首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotianamine (NA) is an intermediate in the biosynthetic pathway of the mugineic acid family phytosiderophores (MAs), which are crucial components of the iron acquisition apparatus of graminaceous plants. In non-graminaceous plants, NA is thought to be an essential chelator for metal cation homeostasis. Thus NA plays a key role in Fe metabolism and homeostasis in all higher plants. Nicotianamine synthase (NAS, EC 2.5.1.43) catalyzes the trimerization of S-adenosylmethionine to form one molecule of NA. Barley, a plant that is resistant to Fe deficiency, secretes large amounts of MAs, whereas rice, a plant that is susceptible to Fe deficiency, secretes only small amounts. In this study we isolated a genomic fragment containing HvNAS1 from barley and three rice cDNA clones, osnas1, osnas2 and osnas3, from Fe-deficient rice roots. We also isolated a genomic fragment containing both OsNAS1 and OsNAS2. In contrast to barley, in which Fe deficiency induces the expression of NAS genes only in roots, Fe deficiency in rice induced NAS gene expression in both roots and chlorotic leaves. The amounts of endogenous NA in both the roots and leaves were higher than in barley. We introduced barley genomic DNA fragments containing HvNAS1 with either 9 or 2 kb of the 5'-flanking region into rice, using Agrobacterium-mediated transformation. Fe deficiency induced HvNAS1 expression in both roots and leaves of the transgenic rice, as occurs with rice NAS genes. Barley and rice NAS genes are compared in a discussion of alteration of the NAS genes during adaptation to Fe deficiency.  相似文献   

2.
用AAS方法测定了弥勒县相同生态条件下种植的27份有色稻和34份普通稻糙米4种矿质元素含量,并对有色米和普通米Fe、Zn、Cu和Mn含量进行了比较研究。结果表明,有色稻米4种矿质元素含量明显高于无色稻米,其差异均达显著水平,其含量高低依次为Zn>Fe>Cu>Mn;对黑、褐、红、黄、绿5种不同种皮颜色的稻米4种矿质元素含量进行比较研究,发现稻米Fe含量(mg/kg)依次为黑>绿>褐>红>黄,Zn含量(mg/kg)依次为绿>红>黑>褐>黄,Cu含量(mg/kg)依次为黑>褐>红>黄>绿,Mn含量(mg/kg)依次为褐>黑>红>黄>绿;并且Fe和Mn含量在不同颜色稻米间差异均达显著水平,与有色米种皮颜色密切相关,而Zn和Cu差异不显著,与有色米种皮颜色关系不大。黑米和褐米富Fe、Zn、Cu和Mn,绿米富Fe和Zn,红米富Zn和Cu,黄米4种矿质元素含量较低,Fe、Cu和Mn均低于普通稻米。  相似文献   

3.
Summary The combination of low Mn levels and high Fe levels in tissues of lowland rice varieties, as often encountered when rice is grown on acid soils, is not likely to result from an antagonistic effect of Fe on the uptake of Mn.Experiments with rice plants growing on sand, supplied with Fe and Mn, and subjected to various pH levels and moisture regimes, made it clear that under acid anaerobic conditions the absorption of Mn by rice plants is little affected by the presence of large quantities of Fe, and that under acid aerobic conditions the absorption of Fe by rice plants is little affected by the presence of large quantities of Mn.  相似文献   

4.
5.
Soils contain various iron compounds that differ in solubility, reducibility and extractability. Moreover, the contribution of the various iron compounds to total iron (Fe) and total Fe concentrations differs highly among soils. As a result, the total reducible Fe content can also differ among soils, and so does the dynamics of iron reduction. These factors complicate the prediction of reducible Fe based on Fe extraction data and hamper the application of process-based models for reduced or waterlogged soils where redox processes play a key-role. This paper presents a theoretical analysis relating reducible to extractable Fe reported in the literature. Predictions made from this theoretical analysis were evaluated in soil incubations using 18 rice paddy soils from all over the world. The incubation studies and the literature study both show that reducible Fe can be related to Fe from some selected, but not all, iron extractions. The combination of measurements for labile Fe(III)oxides (derived from oxalate-extractable Fe) and stabile Fe(III)oxides (derived from dithionite-citrate-extractable Fe) shows highly significant correlations with reducible Fe with high coefficients of determination (r2 = 0.92–0.95 depending on the definition of stabile Fe(III)oxides). Given the high diversity in rice soils used for the incubations, these regression equations will have general applicability. Application of these regression equations in combination with soil database information may improve the predictive ability of process-based models where soil redox processes are important, such as CH4 emission models derived for rice paddies or wetlands.  相似文献   

