首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
BACKGROUND: The parallel two-stranded alpha-helical coiled coil is the most frequently encountered subunit-oligomerization motif in proteins. The simplicity and regularity of this motif have made it an attractive system to explore some of the fundamental principles of protein folding and stability and to test the principles of de novo design. RESULTS: The X-ray crystal structure of the 18-heptad-repeat alpha-helical coiled-coil domain of the actin-bundling protein cortexillin I from Dictyostelium discoideum is a tightly packed parallel two-stranded alpha-helical coiled coil. It harbors a distinct 14-residue sequence motif that is essential for coiled-coil formation, and is a prerequisite for the assembly of cortexillin I. The atomic structure reveals novel types of ionic coiled-coil interactions. In particular, the structure shows that a characteristic interhelical and intrahelical salt-bridge pattern, in combination with the hydrophobic interactions occurring at the dimer interface, is the key structural feature of its coiled-coil trigger site. CONCLUSIONS: The knowledge gained from the structure could be used in the de novo design of alpha-helical coiled coils for applications such as two-stage drug targeting and delivery systems, and in the design of coiled coils as templates for combinatorial helical libraries in drug discovery and as synthetic carrier molecules.  相似文献   

2.
蛋白质结构中卷曲螺旋的研究进展   总被引:2,自引:0,他引:2  
卷曲螺旋 (coiledcoil)是存在于多种天然蛋白质中的结构模式 .近年来 ,通过对天然蛋白质中卷曲螺旋结构以及根据已有知识设计合成的卷曲螺旋结构的研究 ,已基本掌握了这类结构模式的特点 ,并将特异的卷曲螺旋结构应用于生化分析、工业、医药卫生等领域 .本文主要从天然蛋白质中卷曲螺旋的主要存在形式及其生物学功能、卷曲螺旋的主要结构特点、影响卷曲螺旋稳定性和结构特异性的因素、卷曲螺旋结构设计及其应用以及今后卷曲螺旋研究的主要发展方向等几个方面对近年来卷曲螺旋结构的研究进展情况进行了综述 .  相似文献   

3.
4.
5.
Coiled coil is a ubiquitous structural motif in proteins, with two to seven alpha helices coiled together like the strands of a rope, and coiled coil folding and assembly is not completely understood. A GCN4 leucine zipper mutant with four mutations of K3A, D7A, Y17W, and H18N has been designed, and the crystal structure has been determined at 1.6 Å resolution. The peptide monomer shows a helix trunk with short curved N‐ and C‐termini. In the crystal, two monomers cross in 35° and form an X‐shaped dimer, and each X‐shaped dimer is welded into the next one through sticky hydrophobic ends, thus forming an extended two‐stranded, parallel, super long coiled coil rather than a discrete, two‐helix coiled coil of the wild‐type GCN4 leucine zipper. Leucine residues appear at every seventh position in the super long coiled coil, suggesting that it is an extended super leucine zipper. Compared to the wild‐type leucine zipper, the N‐terminus of the mutant has a dramatic conformational change and the C‐terminus has one more residue Glu 32 determined. The mutant X‐shaped dimer has a large crossing angle of 35° instead of 18° in the wild‐type dimer. The results show a novel assembly mode and oligomeric state of coiled coil, and demonstrate that mutations may affect folding and assembly of the overall coiled coil. Analysis of the formation mechanism of the super long coiled coil may help understand and design self‐assembling protein fibers.  相似文献   

6.
7.
Nitric oxide induces vasodilation by elevating the production of cGMP, an activator of cGMP-dependent protein kinase (PKG). PKG subsequently causes smooth muscle relaxation in part via activation of myosin light chain phosphatase (MLCP). To date, the interaction between PKG and the targeting subunit of MLCP (MYPT1) is not fully understood. Earlier studies by one group of workers showed that the binding of PKG to MYPT1 is mediated by the leucine-zipper motifs at the N and C termini, respectively, of the two proteins. Another group, however, reported that binding of PKG to MYPT1 did not require the leucine-zipper motif of MYPT1. In this work we fully characterized the interaction between PKG and MYPT1 using biophysical techniques. For this purpose we constructed a recombinant PKG peptide corresponding to a predicted coiled coil region that contains the leucine-zipper motif. We further constructed various C-terminal MYPT1 peptides bearing various combinations of a predicted coiled coil region, extensions preceding this coiled coil region, and the leucine-zipper motif. Our results show, firstly, that while the leucine-zipper motif at the N terminus of PKG forms a homodimeric coiled coil, the one at the C terminus of MYPT1 is monomeric and non-helical. Secondly, the leucine-zipper motif of PKG binds to that of MYPT1 to form a heterodimer. Thirdly, when the leucine-zipper motif of MYPT1 is absent, the PKG leucine-zipper motif binds to the coiled coil region and upstream segments of MYPT1 via formation of a heterotetramer. These results provide rationalization of some of the findings by others using alternative binding analyses.  相似文献   

