levels.Abbreviations FR far-red light - IAA indole-3-acetic acid - Pfr phytochrome in the far-red-absorbing form - Pr phytochrome in the red-absorbing form - R red light  相似文献   

8.
Photosynthesis of Ectocarpus siliculosus (Dillwyn) Lyngb. under continuous saturating red irradiation follows a circadian rhythm. Blue-light pulses rapidly stimulate photosynthesis with high effectiveness in the troughs of this rhythm but the effectiveness of such pulses is much lower at its peaks. In an attempt to understand how blue light and the rhythm affected photosynthesis, the effects of inorganic carbon on photosynthetic light saturation curves were studied under different irradiation conditions. The circadian rhythm of photosynthesis was apparent only at irradiances which were not limiting for photosynthesis. The same was found for blue-light-stimulated photosynthesis, although stimulation was observed also under very low red-light irradiances after a period of adaptation, provided that the inorganic-carbon concentration was not in excess. Double-reciprocal plots of light-saturated photosynthetic rates versus the concentration of total inorganic carbon (up to 10 mM total inorganic carbon) were linear and had a common constant for half-saturation (3.6 mM at pH 8) at both the troughs and the peaks of the rhythm and before and after blue-light pulses. Only at very low carbon concentrations was a clear deviation found from these lines for photosynthesis at the rhythm maxima (red and blue light), which indicated that the strong carbon limitation specifically affected photosynthesis at the peak phases of the rhythm. Very high inorganic carbon concentrations (20 mM) in the medium diminished the responses to blue light, although they did not fully abolish them. The kinetics of the stimulation indicate that the rate of photosynthesis is affected by two blue-light-dependent components with different time courses of induction and decay. The faster component seemed to be at least partially suppressed at red-light irradiances which were not saturating for photosynthesis. Lowering the pH of the medium had the same effects as an increase of the carbon concentration to levels of approx. 10 mM. This indicates that Ectocarpus takes up free CO2 only and not bicarbonate, although additional physiological mechanisms may enhance the availability of CO2.Abbreviation TIC total inorganic carbon  相似文献   

9.
Cyclic electron transport and NADH and/or NADPH (NAD(P)H)-oxidizing activities were investigated in Synechocystis sp. PCC6803 grown under various stressed conditions and in ndhB-less (M55) and ycf33-deletion mutants. Activity staining and inhibitor data suggested that the ferredoxin-quinone reductase (FQR) route is the main pathway in ycf33-deletion and high-light (300 μE m?2 s?1)-grown cells as well as in M55 cells. The FQR route was highly sensitive to HgCl2, but not to diphenyleneiodonium (DPI). On the other hand, cells grown under low CO2 (0.03%) or normal (100 μE m?2 s?1, 3% CO2) conditions were found perhaps to use the complex I-type NAD(P)H dehydrogenase route, which was found to be highly sensitive to DPI but not to HgCl2. In high-salt (0.55 M NaCl)-grown cells, the amount of ferredoxin-NADP+ oxidoreductase (FNR) increased, and the main cyclic electron flow was perhaps the FNR route. Both DPI and HgCl2 were strong inhibitors of the FNR route.  相似文献   

10.
The localization and fine structure of proliferating cells in the hypothalamic preoptic area were studied by light-and electron-microscopic radioautography 1–2 h following single application of 3H-thymidine to adult Rana temporaria taken from their natural habitat in the spring and autumn. 3H-thymidine uptake by proliferating cells was much more pronounced in frogs caught in May/June, i.e., a month after the breeding period (labeled cells represent about 10% of the total ventricular zone cell population), compared to animals caught in mid-September, when it was very low. In both 3H-thymidine treatment groups the vast majority of labeled cells are found exclusively within the preoptic recess ventricular zone. With regard to ultrastructure, it contained proliferating cells of at least 4 types, ranging from immature forms (bipolar stem cells) to more differentiated elements (tanycyte-like ependymoblasts, classical ependymoblasts). All of them showed label over their nuclei indicating that these cells are capable of DNA synthesis and mitosis. The possible role of the preoptic recess ventricular zone as a source of precursor cells for new peptidergic neurosecretory cells, conventional neurons and glial cells in the hypothalamic preoptic area of the adult frog is discussed.  相似文献   