6.
pH值和Fe、Cd处理对水稻根际及根表Fe、Cd吸附行为的影响   总被引:2,自引:0,他引:2  
刘丹青  陈雪  杨亚洲  王淑  李玉姣  胡浩  张春华  葛滢 《生态学报》2013,33(14):4306-4314
通过营养液-蛭石联合培养试验,设置系列pH值(4.5—7.5)和Fe、Cd处理,研究不同pH值及Fe、Cd浓度对水稻和蛭石表面Fe、Cd吸附的影响。结果表明,不同pH值处理下的根际氧化还原电位和酸度不同,0.9 mg/L Cd处理下的根际氧化势低于0.5 mg/L Cd,50 mg/L Fe处理下的根际酸度高于30 mg/L Fe处理。根表吸附Fe、Cd组分和数量都受根际Eh、pH值制约,根表Fe、Cd吸附量在处理pH值6.0时最低,并分别在处理pH值7.5和处理pH值4.5达到最高。但根系表面对Fe、Cd的吸附机制与蛭石表面不同,蛭石吸附Fe主要为晶态Fe,占到总沉积Fe的73%—87%;水稻根表沉积Fe以非晶态Fe为主,占总沉积Fe的91%—95%;与处理pH值和根际Eh间有显著的相关性(蛭石晶态Fe:ppH=0.011、pEh=0.042;水稻根表非晶态Fe:ppH=0.050、pEh=0.004)。蛭石表面交换态Fe及交换态Cd与处理pH值和Eh间存在显著的相关性(pH值:pFe<0.001、pCd=0.009;Eh:pFe=0.016、pCd=0.002),而根表交换态Fe及交换态Cd仅与处理pH值间有显著的相关性(pFe=0.007,pCd=0.048)。不同Fe、Cd浓度处理对根际Eh、pH值的升降和根表Fe、Cd吸附均有影响。与对照相比,增Cd处理可以降低根际Eh和升高pH值,减少溶液Cd浓度并增加根表Cd吸附量;增Fe处理则可以升高根际Eh和降低pH值,增加溶液Fe、Cd浓度并减少根表Fe、Cd吸附量。这是水稻应对Fe、Cd浓度胁迫的生理反应之一。  相似文献   

7.
Summary In a pot experiment with 26 calcareous soils, the critical limit of Fe in soils and plants was evaluated. DTPA-extractable Fe was found significanty correlated with Bray's per cent yield in rice. The Fe2+ (iron) in rice and lentil was also found significantly correlated with DTPA-extractable Fe as well as Bray's per cent yield showing thereby the superiority of Fe2+ (iron) in leaves over DTPA-extractable soil Fe to differentiate Fe responsive soils from non-responsive ones. The total Fe content in plant tissues does not seem correlated with the occurrence of Fe deficiency. The threshold values of DTPA-extractable soil Fe and Fe2+ (iron) in rice and lentil leaves were 6.95, 44 and 74.5 ppm, respectively below which appreciable responses to Fe application were observed. The optimum Fe level for these soils was found to be 10 ppm in which the dry matter yield response in all the 19 rice soils and 16 lentil soils ranged from 14.28 to 56.16 (Av. 25.75%) and 13.31 to 53.97 (Av. 22.47%), respectively.  相似文献   

8.
罗芳  潘扬  鲁长虎 《生态学杂志》2013,32(8):2179-2185
利用营养液培养方法,以‘沈农265’为供试品种,研究不同Fe(0、0.1、0.25、0.5 mmol Fe2+·L-1 )、Cd(0、0.1、1.0 μmol Cd2+·L-1)处理对水稻植株体内脂质过氧化及抗氧化酶活性的影响.结果表明: 单独供应Fe显著降低了水稻地上部和根系生物量,同时供应Cd后生物量不再下降;单独供应Cd降低了根系中丙二醛(MDA)和可溶性蛋白含量,而同时供应Fe时这种降低作用消失.Fe处理降低了水稻地上部和根系Cd含量,Cd处理也降低了Fe含量,两者表现出明显的相互抑制作用.高Cd(1.0 μmol·L-1)和Fe互作,增加了水稻根系中MDA和可溶性蛋白含量,降低了超氧化物岐化酶(SOD)和过氧化氢酶(CAT)活性.表明在低Cd环境中为水稻提供一定数量的外源Fe能降低植株Cd含量;但高Cd胁迫将降低水稻对Fe的吸收,并导致植株体内产生脂质过氧化.  相似文献   