8.
9.
The α-helical coiled coil is a valuable folding motif for protein design and engineering. By means of phage display technology, we selected a capable binding partner for one strand of a coiled coil bearing a charged amino acid in a central hydrophobic core position. This procedure resulted in a novel coiled coil pair featuring an opposed Glu-Lys pair arranged staggered within the hydrophobic core of a coiled coil structure. Structural investigation of the selected coiled coil dimer by CD spectroscopy and MD simulations suggest that a buried salt bridge within the hydrophobic core enables the specific dimerization of two peptides.  相似文献   

10.
The elementary building block of all intermediate filaments (IFs) is a dimer featuring a central α-helical rod domain flanked by the N- and C-terminal end domains. In nuclear IF proteins (lamins), the rod domain consists of two coiled-coil segments, coil1 and coil2, that are connected by a short non-helical linker. Coil1 and the C-terminal part of coil2 contain the two highly conserved IF consensus motifs involved in the longitudinal assembly of dimers. The previously solved crystal structure of a lamin A fragment (residues 305-387) corresponding to the second half of coil2 has yielded a parallel left-handed coiled coil. Here, we present the crystal structure and solution properties of another human lamin A fragment (residues 328-398), which is largely overlapping with fragment 305-387 but harbors a short segment of the tail domain. Unexpectedly, no parallel coiled coil forms within the crystal. Instead, the α-helices are arranged such that two anti-parallel coiled-coil interfaces are formed. The most significant interface has a right-handed geometry, which is accounted for by a characteristic 15-residue repeat pattern that overlays with the canonical heptad repeat pattern. The second interface is a left-handed anti-parallel coiled coil based on the predicted heptad repeat pattern. In solution, the fragment reveals only a weak dimerization propensity. We speculate that the C-terminus of coil2 might unzip, thereby allowing for a right-handed coiled-coil interface to form between two laterally aligned dimers. Such an interface might co-exist with a heterotetrameric left-handed coiled-coil assembly, which is expected to be responsible for the longitudinal ACN contact.  相似文献   

11.
The sorting of post‐Golgi R‐SNAREs (vesicle‐associated membrane protein (VAMP)1, 2, 3, 4, 7 and 8) is still poorly understood. To address this, we developed a system to investigate their localization, trafficking and cell‐surface levels. Here, we show that the distribution and internalization of VAMPs 3 and 8 are determined solely through a new conserved mechanism that uses coiled‐coil interactions, and that VAMP4 does not require these interactions for its trafficking. We propose that VAMPs 3 and 8 are trafficked while in a complex with Q‐SNAREs. We also show that the dileucine motif of VAMP4 is required for both its internalization and retrieval to the trans‐Golgi network. However, when the dileucine motif is mutated, the construct can still be internalized potentially through coiled‐coil interactions with Q‐SNAREs.  相似文献   

12.
13.
Cytohesin is a guanine nucleotide exchange factor that regulates members of the ADP-ribosylation factor (ARF) family of small GTPases. All of the members of the cytohesin family (including ARNO, ARNO3, and the newly characterized cytohesin-4) have a similar domain distribution consisting of a Sec7 homology domain, a pleckstrin homology domain, and an N-terminal coiled coil. In this study, we attempt to identify proteins that interact specifically with the coiled coil motif of cytohesin. Yeast two-hybrid screening of a B cell library using the cytohesin N terminus as bait, identified CASP, a scaffolding protein of previously unknown function, as a binding partner. CASP contains an internal coiled coil motif that is required for cytohesin binding both in vitro and in COS-1 cells. The specificity of the coiled coil of CASP is not restricted to cytohesin, however, because it is also capable of interacting with other members of the cytohesin/ARNO family, ARNO and ARNO3. In immunofluorescence experiments, CASP localizes to perinuclear tubulovesicular structures that are in close proximity to the Golgi. These structures remain relatively undisturbed when the cells are treated with brefeldin A. In epidermal growth factor-stimulated COS-1 cells overexpressing cytohesin and CASP, cytohesin recruits CASP to membrane ruffles, revealing a functional interaction between the two proteins. These observations collectively suggest that CASP is a scaffolding protein that facilitates the function of at least one member of the cytohesin/ARNO family in response to specific cellular stimuli.  相似文献   

