首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
摘要:细菌群体感应(Quorum sensing, QS)被视为对抗细菌感染与解决细菌耐药性问题的新靶点。以AHLs为信号分子的LuxR/I型群体感应系统广泛存在于革兰氏阴性菌包括多种临床致病菌中,因此寻找LuxR/I型群体感应抑制剂(Quorum sensing inhibitors, QSIs)是研发抗革兰氏阴性致病菌药物的重要途径。迄今为止,已知的LuxR/I型小分子QSIs来源包括化学合成、天然产物与已知药物库的化合物,大分子则包括群体感应淬灭酶与群体感应淬灭抗体。本文总结了近年来LuxR/I型QSIs研究进展,为新型抗菌药物研发提供理论依据。  相似文献   

2.
The mechanisms through which microbes communicate using signal molecules has inspired a great deal of research. Microbes use this exchange of information, known as quorum sensing (QS), to initiate and perpetuate infectious diseases in eukaryotic organisms, evading the eukaryotic defense system by multiplying and expressing their pathogenicity through QS regulation. The major issue to arise from such networks is increased bacterial resistance to antibiotics, resulting from QS-dependent mediation of the formation of biofilm, the induction of efflux pumps, and the production of antibiotics. QS inhibitors (QSIs) of diverse origins have been shown to act as potential antipathogens. In this review, we focus on the use of QSIs to counter diseases in humans as well as plants and animals of economic importance. We also discuss the challenges encountered in the potential applications of QSIs.  相似文献   

3.
Navigating novel biological strategies to mitigate bacterial biofilms have great worth to combat bacterial infections. Bacterial infections caused by the biofilm forming bacteria are 1000 times more resistant to antibiotics than the planktonic bacteria. Among the known bacterial infections, more than 70% involve biofilms which severely complicates treatment options. Biofilm formation is mainly regulated by the Quorum sensing (QS) mechanism. Interference with the QS system by the quorum quenching (QQ) enzyme is a potent strategy to mitigate biofilm. In this study, bacterial strains with QQ activity were identified and their anti-biofilm potential was investigated against the Multidrug Resistant (MDR) Pseudomonas aeruginosa. A Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136-based bioassays were used to confirm the degradation of different Acyl Homoserine Lactones (AHLs) by QQ isolates. The 16S rRNA gene sequencing of the isolated strains identified them as Bacillus cereus strain QSP03, B. subtilis strain QSP10, Pseudomonas putida strain QQ3 and P. aeruginosa strain QSP01. Biofilm mitigation potential of QQ isolates was tested against MDR P. aeruginosa and the results suggested that 50% biofilm reduction was observed by QQ3 and QSP01 strains, and around 60% reduction by QSP10 and QSP03 bacterial isolates. The presence of AHL degrading enzymes, lactonases and acylases, was confirmed by PCR based screening and sequencing of the already annotated genes aiiA, pvdQ and quiP. Altogether, these results exhibit that QQ bacterial strains or their products could be useful to control biofilm formation in P.aeruginosa.  相似文献   

4.
A large number of Gram-negative pathogens produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Therefore, strategies to inhibit QS are promising for the control of infectious diseases. The aim of the present study was to develop a high-throughput method for the isolation and identification of AHL-degrading bacteria from environmental samples. Samples were cultured in a microtitre plate in a minimal medium containing 1 mM N-(3-oxo-dodecanoyl)-l-homoserine lactone and 2 mM N-(3-oxo-hexanoyl)-l-homoserine lactone as the sole sources of carbon and nitrogen. Isolates growing on this minimal medium were subcultured and identified by partial 16S rRNA gene sequencing. Subsequently, the AHL-degrading capacity of each isolate was evaluated in the Pseudomonas aeruginosa QSIS2 biosensor assay, as such or after treatment with heat or proteinase K. The 16 samples tested yielded a total of 59 isolates which are, either alone or as part of a consortium, able to use AHL signal molecules as sole sources of carbon and nitrogen. Follow-up experiments have shown that in each sample there is at least one isolate with quorum quenching (QQ) activity, and that for all samples combined, 41 isolates have QQ activity. Furthermore, heat treatment did not fully inhibit QQ activity in all isolates. In some isolates, QQ activity was lost after proteinase K treatment, while others remained able to quench QS. Therefore, it is likely that some isolates produce and secrete (a) heat-stable, low molecular weight inhibitory compound(s).  相似文献   