11.
Mature green leaves from tobacco (Nicotiana tabacum L.) plants were submitted to contrasting light conditions; half of each leaf was shaded (changed from 60 to 25 mol photons· m-2 ·s-1=LL) and the other half was exposed to higher light (changed from 60 to 360 mol·m-2· s-1=HL) for 24 h. The activity and quantity of ribulose-1,5-bisphosphate carboxylase (RuBPCase) were measured during the first 24 h in each leaf region and the variation was compared with that of small subunit (SSU)-and large subunit (LSU)-mRNA contents determined by a hybridot technique. Each leaf half responded separately to the actual light received. The activity of RuBPCase increased progressively in the HL zones and decreased in the LL zones. The RuBPCase-protein content was not significantly modified during the first 24 h but SSU-mRNA content responded very rapidly to the treatment. Within 2 h a significant difference in SSU mRNA appeared between LL and HL zones: at the end of the photoperiod the content in LL zones was approx. 25% of the initial value. The increase in the exposed zone, however, was not significant, indicating that there was a dissymmetry of the response to variation in incident white light. The LSU-mRNA contents from the same leaf extracts were totally unaffected by the light treatment. No day-night variations were noted in either SSU or LSU mRNAs in control plants.Abbreviation HL high-light irradiance - LL lower-ligh irradiance - LSU large subunit of RuBPCase - RuBPCase ribulose-1,5-bisphosphate carboxylase - SSU small subunit of RuBPCase  相似文献   

12.
In the present study, the changes that occur in rat liver tissue as a result of the use of grape seed extract (GSE) and low level laser therapy (LLLT) in intraoral wound (IW) healing are analyzed using biochemical parameters. Diode laser application groups received 8 J/cm2 dose LLLT once a day for 4 days (810 nm wavelength, continuous mode, 0.25 W, 9 s). As a result of the biological parameter analysis, it was determined that the oxidative damage caused by the IWs and recovery period on 7th and 14th days could be substantially removed with GSE applications that have antioxidant capacity especially in rat liver tissue. In addition, the active compound of grape seed, catechin is studied in the active site of glycogen synthase kinase 3 (GSK3) target using molecular modeling approaches. Post-processing molecular dynamics (MD) results for catechin is compared with a standard GSK3 inhibitor. MD simulations assisted for better understanding of inhibition mechanism and the crucial amino acids contributing in the ligand binding. These results along with a through free energy analysis of ligands using sophisticated simulations methods are quite striking and it suggests a greater future role for simulation in deciphering complex patterns of molecular mechanism in combination with methods for understanding drug-receptor interactions.  相似文献   

13.
Ozone and light effects on endophytic colonization by Apiognomonia errabunda of adult beech trees (Fagus sylvatica) and their putative mediation by internal defence compounds were studied at the Kranzberg Forest free-air ozone fumigation site. A. errabunda colonization was quantified by "real-time PCR" (QPCR). A. errabunda-specific primers allowed detection without interference by DNA from European beech and several species of common genera of plant pathogenic fungi, such as Mycosphaerella, Alternaria, Botrytis, and Fusarium. Colonization levels of sun and shade leaves of European beech trees exposed either to ambient or twice ambient ozone regimes were determined. Colonization was significantly higher in shade compared to sun leaves. Ozone exhibited a marginally inhibitory effect on fungal colonization only in young leaves in 2002. The hot and dry summer of 2003 reduced fungal colonization dramatically, being more pronounced than ozone treatment or sun exposure. Levels of soluble and cell wall-bound phenolic compounds were approximately twice as high in sun than in shade leaves. Acylated flavonol 3- O-glycosides with putatively high UV-B shielding effect were very low in shade canopy leaves. Ozone had only a minor influence on secondary metabolites in sun leaves. It slightly increased kaempferol 3- O-glucoside levels exclusively in shade leaves. The frequently prominent hydroxycinnamic acid derivative, chlorogenic acid, was tested for its growth inhibiting activity against Apiognomonia and showed an IC50 of approximately 8 mM. Appearance of Apiognomonia-related necroses strongly correlated with the occurrence of the stress metabolite, 3,3',4,4'-tetramethoxybiphenyl. Infection success of Apiognomonia was highly dependent on light exposure, presumably affected by the endogenous levels of constitutive phenolic compounds. Ozone exerted only minor modulating effects, whereas climatic factors, such as pronounced heat periods and drought, were dramatically overriding.  相似文献   