14.
In Escherichia coli, nine essential cell division proteins are known to localize to the division septum. FtsL is a 13-kDa bitopic membrane protein with a short cytoplasmic N-terminal domain, a membrane-spanning segment, and a periplasmic domain that has a repeated heptad motif characteristic of leucine zippers. Here, we identify the requirements for FtsL septal localization and function. We used green fluorescent protein fusions to FtsL proteins where domains of FtsL had been exchanged with analogous domains from either its Haemophilus influenzae homologue or the unrelated MalF protein to show that both the membrane-spanning segment and the periplasmic domain of FtsL are required for localization to the division site. Mutagenesis of the periplasmic heptad repeat motif severely impaired both localization and function as well as the ability of FtsL to drive the formation of sodium dodecyl sulfate-resistant multimers in vitro. These results are consistent with the predicted propensity of the FtsL periplasmic domain to adopt a coiled-coiled structure. This coiled-coil motif is conserved in all gram-negative and gram-positive FtsL homologues identified so far. Our data suggest that most of the FtsL molecule is a helical coiled coil involved in FtsL multimerization.  相似文献   

15.
The mitochondrial fission machinery is best understood in the yeast Saccharomyces cerevisiae, where Fis1, Mdv1, and Dnm1 are essential components. Fis1 is a mitochondrial outer membrane protein that recruits the dynamin-related GTPase Dnm1 during the fission process. This recruitment occurs via Mdv1, which binds both Fis1 and Dnm1 and therefore functions as a molecular adaptor linking the two molecules. Mdv1 has a modular structure, consisting of an N-terminal extension that binds Fis1, a central coiled coil for dimerization, and a C-terminal WD40 repeat region that binds Dnm1. We have solved the crystal structure of a dimeric Mdv1-Fis1 complex that contains both the N-terminal extension and coiled-coil regions of Mdv1. Consistent with previous studies, Mdv1 binds Fis1 through a U-shaped helix-loop-helix motif, and dimerization of the Mdv1-Fis1 complex is mediated by the antiparallel coiled coil of Mdv1. However, the complex is surprisingly compact and rigid due to two additional contacts mediated by the surface of the Mdv1 coiled coil. The coiled coil packs against both Fis1 and the second helix of the Mdv1 helix-loop-helix motif. Mutational analyses showed that these contacts are important for mitochondrial fission activity. These results indicate that, in addition to dimerization, the unusually long Mdv1 coiled coil serves a scaffolding function to stabilize the Mdv1-Fis1 complex.  相似文献   

16.
The aim of this study was to investigate the influence of multiple O-glycosylation in α-helical coiled coil peptides on the folding and stability. For this purpose we systematically incorporated one to six β-galactose residues into the solvent exposed positions of a 26 amino acid long coiled coil helix. Surprisingly, circular dichroism spectroscopy showed no unfolding of the coiled coil structure for all glycopeptides. Thermally induced denaturations reveal a successive but relative low destabilization of the coiled coil structure upon introduction of β-galactose residues. These first results indicate that O-glycosylation of the glycosylated variants is easily tolerated by this structural motif and pave the way for further functional studies.  相似文献   

17.
Retrovirus entry into cells follows receptor binding by the surface-exposed envelope glycoprotein (Env) subunit (SU), which triggers the membrane fusion activity of the transmembrane (TM) protein. TM protein fragments expressed in the absence of SU adopt helical hairpin structures comprising a central coiled coil, a region of chain reversal containing a disulfide-bonded loop, and a C-terminal segment that packs onto the exterior of the coiled coil in an antiparallel manner. Here we used in vitro mutagenesis to test the functional role of structural elements observed in a model helical hairpin, gp21 of human T-lymphotropic virus type 1. Membrane fusion activity requires the stabilization of the N and C termini of the central coiled coil by a hydrophobic N cap and a small hydrophobic core, respectively. A conserved Gly-Gly hinge motif preceding the disulfide-bonded loop, a salt bridge that stabilizes the chain reversal region, and interactions between the C-terminal segment and the coiled coil are also critical for fusion activity. Our data support a model whereby the chain reversal region transmits a conformational signal from receptor-bound SU to induce the fusion-activated helical hairpin conformation of the TM protein.  相似文献   