5.
细菌群体感应淬灭酶的研究进展   总被引:10,自引:1,他引:10  
细菌的群体感应系统(Quorum sensing,QS)参与许多生物学功能的调控,其中包括动植物病原细菌致病因子的生成以及人类某些病原细菌生物膜的形成。酰基高丝氨酸内酯(N—acylhomoserine laetone,AHL)是调控群体感应系统的关键信号分子。近年的研究表明,不同生物体包括细菌和真核生物中都存在类别不同的能够降解AHL的群体感应淬灭酶(Quorum—quenching enzyme)。在AHL依赖型致病菌和转基因植物中表达AHL降解酶能有效地抑制QS信号分子的积累,从而阻断了病原细菌的发病机制,提高了植物的抗病性。这些新颖的群体感应淬灭酶的发现,不仅为防治细菌侵染提供了可行的途径,也对研究它们在宿主中的功能和对生态系统的潜在影响提出挑战。  相似文献   

6.

Background  

Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ) activities. Here we sought to discover novel N -acylhomoserine lactone (AHL)-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of ginger (Zingiber officinale) growing in the Malaysian rainforest.  相似文献   

7.
Disruption of cell–cell communication or quorum sensing (QS) is considered a stimulating approach for reducing bacterial pathogenicity and resistance. Although several QS inhibitors (QSIs) have been discovered so far their clinical use remains distant. This problem can be circumvented by searching for QSI among drugs already approved for the treatment of different diseases. In this context, antibiotics have earned special attention. Whereas at high concentrations antibiotics exert a killing effect, at lower concentrations they may act as signaling molecules and as such can modulate gene expression. In this study, the antibiotic furvina was shown to be able to cause inhibition of the 3-oxo-C12-HSL-dependent QS system of Pseudomonas aeruginosa. Furvina interacts with the LasI/LasR system. The data were validated by modeling studies. Furvina can also reduce biofilm formation and decrease the production of QS-controlled virulence factors.  相似文献   

8.
Numerous bacterial functions, such as virulence and biofilm formation, are controlled by a cell densitydependent communication mechanism known as Quorum Sensing (QS), in which small diffusible molecules are released, allowing bacteria to coordinate their behavior once a minimal effective quorum has been reached. The interference with these signaling systems, also known as Quorum Quenching (QQ), represents a promising strategy to tackle bacterial infections. The growing interest in this approach is reflected by the increasing number of patents within the field (45 up to now), especially in the last few years, as shown by patent applications published since 2009. The fact that biofilm formation is also controlled by QS systems expands the application of QQ to clinically-relevant biofilms such as those responsible for periodontal disease. Moreover, since biofilms increase bacterial resistance to antimicrobials, QQ could represent a new way to fight some of the most recurrent human pathogens, such as nosocomial multiresistant strains, and this deserves further exploration, especially through more proofs of concept. In this article we review the best known QS and QQ systems to date and we describe recent patents on the interference with this type of bacterial communication.  相似文献   

9.
Foods with health-promoting effects beyond nutritional values have been gaining increasing research focus in recent years, although not much has been published on this subject in relation to bacterial infections. With respect to treatment, a novel antimicrobial strategy, which is expected to transcend problems with selective pressures for antibiotic resistance, is to interrupt bacterial communication, also known as quorum sensing (QS), by means of signal antagonists, the so-called QS inhibitors (QSIs). Furthermore, QSI agents offer a potential solution to the deficiencies associated with use of traditional antibiotics to treat infections caused by bacterial biofilms and multidrug-resistant bacteria. Several QSIs of natural origin have been identified, and in this study, several common food products and plants were extracted and screened for QSI activity in an attempt to isolate and characterize previously unknown QSI compounds active against the common opportunistic pathogen Pseudomonas aeruginosa. Several extracts displayed activity, but horseradish exhibited the highest activity. Chromatographic separation led to the isolation of a potent QSI compound that was identified by liquid chromatography-diode array detector-mass spectrometry (LC-DAD-MS) and nuclear magnetic resonance (NMR) spectroscopy as iberin-an isothiocyanate produced by many members of the Brassicaceae family. Real-time PCR (RT-PCR) and DNA microarray studies showed that iberin specifically blocks expression of QS-regulated genes in P. aeruginosa.  相似文献   

