首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
WOKW (Wistar Ottawa Karlsburg W) rats develop metabolic syndrome closely resembling human disorder. In crossing studies between disease‐prone WOKW and disease‐resistant DA (Dark Agouti) rats, several quantitative trait loci (QTLs) were mapped. To prove the in vivo relevance of QTLs, congenic DA.WOKW rats, briefly termed DA.3aW, DA.3bW, DA.5W, DA.10W, and DA.16W, were generated by transferring chromosomal regions of WOKW chromosomes 3, 5, 10, and 16 onto DA genetic background. Male (n = 12) and female (n = 12) rats of each congenic strain and their parental strain DA were characterized for adiposity index (AI), serum leptin, and serum insulin as well as serum cholesterol and serum triglycerides as single facets of metabolic syndrome at the age of 30 weeks. The data showed a significant higher AI for male and female DA.3aW and female DA.16W compared with DA. Serum leptin was significantly elevated in male and female DA.3aW, DA.10W, and DA.16W rats in comparison with DA. Rats of both sexes of DA.10W and female DA.16W showed significantly elevated serum insulin in comparison to DA. Female rats of all congenics had significantly higher serum cholesterol compared with DA, while males did not differ. Finally, triglycerides were only elevated in male DA.16W. The results demonstrate an involvement of WOKW chromosomes 3, 5, 10, and 16 in developing facets of the metabolic syndrome.  相似文献   

2.
In 1988, Reaven used the term syndrome X to describe a relation between several disorders including hypertension, dyslipidemia, impaired glucose tolerance, obesity, and coronary heart disease. Despite a number of studies dealing with syndrome X, its genetic basis remains poorly understood. Regarding the complexity of this syndrome, it is important to use animal models developing the traits of the disease. Here we show a genetic dissection of syndrome X in the WOKW rat, an animal model of genetically determined syndrome X. We found a major quantitative trait locus (QTL) for glucose metabolism on chromosome 3 and further QTLs influencing obesity and body weight on chromosomes 1 and 5. Genetic determinants of dyslipidemia were mapped to chromosomes 4 and 17. In addition, suggestive linkage for serum insulin was found on chromosome 1 to the region previously shown to be associated with type-1 diabetes mellitus. This is the first study demonstrating independent genetic factors influencing traits of the syndrome X in the rat as well as a possible genetic relationships between syndrome X and diabetes mellitus. Moreover, regarding the close similarities between WOKW rat and human syndrome X, the study could help in a search of genetic factors involved in this complex metabolic disorder in human.  相似文献   

3.
The exogenously hypercholesterolemic (ExHC) rat is an established strain that exhibits a polygenic syndrome of hypercholesterolemia after feeding on a cholesterol-containing diet, and the extent of this differs between male and female rats in the strain. The present study was performed to determine the genetic background of diet-induced hypercholesterolemia in ExHC rats. We used quantitative trait locus (QTL) analyses of the F2 progeny derived from ExHC and Brown-Norway rats. Rats were fed a diet containing 1% cholesterol, and a genome-wide scan was then performed. Significant QTLs for serum total cholesterol levels were revealed on chromosomes 5 and 14 in the vicinity of markers D5Rat95 and D14Rat43, having maximum logarithm of the odds scores of 6.0 and 5.8, respectively. A suggestive QTL for the trait was also detected on chromosome 3 at D3Rat140. In particular, the QTL on chromosome 5 was specific for female rats. These loci were novel QTLs for post-dietary serum total cholesterol levels. In addition, cross-mating analysis in F1 generations suggested that the responsiveness to dietary cholesterol in ExHC rats is partly attributable to X-linked inheritance. Identifying such genetic factors may be useful in predicting the risks associated with diet-induced hypercholesterolemia in humans.  相似文献   

4.
To study polygenetically inherited human diseases like hypertension, inbred rat strains are usually the preferred models. Because many inbred generations under optimized environmental conditions may have led to the survival of "silent" disease genes, we used a cross between one wild rat and genetically hypertensive SHR rats to analyze quantitative trait loci (QTLs) of blood pressure and related traits. The (Wild x SHR)F1 hybrids were transferred into a pathogen-free environment by wet-hysterectomy and were backcrossed onto SHR to generate first backcross hybrids (BC1). Progeny from one F1 female (n = 72) were phenotypically and genetically characterized to map QTLs. Significant, subsignificant, and suggestive evidence was found for more sex-specific than common linkage of blood pressure and most blood-pressure-related traits. Male- and female-specific regions were determined on different chromosomes for blood pressures (Chrs. 2 and 7 vs 5 and 11), body weight (Chrs. 10 vs 18), and blood glucose (Chr. 17 vs 20). A linkage in both males and females was shown for serum triglycerides on chromosomes 6 and 17, respectively, and blood glucose on chromosome 15. For serum total cholesterol, a significant linkage was found on chromosome 14 only in males. Our findings not only indicate the complex character of quantitative traits per se but also show impressively their dependence on sex, age, and strains in cosegregation analysis.  相似文献   