18.
Integrin receptors are the main mediators of cell adhesion to the extracellular matrix. They bind to their ligands by interacting with short amino acid sequences, such as the RGD sequence. Soluble, small RGD-based peptides have been used to block integrin-binding to ligands, thereby interfering with cell adhesion, migration and survival, while substrate-immobilized RGD sequences have been used to enhance cell binding to artificial surfaces. This approach has several important medical applications, e.g. in suppression of tumor angiogenesis or stimulation of bone formation around implants. However, the relatively weak affinity of short RGD-containing peptides often results in incomplete integrin inhibition or ineffective ligation. In this work, we designed and synthesized several new multivalent RGD-containing molecules and tested their ability to inhibit or to promote integrin-dependent cell adhesion when used in solution or immobilized on substrates, respectively. These molecules consist of an oligomeric structure formed by alpha-helical coiled coil peptides fused at their amino-terminal ends with an RGD-containing fragment. When immobilized on a substrate, these peptides specifically promoted integrin alphaVbeta3-dependent cell adhesion, but when used in solution, they blocked alphaVbeta3-dependent cell adhesion to the natural substrates fibronectin and vitronectin. One of the peptides was nearly 10-fold more efficient than fibronectin or vitronectin in promoting cell adhesion, and almost 100-fold more efficient than a linear RGD tripeptide in blocking adhesion. These results indicate that alpha-helical coiled coil peptides carrying an amino-terminal RGD motif can be used as soluble antagonists or surface-immobilized agonists to efficiently inhibit or promote integrin alphaVbeta3-mediated cell adhesion, respectively.  相似文献   

19.
In polycystic kidney disease (PKD), polycystin-2 (PC2) is frequently mutated or truncated in the C-terminal cytoplasmic tail (PC2-C). The currently accepted model of PC2-C consists of an EF-hand motif overlapping with a short coiled coil; however, this model fails to explain the mechanisms by which PC2 truncations C-terminal to this region lead to PKD. Moreover, direct PC2 binding to inositol 1,4,5-trisphosphate receptor, KIF3A, and TRPC1 requires residues in PC2-C outside this region. To address these discrepancies and investigate the role of PC2-C in PC2 function, we performed de novo molecular modeling and biophysical analysis. De novo molecular modeling of PC2-C using the ROBETTA server predicts two domains as follows: an EF-hand motif (PC2-EF) connected by a linker to a previously unidentified C-terminal coiled coil (PC2-CC). This model differs substantially from the current model and correlates with limited proteolysis, matrix-assisted laser desorption/ionization mass spectroscopy, N-terminal sequencing, and improved coiled coil prediction algorithms. PC2-C is elongated and oligomerizes through PC2-CC, as measured by analytical ultracentrifugation and size exclusion chromatography, whereas PC2-EF is globular and monomeric. We show that PC2-C and PC2-EF have micromolar affinity for calcium (Ca2+) by isothermal titration calorimetry and undergo Ca2+-induced conformational changes by circular dichroism. Mutation of predicted EF-hand loop residues in PC2 to alanine abolishes Ca2+ binding. Our results suggest that PC2-CC is involved in PC2 oligomerization, and PC2-EF is a Ca2+-sensitive switch. PKD-associated PC2 mutations are located in regions that may disrupt these functions, providing structural insight into how PC2 mutations lead to disease.  相似文献   

20.
Dystrophia myotonica protein kinase (DMPK) is a serine/threonine kinase composed of a kinase domain and a coiled‐coil domain involved in the multimerization. The crystal structure of the kinase domain of DMPK bound to the inhibitor bisindolylmaleimide VIII (BIM‐8) revealed a dimeric enzyme associated by a conserved dimerization domain. The affinity of dimerisation suggested that the kinase domain alone is insufficient for dimerisation in vivo and that the coiled‐coil domains are required for stable dimer formation. The kinase domain is in an active conformation, with a fully‐ordered and correctly positioned αC helix, and catalytic residues in a conformation competent for catalysis. The conserved hydrophobic motif at the C‐terminal extension of the kinase domain is bound to the N‐terminal lobe of the kinase domain, despite being unphosphorylated. Differences in the arrangement of the C‐terminal extension compared to the closely related Rho‐associated kinases include an altered PXXP motif, a different conformation and binding arrangement for the turn motif, and a different location for the conserved NFD motif. The BIM‐8 inhibitor occupies the ATP site and has similar binding mode as observed in PDK1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号