9.
Fe is an essential mineral element that plants need for their growth. When there is low soil availability of Fe, plants show severe deficiency symptoms. Under Fe-deficiency conditions, plants alter a number of processes to acquire Fe from soil. Genes involved in these mechanisms have been identified from different model plants, including Arabidopsis and rice. Fe transport within plants is also tightly regulated. In this study, we used H9405, a cultivar of rice with high Fe accumulation in seeds, and Yangdao 6, a cultivar with low seed Fe accumulation, to study their responses under different Fe conditions. Our results showed that genes involved in acquisition of Fe from soil in these two cultivars were both up-regulated in roots under Fe-deficiency conditions, and the elevation of the expression was much higher in Yangdao 6 than in H9405. However, remobilization-related genes in shoot vasculature were expressed in an opposite way between the two cultivars. In H9405, the expression of these genes was up-regulated; but in Yangdao 6, their expression was reduced. Our results showed that the differential expression of root-uptake and shoot-remobilization genes in the two cultivars is correlated to the Fe content in roots, shoots, and seeds. Strategies to biofortify rice cultivars with different characteristics were also discussed based on our discovery.  相似文献   

10.
Poorly crystalline Fe in soil has been shown to affect Fe and P availability. Oxalate extractable Fe, a measure of poorly crystalline Fe oxides, has not been compared to soil test methods for Fe and P in rice soils. Twenty eight soils used for rice production were incubated under aerobic and anaerobic soil conditions and extracted for Fe and P with ammonium oxalate, ammonium acetate-EDTA (AA-EDTA), ammonium bicarbonate-DTPA (AB-DTPA) and DTPA. Citrate-dithionite extractable Fe and Fe content of rice plants in a greenhouse experiment were also determined. Soils used in this experiment had a large amount of poorly-crystalline Fe oxide. In some soils, poorly-crystalline Fe constituted 60% of the citrate-dithionite extractable Fe. The amount of extractable Fe and P increased significantly under anaerobic conditions. The relationships between extractants showed that DTPA Fe was highly correlated to AB-DTPA Fe and oxalate Fe was highly correlated to AA-EDTA Fe. There was no relationship between Fe and P extracted by AB-DTPA, while there was a better relationship with ammonium oxalate and AA-EDTA extractants. Poorly-crystalline Fe and P extracted by ammonium oxalate were correlated.  相似文献   

11.
Iron homeostasis and fortification in rice   总被引:2,自引:0,他引:2  
Iron (Fe) is an important micronutrient used by all living organisms for proper development. A deficiency in that element causes a metabolic imbalance that is deleterious to plant growth, making it a significant worldwide health concern. In response to limited Fe supplies, rice plants use a combination of strategies to take up iron from the soil. As a major staple crop, rice varieties that contain high levels of Fe would be vital for improving public nutritional status. Therefore, understanding the molecular components for Fe homeostasis and fortification in rice is crucial to the production of high-iron grains.  相似文献   

12.
Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+   总被引:4,自引:0,他引:4  
Only graminaceous monocots possess the Strategy II iron (Fe)-uptake system in which Fe is absorbed by roots as an Fe3+-phytosiderophore. In spite of being a Strategy II plant, however, rice (Oryza sativa) contains the previously identified Fe2+ transporter OsIRT1. In this study, we isolated the OsIRT2 gene from rice, which is highly homologous to OsIRT1. Real-time PCR analysis revealed that OsIRT1 and OsIRT2 are expressed predominantly in roots, and these transporters are induced by low-Fe conditions. When expressed in yeast (Saccharomyces cerevisiae) cells, OsIRT2 cDNA reversed the growth defects of a yeast Fe-uptake mutant. This was similar to the effect of OsIRT1 cDNA. OsIRT1- and OsIRT2-green fluorescent protein fusion proteins localized to the plasma membrane when transiently expressed in onion (Allium cepa L.) epidermal cells. OsIRT1 promoter-GUS analysis revealed that OsIRT1 is expressed in the epidermis and exodermis of the elongating zone and in the inner layer of the cortex of the mature zone of Fe-deficient roots. OsIRT1 expression was also detected in the ccompanion cells. Analysis using the positron-emitting tracer imaging system showed that rice plants are able to take up both an Fe3+-phytosiderophore and Fe2+. This result indicates that, in addition to absorbing an Fe3+-phytosiderophore, rice possesses a novel Fe-uptake system that directly absorbs the Fe2+, a strategy that is advantageous for growth in submerged conditions.  相似文献   

13.
Nicotianamine,a Novel Enhancer of Rice Iron Bioavailability to Humans   总被引:1,自引:0,他引:1  

Background

Polished rice is a staple food for over 50% of the world''s population, but contains little bioavailable iron (Fe) to meet human needs. Thus, biofortifying the rice grain with novel promoters or enhancers of Fe utilization would be one of the most effective strategies to prevent the high prevalence of Fe deficiency and iron deficiency anemia in the developing world.

