首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aims/hypothesis It is generally accepted that oxidative stress is responsible for etiology and complications of diabetes. During uncontrolled Type 1 diabetes, plasma leptin levels rapidly fall. However, it is not known whether diabetes-induced hypoleptinemia has any role in oxidative stress related to uncontrolled Type I diabetes. The present study was designed to examine the effects of leptin treatment on plasma lipid peroxidation and reduced glutathion of normal and streptozotocin(STZ)-induced diabetic rats. Methods Diabetes was induced by single injection of Streptozotocin (55 mg/kg bw). One week after induction of diabetes, rats began 5-day treatment protocol of leptin injections of (0.1 mg/kg bw i.p.) or same volume vehicle. At the end of the 5th day, rats were sacrificed by cardiac puncture under anesthesia and their plasma was taken for plasma leptin, malondialdehyde, and reduced glutathione measurements. Results Plasma leptin levels decreased in STZ-induced diabetic rats while plasma glucose, TBARS, and GSH levels increased. Plasma leptin levels were not affected with leptin treatment in both diabetic and non-diabetic rats. The elevation in plasma TBARS associated with STZ diabetes decreased with leptin treatment. Leptin also increased plasma GSH levels in diabetic rats. In non-diabetic rats, treatment with leptin did not change plasma TBARS and GSH levels. Conclusions/interpretations In conclusion, leptin treatment is able to attenuate lipid peroxidation in STZ-diabetic rats, in the onset of diabetes, by increasing the GSH levels without affecting hyperglycemia and hypoleptinemia.  相似文献   

2.
Oxidative stress has been proposed as the pathogenic mechanism linking insulin resistance with endothelial dysfunction during diabetes. The present study investigated the attenuation of plasma dyslipidemia and oxidative damage by caloric restriction in experimental diabetes. Forty male Wistar rats were divided into ad libitum and calorie-restricted groups. The calorie-restricted group was subjected to 30% caloric restriction for 63 days before induction of diabetes to 50% of both groups. Caloric restriction significantly (p<0.01) reduced the body weights, reactive oxygen species (ROS), catalase, total cholesterol levels and non-significantly reduced SOD activities in non-diabetic and diabetic rats. Caloric restriction was also found to improve blood glucose levels, glycated hemoglobin, malondialdehyde, triglyceride, oxidized glutathione and reduced glutathione levels and significantly (p<0.05) increased GPx and GR activities in the experimental animals. The non-diabetic rats fed ad libitum had the most significant increases in body weight which could be due to dyslipidemia. These results indicate that dietary caloric restriction attenuates the oxidative damage and dyslipidemia exacerbated during diabetes as evidenced by the significant reduction in their body weights, ROS, total cholesterol levels and the increases in GPx activity and redox status.  相似文献   

3.
Hyperglycemia-induced oxidative stress in diabetic complications   总被引:8,自引:3,他引:8  
Reactive oxygen species are increased by hyperglycemia. Hyperglycemia, which occurs during diabetes (both type 1 and type 2) and, to a lesser extent, during insulin resistance, causes oxidative stress. Free fatty acids, which may be elevated during inadequate glycemic control, may also be contributory. In this review, we will discuss the role of oxidative stress in diabetic complications. Oxidative stress may be important in diabetes, not just because of its role in the development of complications, but because persistent hyperglycemia, secondary to insulin resistance, may induce oxidative stress and contribute to beta cell destruction in type 2 diabetes. The focus of this review will be on the role of oxidative stress in the etiology of diabetic complications.  相似文献   

4.
5.
Several recent studies have demonstrated that organophosphorus insecticides (OPI) possess the potential to disrupt glucose homeostasis leading to hyperglycemia in experimental animals. The propensity of OPI to induce hyperglycemia along with oxidative stress may have far-reaching consequences on diabetic outcomes and associated complications. The primary objective of this study was to assess the potential of monocrotophos (MCP), an extensively used OPI, on hepatic and renal oxidative stress markers and dysregulation of hepatic glucose homeostasis in experimentally induced diabetic rats. Rats rendered diabetic by a single dose of streptozotocin (60 mg/kg b.w) were orally administered MCP (0.9 mg/kg b.w/d for 5 d). Monocrotophos per se caused only a marginal increase in blood glucose levels but significantly elevated the blood glucose levels and also disrupted glucose homeostasis by depleting liver glycogen content and increasing the gluconeogenetic enzyme activities in diabetic rats. Experimentally induced diabetes was also associated with alterations in antioxidant enzymes in liver and kidney. MCP markedly enhanced lipid peroxidation in kidney and altered the enzymatic antioxidant defense mechanisms in both liver and kidney of diabetic rats. Collectively our data provides evidence that MCP has the propensity to augment the oxidative stress and further disrupt glucose homeostasis in diabetic rats.  相似文献   