5.
Recently, Fukuhara et al. have shown that the novel visfatin is predominantly released from visceral adipocytes and shares metabolic functions with insulin. The authors suggested that there is a relationship between visfatin and the metabolic syndrome in humans. These findings prompted us to clarify the visfatin gene expression from visceral and subcutaneous adipocytes in WOKW rats, as an animal model for polygenically inherited metabolic syndrome, compared to lean Dark Agouti (DA) rats. Moreover, visfatin sequence analysis was performed in WOKW, DA rats, and disease-resistant Fisher 344, Lewis, Brown Norway, and Karlsburg wild rats. The relative gene expression of visfatin displays no significant changes in adipocytes from WOKW rats compared with DA and visfatin sequence analysis of the coding region was identical to the GenBank. But, we found length differences of two repeats, GT and GA, in intron 2 between the strains. In summary, the relative visfatin gene expression is not associated with the metabolic syndrome in WOKW rats.  相似文献   

6.
AIMS: New Zealand obese (NZO) mice exhibit a polygenic syndrome of obesity, insulin resistance, and hypercholesterolemia that resembles the human metabolic syndrome. This study was performed in order to locate genes responsible for elevated serum cholesterol and to compare their effects under a standard and high fat diet.METHODS: A backcross population of NZO with SJL mice (NZO x F1(SJL x NZO)) was generated. Mice were raised on a normal or high fat diet and were monitored for 22 weeks (body weight, serum cholesterol, and blood glucose). A genome-wide scan was performed by genotyping of approximately 200 polymorphic microsatellite markers by PCR and linkage analysis was performed with the MAPMAKER program.RESULTS: In the genome-wide scan, a single susceptibility locus for hypercholesterolemia (Chol1/NZO, maximum LOD score 14.5 in a combined population of 523 backcross mice) was identified on chromosome 5. Cholesterol levels were significantly elevated in both male and female homozygous carriers of the Chol1/NZO allele. The locus maps 40cM distal of the previously described obesity locus Nob1 in the vicinity of the marker D5Mit244 and in the vicinity of hypercholesterolemia QTL previously identified in the NZB, CAST, and C57BL/6J strains. Chol1/NZO was not associated with elevated body weight, serum insulin, or hyperglycemia. The high fat diet significantly increased serum cholesterol levels, but the fat content of the diet did not alter the absolute effect of Chol1/NZO.Conclusions: Chol1/NZO is a major susceptibility locus on the distal mouse chromosome 5, which produces gender-independent hypercholesterolemia in NZO mice. The effect of Chol1/NZO was independent of the dietary fat content and was not associated with the other traits of the metabolic syndrome. Thus, it is suggested that the responsible gene might be involved in cholesterol metabolism.  相似文献   

7.
Objective: The use of inbred animal models is an essential component of the genetic dissection of complex diseases. Because quantitative trait loci for serum triglycerides, total cholesterol, and body weight were mapped on chromosome 4 in a cross of BioBreeding/OttawaKarlsburg (BB/OK) and spontaneously hypertensive (SHR) rats, we established a congenic BB.SHR rat strain by introgressing a SHR segment of chromosome 4 (D4Got41‐Tacr1) into a BB/OK background. The phenotype of these BB.SHR rats (BB.4S) confirmed the quantitative trait loci. To discover whether the phenotype of BB.4S can only be attributed to the SHR segment per se, we established an additional congenic BB.WOKW strain by introgressing a similar segment of chromosome 4 (D4Got41‐Fabp1) of the Wistar Ottawa Karlsburg RT1u rat into a BB/OK background, termed briefly BB.4W. Research Methods and Procedures: Male normoglycemic BB/OK (20), BB.4S (20), and BB.4W (16) rats were longitudinally studied for body weight, serum triglycerides, total and high‐density lipoprotein‐cholesterol, and glucose tolerance. At the end of the observation period (32 weeks), serum insulin, leptin, and adiposity index (AI) were determined. Results and Discussion: Congenic BB.4S and BB.4W were significantly heavier, and AI, serum triglycerides, and total cholesterol values were significantly elevated in BB.4S and BB.4W compared with BB/OK but more pronounced in BB.4S. The highest serum insulin was found in BB.4W and highest leptin in BB.4S. Because the body weight gain and AI were comparable between BB.4S and BB.4W, the obviously higher insulin levels in BB.4W and higher leptin values in BB.4S suggest that the two congenics most probably define two subphenotypes of obesity and provide the unique opportunity to study their genetics.  相似文献   