Methodology/Principal Findings

We transformed an elite rice line cultivated in Southern China with the rice nicotianamine synthase gene (OsNAS1) fused to a rice glutelin promoter. Endosperm overexpression of OsNAS1 resulted in a significant increase in nicotianamine (NA) concentrations in both unpolished and polished grain. Bioavailability of Fe from the high NA grain, as measured by ferritin synthesis in an in vitro Caco-2 cell model that simulates the human digestive system, was twice as much as that of the control line. When added at 1∶1 molar ratio to ferrous Fe in the cell system, NA was twice as effective when compared to ascorbic acid (one of the most potent known enhancers of Fe bioavailability) in promoting more ferritin synthesis.

Conclusions

Our data demonstrated that NA is a novel and effective promoter of iron utilization. Biofortifying polished rice with this compound has great potential in combating global human iron deficiency in people dependent on rice for their sustenance.  相似文献   

14.
Chen RF  Shen RF  Gu P  Dong XY  DU CW  Ma JF 《Annals of botany》2006,98(2):389-395
BACKGROUND AND AIMS: Rice (Oryza sativa) is an aquatic plant with a characteristic of forming iron plaque on its root surfaces. It is considered to be the most Al-tolerant species among the cereal crops. The objective of this study was to determine the effects of root surface iron plaque on Al translocation, accumulation and the change of physiological responses under Al stress in rice in the presence of iron plaque. METHODS: The japonica variety rice, Koshihikari, was used in this study and was grown hydroponically in a growth chamber. Iron plaque was induced by exposing the rice roots to 30 mg L(-1) ferrous iron either as Fe(II)-EDTA in nutrient solution (6 d, Method I) or as FeSO(4) in water solution (12 h, Method II). Organic acid in root exudates was retained in the anion-exchange resin and eluted with 2 m HCl, then analysed by high-performance liquid chromatography (HPLC) after proper pre-treatment. Fe and Al in iron plaque were extracted with DCB (dithionite-citrate-bicarbonate) solution. KEY RESULTS AND CONCLUSIONS: Both methods (I and II) could induce the formation of iron plaque on rice root surfaces. The amounts of DCB-extractable Fe and Al on root surfaces were much higher in the presence of iron plaque than in the absence of iron plaque. Al contents in root tips were significantly decreased with iron plaque; translocation of Al from roots to shoots was significantly reduced with iron plaque. Al-induced secretion of citrate was observed and iron plaque could greatly depress this citrate secretion. These results suggested that iron plaque on rice root surfaces can be a sink to sequester Al onto the root surfaces and Fe ions can pre-saturate Al-binding sites in root tips, which protects the rice root tips from suffering Al stress to a certain extent.  相似文献   

15.
Wu C  Ye Z  Li H  Wu S  Deng D  Zhu Y  Wong M 《Journal of experimental botany》2012,63(8):2961-2970
Hydroponic experiments were conducted to investigate the effect of radial oxygen loss (ROL) and external aeration on iron (Fe) plaque formation, and arsenic (As) accumulation and speciation in rice (Oryza sativa L.). The data showed that there were significant correlations between ROL and Fe concentrations in Fe plaque produced on different genotypes of rice. There were also significant differences in the amounts of Fe plaque formed between different genotypes in different positions of roots and under different aeration conditions (aerated, normal, and stagnant treatments). In aerated treatments, rice tended to have a higher Fe plaque formation than in a stagnant solution, with the greatest formation at the root tip decreasing with increasing distances away, in accordance with a trend of spatial ROL. Genotypes with higher rates of ROL induced higher degrees of Fe plaque formation. Plaques sequestered As on rice roots, with arsenate almost double that with arsenite, leading to decreased As accumulation in both roots and shoots. The major As species detected in roots and shoots was arsenite, ranging from 34 to 78% of the total As in the different treatments and genotypes. These results contribute to our understanding of genotypic differences in As uptake by rice and the mechanisms causing rice genotypes with higher ROL to show lower overall As accumulation.  相似文献   