6.
This study was designed to determine the effect of diphenyl diselenide and ebselen, synthetic organoselenium compounds with antioxidant properties, in diabetic rats. Diabetes was induced by the administration of streptozotocin (STZ) (45mg/kg, intravenous). In experimental trials, diphenyl diselenide, but not ebselen, caused a significant reduction in blood glucose levels of STZ-treated rats. This effect of diphenyl diselenide was accompanied by a reduction in the levels of glycated proteins. Diphenyl diselenide ameliorate superoxide dismutase activity (liver and erythrocytes) and Vitamin C levels (liver, kidney and blood), which were decreased in STZ-treated rats. In normal rats, diphenyl diselenide caused per se an increase in hepatic, renal and blood GSH levels. Similarly, treatment with diphenyl diselenide restored hepatic and renal GSH levels in STZ-treated rats. TBARS and protein carbonyl levels were not modified by STZ and/or diphenyl diselenide and ebselen treatments. Our findings suggest that diphenyl diselenide can be considered an anti-diabetogenic agent by exhibiting anti-hyperglycemic and antioxidant properties.  相似文献   

7.
Diabetes aggravates the clinical severity and represents an additional independent risk factor of hypertension. Since both diseases separately concur to cardiomyocyte apoptosis, a mechanism at least partly involving unbalanced oxidative stress, we investigated whether the combination of diabetes and hypertension potentiated cardiac cell death in experimental models, compared to either disease alone. We also evaluated the short-term effects of different drugs in these models. Streptozotocin-induced diabetic normotensive (WKY) or hypertensive (SHR) rats were treated for one week with a DA(2)/alpha(2) agonist (CHF-1024), a selective beta1 adrenergic blocker (metoprolol), an angiotensin II-receptor blocker (valsartan) or a radical scavenger (tempol). In separate experiments, isolated cardiomyocytes were cultured in high glucose medium (25 mM) containing the same drugs. Although the number of apoptotic cardiomyocytes and the myocardial density of oxygen radicals were higher in non diabetic hypertensive than in normotensive controls, diabetes raised these variables to comparable absolute levels in both strains. All drugs except metoprolol significantly reduced apoptosis and oxidative stress in the diabetic animals of both strains and in the isolated myocytes cultured with high glucose. In conclusion, hypertensive rat is no more susceptible than its normotensive control to acute apoptosis induced by diabetes. Oxidative stress might be considered the common trigger for cardiac myocyte apoptosis in both conditions.  相似文献   

8.
The therapeutic potential of lipoic acid (LA) in diabetes and diabetic nephropathy treatment was elucidated. Alloxan diabetic rabbits were treated daily for three weeks with either 10 or 50 mg of LA per kg body weight (i.p.). The following parameters were measured: 1) serum glucose, urea, creatinine and hydroxyl free radical (HFR) levels; 2) blood glutathione redox state; 3) urine albumin concentration; 4) hepatic and renal HFR levels, GSH/GSSG ratios, cysteine contents and the activities of the enzymes of glutathione metabolism; and 5) the activity of renal NADPH oxidase. Histological studies of kidneys were also performed. The treatment of diabetic rabbits with 50 mg of LA resulted in lethal hypoglycaemia in 50% of animals studied. Although the low dose of LA did not change serum glucose concentration, it decreased serum urea and creatinine concentrations, attenuated diabetes-induced decline in GSH/GSSG ratio and abolished hydroxyl free radicals accumulation in serum, liver and kidney cortex. LA did not change the activities of the enzymes of glutathione metabolism, but it elevated hepatic content of cysteine, which limits the rate of glutathione biosynthesis. Moreover, LA lowered urine albumin concentration and attenuated glomerulopathy characteristic of diabetes. However, it did not affect diabetes-stimulated activity of renal NADPH oxidase. In view of these data, it is concluded that low doses of LA might be useful for the therapy of diabetes and diabetic nephropathy. Beneficial action of LA seems to result mainly from direct scavenging of HFR and restoring glutathione redox state due to elevation of intracellular cysteine levels.  相似文献   