8.
To identify genetic determinants relevant to non-insulin-dependent diabetes mellitus (NIDDM), we performed a genome-wide analysis for quantitative trait loci (QTLs) using 359 backcross progeny of the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The OLETF strain is a well-studied animal model of obese NIDDM, with features of hyperinsulinemia, hyperglycemia, insulin resistance, and abundant abdominal fat. Our extensive genomic scanning with 218 markers revealed nine significant QTLs, including a strong determinant of obesity on chromosome 1 (Dmo1: LOD = 13.99, for body weight). Two highly significant QTLs for glucose homeostasis were found, one on chromosome 1 (Dmo4 LOD = 7.16, for postprandial glucose level) and the other on chromosome X (Dmo11/Odb1: LOD = 7.81, for postprandial glucose level). These data are comparable to results of our previous studies of the OLETF rat.  相似文献   

9.
Altered lipid metabolism is closely associated with diabetes in humans, although predisposing genetic factors that affect hyperlipidemia have not yet been clarified. Our previously established OLETF strain is an obese rat model of type II diabetes, exhibiting hypertriglycemia as well as hyperinsulinemia, hyperglycemia, insulin resistance, and abundant abdominal fat. To identify genetic factors responsible for dyslipidemic phenotypes in OLETF rats, we performed a whole-genome scan using 293 male (OLETF x BN) x OLETF backcross rats. Our analysis identified two significant quantitative trait loci (QTLs), on rat chromosomes 1 and 8, that are related to fasting triglyceride levels. The chromosome 1 QTL colocalized with Dmo1 (diabetes mellitus, OLETF type 1), a locus previously shown to associate strongly with both fat levels and body weight. The other significant QTL localizes to the chromosome 8 marker D8Mit2, in a region where several apo-lipoprotein genes are clustered.  相似文献   

10.
We performed a quantitative trait locus (QTL) analysis to map QTLs controlling shank length, body weight, and carcass weight in a resource family of 245 F(2) birds developed from a cross of the large-sized, native, Japanese cockfighting breed, Oh-Shamo (Japanese Large Game), and the White Leghorn breed of chickens. Interval mapping revealed three significant QTLs for shank length on chromosomes 1, 4 and 24 at the experiment-wise 5% level, and a suggestive shank length QTL on chromosome 27 at the experiment-wise 10% level. For body weight two QTLs, one significant and the other suggestive, were identified on chromosomes 4 and 24, respectively. As expected, QTLs for carcass weight, which was highly correlated with body weight (r = 0.95), were detected at the same chromosomal locations as the detected body weight QTLs. Interestingly, the chromosomal locations containing these body weight and carcass weight QTLs coincided with those of two of the four shank length QTLs detected. No QTL with an epistatic interaction effect was discovered for any trait. The total contribution of all detected QTLs to genetic variance was 98.4%, 27.0% and 25.9% for shank length, body weight and carcass weight, respectively, indicating that most shank length QTLs have been identified but many body weight and carcass weight QTLs have been overlooked by the present analysis because of a low coverage rate of the 88 microsatellite markers used here (approximately 46% of the whole genome).  相似文献   