14.
Stimulation or light-saturated rates of photosynthesis in Ectocarpus siliculosus (Dillwyn) Lyngb. by blue light was eliminated by increasing dissolved inorganic carbon (DIC) or by lowering pH in natural seawater. The amplitude of the circadian rhythm of photosynthesis was also diminished under these conditions, and the pH compensation points in a closed system were higher in the presence of blue light and during the circadian day. These observations suggest that blue light and the circadian clock regulate the activity of a carbon acquisition system in these plants. The inhibitor of external carbonic anhydrase, acetazolamide, reduced overall rates of photosynthesis by only about 30%, but ethoxyzolamide suppressed the circadian rhythm of photosynthesis almost completely and markedly reduced the duration of responses to blue light pulses. Similar patterns were obtained when photosynthesis was measured in strongly limiting DIC concentrations (0–0.5 mol m?3). Since blue light stimulated photosynthesis under these conditions of strong carbon limitation, we suggest that blue light activates the release of CO2 from an internal CO2 store. We propose a metabolic pathway with similarities to that of CAM plants. Non-photosynthetic fixation leads to the accumulation of a storage metabolite. The circadian clock and blue light control the mobilization of CO2 at the site of decarboxylation of this metabolite. In the presence of continuous blue light the pathway is proposed to cycle and act as a pump for CO2 into the chloroplasts. This hypothesis helps to explain a number of previously reported peculiarities of brown algal photosynthesis.  相似文献   

15.
Ezrin, radixin and moesin (ERM) proteins are more and more recognized to play a key role in a large number of important physiological processes such as morphogenesis, cancer metastasis and virus infection. Recent reviews extensively discuss their biological functions 1, 2, 3 and 4. In this review, we will first remind the main features of this family of proteins, which are known as linkers and regulators of plasma membrane/cytoskeleton linkage. We will then briefly review their implication in pathological processes such as cancer and viral infection. In a second part, we will focus on biochemical and biophysical approaches to study ERM interaction with lipid membranes and conformational change in well-defined environments. In vitro studies using biomimetic lipid membranes, especially large unilamellar vesicles (LUVs), giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs) and recombinant proteins help to understand the molecular mechanism of conformational activation of ERM proteins. These tools are aimed to decorticate the different steps of the interaction, to simplify the experiments performed in vivo in much more complex biological environments.  相似文献   

16.
Postmenopausal osteoporosis (OP) is a major concern for public health. Low‐level laser therapy (LLLT) has a positive effect on the health of bone marrow mesenchymal stem cells (BMMSCs). The purpose of this study is to evaluate the influence of LLLT and oxytocin (OT) incubation—individually and in combination—on osteoporotic BMMSCs in ovariectomized rats. Twelve female rats were randomized into two groups to undergo either a sham surgery (sham group) or ovariectomy‐induced osteoporosis (OVX group). MSCs harvested from the BM of healthy and OVX rats underwent culture expansion. There were five groups. In Groups one (sham‐BMMSC) and two (OVX‐BMMSC) the cells were held in osteogenic condition medium without any intervention. In the group three (OT), OT incubation with optimum dose was performed for 48 h (two times, 10?12 molar). In Group four, laser‐treated‐OVX‐BMMSCs were treated with optimum protocol of LLLT (one time, 1.2 J/cm2). In Group five (laser + OT group), the OT incubation plus the laser irradiation was performed. The biostimulatory effect of LLLT is demonstrated by a significant increase in the viability of OVX‐BMMSCs, cell cycle, and extracellular levels of Transforming growth factor beta (TGF‐β), insulin‐like growth factor‐I (IGF‐I), and Alkaline phosphatase (ALP) compared to control OVX‐BMMSCs and/or the sham group. OT incubation and laser + OT incubation have a positive effect on OVX‐BMMSCs. However, LLLT is more effective statistically. We conclude that LLLT significantly improved cell viability, enhanced the osteogenic potential of the OVX‐BMMSCs, and increased the extracellular levels of the TGF‐β, IGF‐I, and ALP.  相似文献   