9.
Diabetes exacerbates neuronal injury induced by hyperglycemia mediated oxidative damage and mitochondrial dysfunction. The aim of the present study is to investigate the effects of curcuminoids, polyphenols of Curcuma longa (L.) on oxidative stress and mitochondrial impairment in the brain of streptozotocin (STZ)-induced diabetic rats. A marked increase in lipid peroxidation and nitrite levels with simultaneous decrease in endogenous antioxidant marker enzymes was observed in the diabetic rat brain, which was restored to normal levels on curcuminoids treatment. Down-regulation of mitochondrial complex I and IV activity caused by STZ induction was also up-regulated on oral administration of curcuminoids. Moreover, curcuminoids administration profoundly elevated the ATP level, which was earlier reduced in the diabetic brain. These results suggest that curcuminoids exhibit a protective effect by accelerating antioxidant defense mechanisms and attenuating mitochondrial dysfunction in the brain of diabetic rats. Curcuminoids thus may be used as a promising therapeutic agent in preventing and/or delaying the progression of diabetic complications in the brain.  相似文献   

10.
Excessive tissue iron levels are associated with the increase of oxidative/nitrative stress which contributes to tissue damage that may elevate the risk of diabetes. Therefore, we investigated the effects of iron on diabetes-associated liver injury and whether iron-related tyrosine nitration participated in this process. Rats were randomly divided into four groups: control, iron overload (300 mg/kg iron dextran, i.p.), diabetic (35 mg/kg of streptozotocin i.p. after administration of a high-fat diet) and diabetic simultaneously treated with iron. Iron supplement markedly increased diabetes-mediated liver damage and hepatic dysfunction by increasing liver/body weight ratio, serum levels of aspartate and alanine aminotransferase, and histological examination, which were correlated with elevated levels of lipid peroxidation, protein carbonyls and tyrosine nitration, oxidative metabolism of nitric oxide, and reduced antioxidant capacity. Consequently, the extent of oxidized/nitrated glucokinase was markedly increased in the iron-treated diabetic rats that contribute to a decrease in its expression and activity. Further studies revealed a significant contribution of iron-induced specific glucokinase nitration sites to its inactivation. In conclusion, iron facilitates diabetes-mediated elevation of oxidative/nitrative stress, simultaneously impairs liver GK, and can be a link between enzymatic changes and hepatic dysfunction. These findings may provide new insight on the role of iron in the pathogenesis of diabetes mellitus.  相似文献   

11.
目的研究普罗布考(Probucol)对糖尿病大鼠肾组织氧化应激的影响。方法采用腹腔注射链脲佐菌素(STZ)建立糖尿病大鼠模型。30只Wistar大鼠分为正常对照组(NC)、糖尿病组(DM)、糖尿病普罗布考治疗组(DP)。8周末称取体重、肾重、计算肾肥大指数(肾重/体重),检测尿白蛋白排泄率(UAER);测定各组生化指标包括血糖(BG)、胆固醇(TC)、三酰甘油(TG)、血清肌酐(SCr)、血尿素氮(BUN);检测肾组织中丙二醛(MDA)的含量及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)与谷胱甘肽过氧化物酶(GSH-Px)活性;肾组织切片行PAS染色分析肾小球面积及肾小球体积。结果 DM组大鼠肾重、肾重/体重、UAER、TC、TG、SCr、BUN、肾小球面积、肾小球体积较NC组均明显增加,DP组上述改变较DM组均明显减轻(P〈0.05)。DP组肾组织中MDA含量明显低于DM组,SOD、CAT、GSH-Px活性明显高于DM组(P〈0.05)。结论普罗布考可能部分通过减轻肾组织氧化应激反应实现对糖尿病大鼠肾脏的保护作用。  相似文献   