11.
An F2 pedigree based on the mouse lines DU6i and DBA/2 with extremely different growth and obesity characteristics was generated to search for QTLs affecting serum concentrations of triglycerides (TG), total cholesterol (CHOL), HDL cholesterol (HDL-C), and LDL cholesterol (LDL-C). Compared with many other studies, we searched for spontaneous genetic variants contributing to high lipid levels under a standard breeding diet. Significant QTLs for CHOL were identified on chromosomes 4 and 6, and a female-specific locus on chromosome 3. QTLs for HDL-C were detected on chromosome 11 for both sexes, and on chromosome 1 for females. These QTLs are located in syntenic human regions that have QTLs that have not been previously confirmed in animal studies. LDL-C QTLs have been mapped for both sexes to chromosome 8 and in males on chromosome 13. Epistatic interactions that significantly accounted for the phenotypic variance of HDL-C, CHOL, and LDL-C serum concentrations were also detected with one interaction between chromosomes 8 and 15, accounting for 22% of the observed variance in LDL-C levels. The identified loci coincide in part with regions controlling growth and obesity. Thus, multiple genes or pleiotropic effects may be assumed. The identified QTLs for cholesterol and its transport proteins as subcomponents of risk for coronary heart disease will further improve our understanding of the genetic net controlling plasma lipid concentrations. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
14.
Myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease in rats that closely mimics many clinical and histopathological aspects of multiple sclerosis. Non-MHC quantitative trait loci regulating myelin oligodendrocyte glycoprotein-induced EAE have previously been identified in the EAE-permissive strain, DA, on rat chromosomes 4, 10, 15, and 18. To find any additional gene loci in another well-known EAE-permissive strain and thereby to assess any genetic heterogeneity in the regulation of the disease, we have performed a genome-wide linkage analysis in a reciprocal (LEW.1AV1 x PVG.1AV1) male/female F(2) population (n = 185). We examined reciprocal crosses, but no parent-of-origin effect was detected. The parental rat strains share the RT1(av1) MHC haplotype; thus, non-MHC genes control differences in EAE susceptibility. We identified Eae16 on chromosome 8 and Eae17 on chromosome 13, significantly linked to EAE phenotypes. Two loci, on chromosomes 1 and 17, respectively showed suggestive linkage to clinical and histopathological EAE phenotypes. Eae16 and Eae17 differ from those found in previously studied strain combinations, thus demonstrating genetic heterogeneity of EAE. Furthermore, we detected a locus-specific parent-of-origin effect with suggestive linkage in Eae17. Further genetic and functional dissection of these loci may disclose critical disease-regulating molecular mechanisms.  相似文献   

15.
Detection of quantitative trait loci for growth and fatness in pigs   总被引:1,自引:0,他引:1  
A quantitative trait locus (QTL) analysis of growth and fatness data from a three-generation experimental cross between Meishan (MS) and Large White (LW) pig breeds is presented. Six boars and 23 F1 sows, the progeny of six LW boars and six MS sows, produced 530 F2 males and 573 F2 females. Nine growth traits, i.e. body weight at birth and at 3, 10, 13, 17 and 22 weeks of age, average daily gain from birth to 3 weeks, from 3 to 10 weeks and from 10 to 22 weeks of age, as well as backfat thickness at 13, 17 and 22 weeks of age and at 40 and 60 kg live weight were analysed. Animals were typed for a total of 137 markers covering the entire porcine genome. Analyses were performed using two interval mapping methods: a line-cross (LC) regression method where founder lines were assumed to be fixed for different QTL alleles and a half-/full-sib (HFS) maximum likelihood method where allele substitution effects were estimated within each half-/full-sib family. Both methods revealed highly significant gene effects for growth on chromosomes 1, 4 and 7 and for backfat thickness on chromosomes 1, 4, 5, 7 and X, and significant gene effects on chromosome 6 for growth and backfat thickness. Suggestive QTLs were also revealed by both methods on chromosomes 2 and 3 for growth and 2 for backfat thickness. Significant gene effects were detected for growth on chromosomes 11, 13, 14, 16 and 18 and for backfat thickness on chromosome 8, 10, 13 and 14. LW alleles were associated with high growth rate and low backfat thickness, except for those of chromosome 7 and to a lesser extent early-growth alleles on chromosomes 1 and 2 and backfat thickness alleles on chromosome 6.  相似文献   