16.
Plants experience low phosphorus (P) and high iron (Fe) levels in acidic lowland soils that lead to reduced crop productivity. A better understanding of the relationship between these two stresses at molecular and physiological level will lead to development of suitable strategies to increase crop productivity in such poor soils. Tolerance for most abiotic stresses including P deficiency and Fe toxicity is a quantitative trait in rice. Recent studies in the areas of physiology, genetics, and overall metabolic pathways in response to P deficiency of rice plants have improved our understanding of low P tolerance. Phosphorous uptake and P use efficiency are the two key traits for improving P deficiency tolerance. In the case of Fe toxicity tolerance, QTLs have been reported but the identity and role played by underlying genes is just emerging. Details pertaining to Fe deficiency tolerance in rice are well worked out including genes involved in Fe sensing and uptake. But, how rice copes with Fe toxicity is not clearly understood. This review focuses on the progress made in understanding these key environmental stresses. Finally, an opinion on the key genes which can be targeted for this stress is provided.  相似文献   

17.
Zhang  Xike  Zhang  Fusuo  Mao  Daru 《Plant and Soil》1999,209(2):187-192
Under anaerobic conditions, ferric hydroxide deposits on the surface of rice roots have been shown to affect the uptake of some nutrients. In the present experiment, different amount of this iron plaque were induced on the roots of rice (Oryza sativa L. cv. TZ88-145) by supplying different Fe(OH)3 concentrations in nutrient solutions, and the effect of the iron plaque on phosphorus uptake was investigated. Results showed that 1) iron plaque adsorbed phosphorus from the growth medium, and that the amount of phosphorus adsorbed by the plaque was correlated with the amount of plaque; 2) the phosphorus concentration in the shoot increased by up to 72% after 72 h at concentration of Fe(OH)3 in the nutrient solution from 0 to 30 mg Fe/L, corresponding with amounts of iron plaque from 0.2 to 24.5 mg g-1 (root d. wt); 3) the phosphorus concentration in the shoots of rice with iron plaque was higher than that without iron plaque though the concentration in the shoot decreased when Fe(OH)3 was added at 50 mg Fe/L producing 28.3 mg g-1 (root d. wt) of plaque; and 4) the phosphorus concentrations in Fe-deficient and Fe-sufficient rice plants with iron plaque were the same, although phytosiderophores were released from the Fe-deficient roots. The phytosiderophores evidently did not mobilise phosphorus adsorbed on plaque. The results suggest that iron plaque on rice plant roots might be considered a phosphorus reservoir. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Effects of two kinds of iron fertilizer, FeSO4 and EDTA·Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA·Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA·Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentra- tion in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA·Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentra- tion of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA·Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.  相似文献   

19.
Swarup  Anand 《Plant and Soil》1993,155(1):477-480
A field experiment was conducted to evaluate the effect of three levels of Fe and two levels of Zn, and their combinations, on the growth, yield and Fe, Zn, and Mn nutrition of rice on a zinc deficient sodic soil amended with gypsum. Iron and zinc were supplied as sulphates. Application of Zn significantly enhanced the yield of rice and available soil and plant Zn irrespective of Fe application. Maximum response of rice to Zn was obtained when Fe was applied at the highest rate. While Fe application brought about a significant improvement in available soil and plant Fe and Mn, it decreased significantly Zn content of the crop. After crop harvest, recovery of added Fe was 20% and Zn 12%. Results suggest that benefits of Fe application to rice in sodic soils can only be realised if it is applied along with Zn.  相似文献   

20.
The expression of iron homeostasis-related genes during rice germination   总被引:1,自引:1,他引:0  
To characterize Fe homeostasis during the early stages of seed germination, a microarray analysis was performed. mRNAs extracted from fully mature seeds or seeds harvested 1–3 days after sowing were hybridized to a rice microarray containing approximately 22,000 cDNA oligo probes. Many Fe deficiency-inducible genes were strongly expressed throughout early seed germination. These results suggest that the demand for Fe is extremely high during germination. Under Fe-deficient conditions, rice produces and secretes a metal-cation chelator called deoxymugineic acid (DMA) to acquire Fe from the soil. In addition, DMA and its intermediate nicotianamine (NA) are thought to be involved in long distance Fe transport in rice. Using promoter-β-glucuronidase (GUS) analysis, we investigated the expression patterns during seed germination of the Fe deficiency-inducible genes OsNAS1, OsNAS2, OsNAS3, OsNAAT1, and OsDMAS1, which encode enzymes that participate in the biosynthesis of DMA, and the transporter genes OsYSL2 and OsIRT1, which are involved in Fe transport. All of these genes were expressed in germinating seeds prior to protrusion of the radicle. These results suggest that DMA and NA are produced and involved in Fe transport during germination. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号