12.
The present study investigated the effects of resveratrol (RV), a polyphenol with potent antioxidant properties, on oxidative stress parameters in liver and kidney, as well as on serum biochemical parameters of streptozotocin (STZ)-induced diabetic rats. Animals were divided into six groups (n = 8): control/saline; control/RV 10 mg/kg; control/RV 20 mg/kg; diabetic/saline; diabetic/RV10 mg/kg; diabetic/RV 20 mg/kg. After 30 days of treatment with resveratrol the animals were sacrificed and the liver, kidney and serum were used for experimental determinations. Results showed that TBARS levels were significantly increased in the diabetic/saline group and the administration of resveratrol prevented this increase in the diabetic/RV10 and diabetic/RV20 groups (P < 0.05). The activities of catalase (CAT), superoxide dismutase (SOD) and aminolevulinic acid dehydratase (δ-ALA-D) and the levels of non protein thiols (NPSH) and vitamin C presented a significant decrease in the diabetic/saline group when compared with the control/saline group (P < 0.05). The treatment with resveratrol was able to prevent these decrease improving the antioxidant defense of the diabetic/RV10 and diabetic/RV20 groups (P < 0.05). In addition, the elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and γ-glutamiltransferase (γ-GT) activities as well as in levels of urea, creatinine, cholesterol and triglycerides observed in the diabetic/saline group were reverted to levels close to normal by the administration of resveratrol in the diabetic/RV10 and diabetic/RV20 groups (P < 0.05). These findings suggest that resveratrol could have a protector effect against hepatic and renal damage induced by oxidative stress in the diabetic state, which was evidenced by the capacity of this polyphenol to modulate the antioxidant defense and to decrease the lipid peroxidation in these tissues.  相似文献   

13.
Diabetes is known to increase the risk of Alzheimer's disease (AD) and vascular dementia via oxidative stress and inflammation. There are speculations that SSAO activity might be related to the development of AD. Our aim was to investigate whether changes of soluble SSAO activity, oxidative stress and inflammation markers are related to each other in diabetes. Soluble and tissue-bound SSAO activities (from serum and aorta, respectively) were determined in streptozotocin (STZ)-induced diabetic rats without insulin treatment, receiving insulin once, or twice daily compared to control animals. After three weeks of treatment soluble and tissue-bound SSAO activities (seSSAO and aoSSAO, respectively), serum total antioxidant status (TAS), high sensitivity C-reactive protein (hsCRP), fructose amine levels and routine laboratory parameters were determined. SeSSAO activity significantly increased in the diabetic groups without treatment and receiving insulin once daily, and a marked decrease in aoSSAO activity was seen in all diabetic groups. Increased oxidative stress was correlated with hsCRP elevation, while hsCRP and seSSAO activity were also significantly correlated. In all groups seSSAO and aoSSAO activities were in negative correlation with each other. Our results support the view that poor metabolic control leads to increased oxidative stress, which in turn may cause the elevation of hsCRP levels. Soluble SSAO on the one hand acts as an adhesion molecule - thus possibly being a factor responsible for the late complications of diabetes - and on the other hand, it may contribute to oxidative stress. Our parsimonious conclusion is that there is a relation between the risk factors of AD and vascular dementia (diabetes, oxidative stress and chronic inflammation) and SSAO activity, which may originate from the vessel wall.  相似文献   

14.
Metmyoglobin (Mb) was glycated by glucose in a nonenzymatic in vitro reaction. Amount of iron release from the heme pocket of myoglobin was found to be directly related with the extent of glycation. After in vitro glycation, the unchanged Mb and glycated myoglobin (GMb) were separated by ion exchange (BioRex 70) chromatography, which eliminated free iron from the protein fractions. Separated fractions of Mb and GMb were converted to their oxy forms -MbO2 and GMbO2, respectively. H2O2-induced iron release was significantly higher from GMbO2 than that from MbO2. This free iron, acting as a Fenton reagent, might produce free radicals and degrade different cell constituents. To verify this possibility, degradation of different cell constituents catalyzed by these fractions in the presence of H2O2 was studied. GMbO2 degraded arachidonic acid, deoxyribose and plasmid DNA more efficiently than MbO2. Arachidonic acid peroxidation and deoxyribose degradation were significantly inhibited by desferrioxamine (DFO), mannitol and catalase. However, besides free iron-mediated free radical reactions, role of iron of higher oxidation states, formed during interaction of H2O2 with myoglobin might also be involved in oxidative degradation processes. Formation of carbonyl content, an index of oxidative stress, was higher by GMbO2. Compared to MbO2, GMbO2 was rapidly auto-oxidized and co-oxidized with nitroblue tetrazolium, indicating increased rate of Mb and superoxide radical formation in GMbO2. GMb exhibited more peroxidase activity than Mb, which was positively correlated with ferrylmyoglobin formation in the presence of H2O2. These findings correlate glycation-induced modification of myoglobin and a mechanism of increased formation of free radicals. Although myoglobin glycation is not significant within muscle cells, free myoglobin in circulation, if becomes glycated, may pose a serious threat by eliciting oxidative stress, particularly in diabetic patients.  相似文献   