16.
The spontaneous crescentic glomerulonephritis-forming/Kinjoh (SCG/Kj) mouse is a model of human crescentic glomerulonephritis and vasculitis associated with the production of the myeloperoxidase (MPO)-specific antineutrophil cytoplasmic autoantibody (MPO-ANCA). Although the disease is mediated initially by mutation of the Fas gene (lpr), SCG/Kj mice also have non-Fas predisposing genetic factors. To define these factors, genome-wide quantitative trait locus (QTL) mapping was performed on female (B(6)x SCG/Kj) F(2) intercross mice. Fourteen non-Fas QTLs were identified. QTLs of glomerulonephritis were located on chromosomes 1, 10, 13, 16, and 17, vasculitis on chromosomes 1 and 17, splenomegaly on chromosome 1, hypergammaglobulinemia on chromosomes 1, 2, 4, 6, 7, 11, 13, and 17, antinuclear Ab on chromosomes 1, 8, 10, and 12, and MPO-ANCA production on chromosomes 1 and 10. Significant QTLs derived from SCG/Kj on chromosomes 1, 2, 7, and 13 were designated Scg-1 to Scg-5, respectively, and those derived from B(6) on chromosomes 4, 6, 17, and 10 were designated Sxb-1 to Sxb-4, respectively. Two loci linked to MPO-ANCA production on chromosomes 1 and 10 were designated Man-1 and Man-2 (for MPO-ANCA), respectively. Although both Scg-1 and Scg-2 were on chromosome 1 and shared several functions, it was of interest that aberrant MPO-ANCA production was exclusively controlled by Man-1, the centromeric half region of the Scg-2 chromosomal segment. We also examined the epistatic effects between the lpr mutation and non-Fas susceptibility genes. QTLs are discussed in relation to previously described loci, with emphasis on their candidate genes.  相似文献   

17.
A whole-genome scan for carcass traits [average daily gain during the pre-weaning, growth and finishing periods; birth weight; hot carcass weight and longissimus muscle area (LMA)] was performed on 328 F(2) progeny produced from Wagyu x Limousin-cross parents derived from eight founder Wagyu bulls. Nine significant (P 相似文献   

18.
To identify quantitative trait loci (QTLs) responsible for regulating plasma lipid concentration associated with obesity, linkage analysis was carried out on the 190 F2 progeny of a cross between C57BL/6J female and KK-Ay (Ay allele at the agouti locus congenic) male. In F2 a/a (agouti locus genotype) mice, two QTLs were identified on chromosome 1 and a QTL on chromosome 3 for total-cholesterol. A QTL for HDL-cholesterol was identified on chromosome 1 and a QTL for NEFA on chromosome 9. In F2 Ay/a mice, two QTLs for HDL-cholesterol were found on chromosome 1. Loci for other lipids with suggestive linkage were also identified. In both F2 mice, one QTL on chromosome 1 for total- and HDL-cholesterol was mapped near D1Mit150, in the vicinity of the apolipoprotein A-II (Apoa2) locus. Seven nucleotide substitutions out of 309 nucleotide apolipoprotein A-II cDNA sequences were identified between KK and C57BL/6J. The Ay allele may be an indication of the plasma lipid levels, but its influence was less apparent than in the case of weight control. The loci for lipids were not on identical chromosomes with those previously identified for obesity, suggesting that hyperlipidemia in KK does not coincidentally occur with obesity.  相似文献   

19.
The elongation of the cooked grain determines the cooking and eating quality of Basmati rice. The identification of stable quantitative trait loci (QTLs), especially those from non-Basmati types, will extend the genetic basis of the Basmati type and facilitate the breeding of high-quality varieties. A set of recombinant inbred lines derived from an indica x japonica hybrid was used to identify QTLs controlling the elongation ratio (ER), elongation index (EI), and water absorption (WA) of the cooked grain. Three ER QTLs on chromosomes 2, 4, and 12, two EI QTLs on chromosomes 2 and 5, and two WA QTLs on chromosomes 2 and 6 were detected. Four of these QTLs were validated using a set of established chromosome segment substitution lines. The genetic effect of qER-2 was explored in an analysis of segregating generations, using 8 newly developed simple sequence repeat markers. Two tightly linked loci (qER-2a and qER-2b) were identified on chromosome 2.  相似文献   

20.
Aerobic capacity is a complex trait that defines the efficiency to use atmospheric oxygen as an electron acceptor in energy transfer. Copenhagen (COP) and DA inbred rat strains show a wide difference in a test for aerobic treadmill running and serve as contrasting genetic models for aerobic capacity. A genome scan was carried out on an F(2)(COP x DA) segregating population (n=224) to detect quantitative trait loci (QTLs) associated with aerobic running capacity. Linkage analysis revealed a significant QTL on chromosome 16 (lod score, 4.0). A suggestive linkage was found near the p-terminus of chromosome 3 (lod score, 2.2) with evidence of an interaction with another QTL on chromosome 16 (lod score, 2.9). All three QTLs showed a dominant mode of inheritance in which the presence of at least one DA allele was associated with a greater distance run. These results represent the first aerobic capacity QTLs identified in genetic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号