10.
应用N-酰基高丝氨酸内酯(N-acyl-L-homoserine lactones,AHL)介导的群体感应(quorum sensing,QS)系统调控生物膜形成和次级代谢物合成具有巨大的商业价值,但自然界中许多微生物能够产生群体淬灭(Quorum Quenching,QQ)酶,QQ酶能够降解天然AHL信号分子,使外源天然 AHL 信号分子的半衰期缩短,限制了天然AHL 信号分子的应用范围。化学合成的AHL类似物作为QS促进剂,通过与天然信号分子类似的结合方式形成转录二聚体,激活下游基因表达,但与天然AHL信号分子相比,化学合成的QS促进剂具有活性高、半衰期长等优点。本文综述了化学合成AHL类似物的设计思路、种类、作用机制及其在提高次级代谢物产量和生物浸矿方面的应用,并讨论了QS促进剂今后主要的研究方向,以期为QS促进剂的合成设计和实际应用提供参考。  相似文献   

11.
Unregulated consumption and overexploitation of antibiotics have paved the way for emergence of antibiotic-resistant strains and ‘superbugs’. Pseudomonas aeruginosa is among the opportunistic nosocomial pathogens causing devastating infections in clinical set-ups globally. Its artillery equipped with diversified virulence elements, extensive antibiotic resistance and biofilms has made it a ‘hard-to-treat’ pathogen. The pathogenicity of P. aeruginosa is modulated by an intricate cell density-dependent mechanism called quorum sensing (QS). The virulence artillery of P. aeruginosa is firmly controlled by QS genes, and their expression drives the aggressiveness of the infection. Attempts to identify and develop novel antimicrobials have seen a sharp rise in the past decade. Among different proposed mechanisms, a novel anti-virulence approach to target pseudomonal infections by virtue of anti-QS and anti-biofilm drugs appears to occupy the centre stage. In this respect, bioactive phytochemicals have gained prominence among the scientific community owing to their significant quorum quenching (QQ) properties. Recent studies have shed light on the QQ activities of various phytochemicals and other drugs in perturbing the QS-dependent virulence in P. aeruginosa. This review highlights the recent evidences that reinforce the application of plant bioactives for combating pseudomonal infections, their advantages and shortcomings in anti-virulence therapy.  相似文献   

12.
群体感应系统是一种细胞密度依赖的基因表达系统,其广泛存在于细菌性病原体中,是细菌细胞通讯方式的一种。群体感应系统可利用细菌释放的信号分子不断监控周围细菌的密度。当细菌密度达到阈值时,群体感应系统网络将启动,参与调控生物被膜、细菌毒力等特定基因的表达,从而使临床抗感染治疗失败。而通过抑制群体感应系统,可一定程度上治疗铜绿假单胞菌引起的感染。本文通过查阅近年国内外相关文献,对铜绿假单胞菌群体感应系统研究进展进行总结,为临床铜绿假单胞菌治疗提供新的方向,即群体感应系统抑制剂有可能成为治疗铜绿假单胞菌感染的新策略。  相似文献   

13.
Bacteria are sensitive to an increase in population density and respond quickly and coordinately by induction of certain sets of genes. This mode of regulation, known as quorum sensing (QS), is based on the effect of low-molecular-weight signal molecules, autoinducers (AIs). When the population density is high, AIs accumulate in the medium and interact with regulatory receptor proteins. QS systems are global regulators of bacterial gene expression and play a key role in controlling many metabolic processes in the cell, including bacterial virulence. The review considers the molecular mechanisms of QS in different taxonomic groups of bacteria and discusses QS regulation as a possible target in treating bacterial infections. This is a new, alternative strategy of antibacterial therapy, which includes the construction of drugs acting directly against bacterial pathogenicity by suppressing QS (antipathogenicity drugs). This strategy makes it possible to avoid a wide distribution of antibiotic-resistant pathogenic bacteria and the formation of biofilms, which dramatically increase drug resistance.  相似文献   

14.
15.
Bacteria communicate within a system by means of a density dependent mechanism known as quorum sensing which regulate the metabolic and behavioral activities of a bacterial community. This sort of interaction occurs through a dialect of chemical signals called as autoinducers synthesized by bacteria. Bacterial quorum sensing occurs through various complex pathways depending upon specious diversity. Therefore the cognizance of quorum sensing mechanism will enable the regulation and thereby constrain bacterial communication. Inhibition strategies of quorum sensing are collectively called as quorum quenching; through which bacteria are incapacitated of its interaction with each other. Many virulence mechanism such as sporulation, biofilm formation, toxin production can be blocked by quorum quenching. Usually quorum quenching mechanisms can be broadly classified into enzymatic methods and non-enzymatic methods. Substantial understanding of bacterial communication and its inhibition enhances the development of novel antibacterial therapeutic drugs. In this review we have discussed the types and mechanisms of quorum sensing and various methods to inhibit and regulate density dependent bacterial communication.  相似文献   