15.
Oxidative stress and oxidative damage to tissues are common end points of chronic diseases such as atherosclerosis, diabetes, and rheumatoid arthritis. Oxidative stress in diabetes coexists with a reduction in the antioxidant status, which can further increase the deleterious effects of free radicals. The aim of the present study was to evaluate the possible protective effects of Murraya koenigii leaves extract against beta-cell damage and antioxidant defense systems of plasma and pancreas in streptozotocin induced diabetes in rats. The levels of glucose and glycosylated hemoglobin in blood and insulin, Vitamin C, Vitamin E, ceruloplasmin, reduced glutathione and TBARS were estimated in plasma of control and experimental groups of rats. To assess the changes in the cellular antioxidant defense system such as the level of reduced glutathione and activities of superoxide dismutase, catalase and glutathione peroxidase were assayed in pancreatic tissue homogenate. The levels of glucose, glycosylated hemoglobin, insulin, TBARS, enzymatic and non-enzymatic antioxidants were altered in diabetic rats. These alterations were reverted back to near control levels after the treatment of M. koenigii leaves extract. Transmission electron microscopic studies also revealed the protective nature of M. koenigii leaves on pancreatic beta-cells. These findings suggest that M. koenigii treatment exerts a therapeutic protective nature in diabetes by decreasing oxidative stress and pancreatic beta-cell damage. The antioxidant effect of the M. koenigii extract was compared with glibenclamide, a well-known hypoglycemic drug.  相似文献   

16.
Type 2 diabetes mellitus is associated with increased oxidative stress. Free radicals produced during this stress may damage various cellular components. Gliclazide, a second-generation sulfonylurea, is an oral hypoglycemic drug that possesses antioxidant properties. Therefore, gliclazide may diminish the harmful consequences of oxidative stress in diabetic patients. The aim of our study was to evaluate the action of gliclazide on DNA damage and repair in normal human peripheral blood lymphocytes and insulinoma mouse cells (beta-TC-6). DNA damage and repair were induced by hydrogen peroxide, gamma and ultraviolet radiation and MNNG (N-methyl-N'-nitro-N-nitrosoguanidine) in the presence or absence of gliclazide and were analysed by the alkaline comet assay. DNA double-strand breaks were assayed by pulsed-field gel electrophoresis. Gliclazide protected DNA of both kinds of cells from DNA damage induced by chemicals and radiations. These results suggest that gliclazide may diminish the risk of free radical-related diseases associated with type 2 diabetes mellitus and possibly cancer.  相似文献   

17.
Birds control body homeostasis through the secretion of corticosterone. This hormone is the end-product of the hypothalamic-pituitary-adrenal (HPA) axis response to stressors. High levels of corticosterone may be associated with low individual fitness and may affect balance between pro-oxidants and antioxidants. Given these points, chronic stress modulated by hormones could undermine individual fitness by increasing oxidative tissue damage. In this study, we administered corticosteroids by diet (20 mg/kg of diet) to captive adult kestrels (Falco tinnunculus) over a 14-day period to evaluate the effects of a simulated chronic stress modulated by corticosteroids. We found that dietary administration of corticosterone caused a 32% increase of reactive oxygen metabolites, but did not impair total serum antioxidant capacity, serum carotenoids or body mass. Oxidative stress had a 64% increase in treated birds compared to 30% in controls. The two groups did not differ in the total serum antioxidant capacity, which showed a significant decrease over the study period. In contrast, circulating carotenoids and body mass increased in both groups. These results suggest that stress hormones, such as corticosterone, may also act as modulators of oxidative stress in birds.  相似文献   