17.
The orientation of the ELC region of myosin in skeletal muscle was determined by polarized fluorescence from ELC mutants in which pairs of introduced cysteines were cross-linked by BSR. The purified ELC-BSRs were exchanged for native ELC in demembranated fibers from rabbit psoas muscle using a trifluoperazine-based protocol that preserved fiber function. In the absence of MgATP (in rigor) the ELC orientation distribution was narrow; in terms of crystallographic structures of the myosin head, the LCD long axis linking heavy-chain residues 707 and 843 makes an angle (β) of 120-125° with the filament axis. This is ∼30° larger than the broader distribution determined previously from RLC probes, suggesting that, relative to crystallographic structures, the LCD is bent between its ELC and RLC regions in rigor muscle. The ELC orientation distribution in relaxed muscle had two broad peaks with β ∼70° and ∼110°, which may correspond to the two head regions of each myosin molecule, in contrast with the single broad distribution of the RLC region in relaxed muscle. During isometric contraction the ELC orientation distribution peaked at β ∼105°, similar to that determined previously for the RLC region.  相似文献   

18.
In cyanobacteria, Glu-244 and Tyr-246 of the Photosystem II (PS II) D1 protein are hydrogen bonded to two water molecules that are part of a hydrogen-bond network between the bicarbonate ligand to a non-heme iron and the cytosol. Ala substitutions were introduced in Synechocystis sp. PCC 6803 to investigate the roles of these residues and the hydrogen-bond network on electron transfer between the primary plastoquinone acceptor, QA, and the secondary plastoquinone acceptor, QB, of the quinone-Fe-acceptor complex. All mutants assembled PS II; however, an increase in the PS II to PS I ratio was apparent, particularly in the E244A:Y246A double mutant. The mutants also showed impaired oxygen evolution and retarded chlorophyll a fluorescence decays following single turnover actinic flashes, which appeared to be primarily due to reduced QB binding in the E244A strain and an enhanced back reaction with the S2 state of the oxygen-evolving complex in the Y246A mutant. Impaired PS II in the Y246A and E244A:Y246A mutants resulted in inactivation of the psbA gene encoding D1. The Y246A and E244A:Y246A mutants also showed high light sensitivity whereas the E244A mutant showed enhanced resilience towards photodamage. Unlike the control strain, all of the mutants were insensitive to the addition of formate or bicarbonate in assays following chlorophyll decay kinetics that reflect electron transfer between QA and QB, suggesting the bicarbonate binding environment was perturbed. Our data also indicate that waters W582 and W622 (PDB: 4UB6) have essential roles in maintaining the architecture of the acceptor side of PS II.  相似文献   

19.
Peter Horton  Michael T. Black 《BBA》1983,722(1):214-218
Fluorescence induction curves in chloroplasts phosphorylated by the thylakoid protein kinase activated at low light intensity and high chlorophyll concentration have been measured. At 5 mM Mg2+, phosphorylation did not preferentially quench variable fluorescence. At 1 mM, preferential quenching of variable fluorescence was observed, indicating a second effect of phosphorylation at low Mg2+ (Horton, P. and Black, M.T. (1982) Biochim. Biophys. Acta 680, 22–27). Comparison of the extent of fluorescence decrease and the resulting ratio of variable to maximum fluorescence after phosphorylation and after lowering Mg2+ concentration demonstrated a difference between these two mechanisms of lowering of fluorescence. The significance of these results in terms of how phosphorylation may alter membrane organization is discussed.  相似文献   

20.
The dark recovery kinetics of the Chl a fluorescence transient (OJIP) after 15 min light adaptation were studied and interpreted with the help of simultaneously measured 820 nm transmission. The kinetics of the changes in the shape of the OJIP transient were related to the kinetics of the qE and qT components of non-photochemical quenching. The dark-relaxation of the qE coincided with a general increase of the fluorescence yield. Light adaptation caused the disappearance of the IP-phase (20-200 ms) of the OJIP-transient. The qT correlated with the recovery of the IP-phase and with a recovery of the re-reduction of P700+ and oxidized plastocyanin in the 20-200 ms time-range as derived from 820 nm transmission measurements. On the basis of these observations, the qT is interpreted to represent the inactivation kinetics of ferredoxin-NADP+-reductase (FNR). The activation state of FNR affects the fluorescence yield via its effect on the electron flow. The qT therefore represents a form of photochemical quenching. Increasing the light intensity of the probe pulse from 1800 to 15000 μmol photons m−2 s−1 did not qualitatively change the results. The presented observations imply that in light-adapted leaves, it is not possible to ‘close’ all reaction centers with a strong light pulse. This supports the hypothesis that in addition to QA a second modulator of the fluorescence yield located on the acceptor side of photosystem II (e.g., the occupancy of the QB-site) is needed to explain these results. Besides, some of our results indicate that in pea leaves state 2 to 1 transitions may contribute to the qI-phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号