16.
Li  Junlin  Li  Zhifei  Xie  Jun  Xia  Yun  Gong  Wangbao  Tian  Jingjing  Zhang  Kai  Yu  Ermeng  Wang  Guangjun 《International microbiology》2023,26(3):639-650
International Microbiology - Quorum sensing (QS) is a core mechanism for bacteria to regulate biofilm formation, and therefore, QS inhibition or quorum quenching (QQ) is used as an effective and...  相似文献   

17.
Quorum sensing (QS) systems, which depend on N-acylhomoserine lactone (AHL) signal molecules, mediate the production of virulence factors in many pathogenic microorganisms. One hundred and forty-six bacterial strains, isolated from a bivalve hatchery, were screened for their capacity to degrade five synthetic AHLs [N-butyryl-dl-homoserine lactone (C4-HSL), N-hexanoyl-dl-homoserine lactone (C6-HSL), N-octanoyl-dl-homoserine lactone (C8-HSL), N-decanoyl-dl-homoserine lactone (C10-HSL) and N-dodecanoyl-dl-homoserine lactone (C12-HSL)] using well diffusion agar-plate assays with three biosensors, Chromobacterium violaceum CV026, C. violaceum VIR07 and Agrobacterium tumefaciens NTL4 (pZLR4). The results of these assays led to our choosing four strains (PP2-67, PP2-459, PP2-644 and PP2-663) that were able to degrade all five synthetic AHLs, thus showing a wide spectrum of quorum quenching (QQ) activity. We subsequently confirmed and measured the QQ activity of the four strains by high-performance liquid chromatography plus mass-spectrometry analysis (HPLC–MS). One of the strains which showed the highest AHL-degrading activity, PP2-459, identified as being a member of the genus Thalassomonas was chosen for further study. Finally, using thin-layer chromatography (TLC), we went on to confirm this strain's capacity to degrade the AHLs produced by other non-pathogenic and pathogenic bacteria not taxonomically related.  相似文献   

18.
Applications of quorum sensing in biotechnology   总被引:2,自引:0,他引:2  
Many unicellular microorganisms use small signaling molecules to determine their local concentration. The processes involved in the production and recognition of these signals are collectively known as quorum sensing (QS). This form of cell–cell communication is used by unicellular microorganisms to co-ordinate their activities, which allows them to function as multi-cellular systems. Recently, several groups have demonstrated artificial intra-species and inter-species communication through synthetic circuits which incorporate components of bacterial QS systems. Engineered QS-based circuits have a wide range of applications such as production of biochemicals, tissue engineering, and mixed-species fermentations. They are also highly useful in designing microbial biosensors to identify bacterial species present in the environment and within living organisms. In this review, we first provide an overview of bacterial QS systems and the mechanisms developed by bacteria and higher organisms to obstruct QS communications. Next, we describe the different ways in which researchers have designed QS-based circuits and their applications in biotechnology. Finally, disruption of quorum sensing is discussed as a viable strategy for preventing the formation of harmful biofilms in membrane bioreactors and marine transportation.  相似文献   

19.
Fozard JA  Lees M  King JR  Logan BS 《Bio Systems》2012,109(2):105-114
Bacteria communicate through small diffusible molecules in a process known as quorum sensing. Quorum-sensing inhibitors are compounds which interfere with this, providing a potential treatment for infections associated with bacterial biofilms. We present an individual-based computational model for a developing biofilm. Cells are aggregated into particles for computational efficiency, but the quorum-sensing mechanism is modelled as a stochastic process on the level of individual cells. Simulations are used to investigate different treatment regimens. The response to the addition of inhibitor is found to depend significantly on the form of the positive feedback in the quorum-sensing model; in cases where the model exhibits bistability, the time at which treatment is initiated proves to be critical for the effective prevention of quorum sensing and hence potentially of virulence.  相似文献   

20.
密度感应系统:对细菌致病力的自行调控   总被引:1,自引:1,他引:0  
细菌通过密度感应系统感受环境中的信号分子,进而调控菌群一系列生物学性状。研究发现密度感应系统能够调控细菌生物被膜形成、毒力基因表达及噬菌体感染等功能,其中基于密度感应系统调控细菌抵御噬菌体感染更是新发现,预期也将是未来数年的研究热点,其调控机制的阐明将为有效应用噬菌体开展耐药菌的防控展现广阔前景。本文将重点综述细菌密度感应系统对细菌致病相关功能的调控机制,旨在为病原菌的防控提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号