18.
Copper-specific damage in human erythrocytes exposed to oxidative stress   总被引:1,自引:0,他引:1  
Ascorbate and complexes of Cu(II) and Fe(III) are capable of generating significant levels of oxygen free radicals. Exposure of erythrocytes to such oxidative stress leads to increased levels of methemoglobin and extensive changes in cell morphology. Cu(II) per mole is much more effective than Fe(III). However, isolated hemoglobin is oxidized more rapidly and completely by Fe(III)- than by Cu(II)-complexes. Both Fe(III) and Cu(II) are capable of inhibiting a number of the key enzymes of erythrocyte metabolism. The mechanism for the enhanced activity of Cu(II) has not been previously established. Using intact erythrocytes and hemolysates we demonstrate that Cu(II)-, but not Fe(III)-complexes in the presence of ascorbate block NADH-methemoglobin reductase. Complexes of Cu(II) alone are not inhibitory. The relative inability of Fe(III)-complexes and ascorbate to cause methemoglobin accumulation is not owing to Fe(III) association with the membrane, or its failure to enter the erythrocytes. The toxicity of Cu(II) and ascorbate appears to be a result of site-specific oxidative damage of erythrocyte NADH-methemoglobin reductase and the enzyme's subsequent inability to reduce the oxidized hemoglobin.  相似文献   

19.
We investigated the effects of ursodeoxycholic acid (UDCA) on mitochondrial functions and oxidative stress and evaluated their relationships in the livers of rats with alloxan-induced diabetes. Diabetes was induced in male Wistar rats by a single alloxan injection (150 mg kg− 1 b.w., i.p.). UDCA (40 mg kg− 1 b.w., i.g., 30 days) was administered from the 5th day after the alloxan treatment. Mitochondrial functions were evaluated by oxygen consumption with Clark oxygen electrode using succinate, pyruvate + malate or palmitoyl carnitine as substrates and by determination of succinate dehydrogenase and NADH dehydrogenase activities. Liver mitochondria were used to measure chemiluminiscence enhanced by luminol and lucigenin, reduced liver glutathione and the end-products of lipid peroxidation. The activities of both NADH dehydrogenase and succinate dehydrogenase as well as the respiratory control (RC) value with all the substrates and the ADP/O ratio with pyruvate + malate and succinate as substrates were significantly decreased in diabetic rats. UDCA developed the beneficial effect on the mitochondrial respiration and oxidative phosphorylation parameters in alloxan-treated rats, whereas the activities of mitochondrial enzymes were increased insignificantly after the administration of UDCA. The contents of polar carbonyls and MDA as well as the chemiluminescence with luminol were elevated in liver mitochondria of diabetic rats. The treatment with UDCA normalized all the above parameters measured except the MDA content. UDCA administration prevents mitochondrial dysfunction in rats treated with alloxan and this process is closely connected with inhibition of oxidative stress by this compound.  相似文献   

20.
Fruit from Lycium barbarum L. in the family Solanaceae is well-known in traditional Chinese herbal medicine. Lycium barbarum polysaccharides (LBP) have been identified as one of the active ingredients responsible for its biological activities. We isolated polysaccharides from dried Lycium barbarum fruits by boiling water extraction. In the study, 50 animals were divided into two groups: a nondiabetic control (n = 10) and a diabetic group (n = 40). Diabetes was induced by a single injection of streptozotocin (50 mg/kg BW; Sigma, USA) freshly dissolved in a 0.1 mol/L citrate buffer (pH 4.5) into the intraperitonium. The normal control rats and the untreated diabetic control rats were only injected with the citrate buffer. Treated diabetic rats were administrated with LBP in drinking water through oral gavage for 30 days. At the end of experiment, oxidative indice in blood, liver and kidney of all groups were examined. The results show that administration of LBP can restore abnormal oxidative indice near normal levels. Therefore, we may assume that LBP is effective in the protection of liver and kidney tissue from the damage of STZ-induced diabetic rats and that the LBP may be of use as a antihyperglycemia agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号