首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The performance at low water availability of styrene-degrading biofilters with the fungus Exophiala jeanselmei growing on perlite, the inert support, was investigated. E. jeanselmei degrades styrene at a water activity of 0.91–1. In biofilters, the styrene elimination capacity at a water activity of 0.91 is 5% of the maximal elimination capacity of 79 g m-3 h-1 (water activity 1). Application of dry air results in a rapid loss of styrene degradation activity, even at 40%–60% (w/w) water in the filter bed and at a water activity of 1. Humidification of the gas and an additional supply of water to the filter bed are necessary to maintain a high and stable styrene elimination capacity. Received: 7 August 1995 / Received revision: 29 January 1996 / Accepted: 5 February 1996  相似文献   

2.
 A denitrifying bacterial biofilm population established on a polypropylene substratum of a fixed-film reactor was characterized by microscopy, scanning electron microscopy and immunofluorescence after 120 days of operation. The reactor, operated at pH 7.0, 22°C, and −180 mV with synthetic wastewater containing methanol/nitrate, achieved a denitrification rate of 0.24 mol NO- 3 l-1 day-1 with a removal efficiency for nitrate of 95%–99% at an organic loading rate of 0.325 mol methanol l-1 day-1. The gas produced contained 2%–3% (v/v) methane and 3%–4% (v/v) carbon dioxide in addition to nitrogen. The biofilm contained mainly cells of Methanobrevibacter arboriphilus antigenically related to strain DC, short, flagellated, gram-negatively staining rods of Pseudomonas sp. antigenically related to Pseudomonas stutzeri strain AN11, non-identified pink-pigmented rods and small lemon-shaped cells with mono- and bipolar appendages resembling prosthecate Hyphomicrobium sp. The biofilm analysis provided evidence for a syntrophy between the denitrifying, methylotrophic, bacterial consortium and hydrogenotrophic methanogens, which were identified by antigenic fingerprinting with 17 antibody probes. Received: 11 July 1994/Received revision: 23 September 1994/Accepted: 28 September 1994  相似文献   

3.
Disposable sensor for biochemical oxygen demand   总被引:6,自引:0,他引:6  
 Disposable-type microbial sensors were prepared for the determination of biochemical oxygen demand (BOD). The yeast, Trichosporon cutaneum, was directly immobilized on the surface of miniature oxygen electrodes using an ultraviolet crosslinking resin (ENT-3400). The oxygen electrodes (15 mm× 2 mm×0.4 mm) were made on silicon substrates using micromachining techniques. They were Clark-type two-electrode systems with−1021 mV applied to the working electrode. Typical response times of the BOD sensors were in the range of 7–20 min. At 20°C, the sensors’ dynamic range was from 0 to 18 mg/l BOD when a glucose/glutamate BOD standard solution was used. The lower limit of detection was 0.2 mg/l BOD. This value was one order of magnitude lower than that of sensors previously reported. The sensors’ operational lifetime of 3 days was satisfactory for a disposable type. The sensors’ responses were reproducible to within 8% relative standard deviation. The BOD sensors’ were applied to untreated and treated waste waters from industrial effluents and municipal sewage. BOD values determined using these sensors correlated well with those determined by the conventional 5-day BOD determination method. Received: 22 December 1995/Received revision: 19 February 1996/Accepted: 17 March 1996  相似文献   

4.
 The kinetics of continuous oxidation of ferrous iron by immobilized cells of Thiobacillus ferrooxidans was studied in a packed-bed bioreactor. Polyurethane foam biomass support particles were used as carriers for cell immobilization. Effects of ferrous iron concentration and its volumetric loading on the kinetics of the reaction were investigated. Media containing different concentrations of ferrous iron in the range 5–20 kg m-3 were tested. For each medium the kinetics of the reaction at different volumetric loadings of ferrous iron, at a constant temperature of 30°C, were determined. With media containing 5 kg m-3 and 10 kg m-3 Fe2+, the fastest oxidation rates of 34.25 kg m-3 h-1 and 32 kg m-3 h-1 were achieved at a dilution rate of around 6 h-1, which represents a residence time of 10 min. Employing a higher concentration of ferrous iron (20 kg m-3) in the medium resulted in lower oxidation rates, with a maximum value of 10 kg m-3 h-1, indicating an inhibitory effect of ferrous iron on growth and activity of T. ferrooxidans. The reliable performance of the bioreactor during the course of the experiments confirmed the suitability of polyurethane foam biomass support particles as carriers for T. ferrooxidans immobilization. Received: 5 December 1995/Received revision: 21 April 1996/Accepted: 29 April 1996  相似文献   

5.
Denitrification of a high-strength synthetic wastewater (150 g NO- 3 l-1) was carried out using a wine distillery effluent as an example of an industrial carbon source (22.7 g chemical oxygen demand l-1). Two configurations were tested: one consisted of an acidogenesis reactor followed by a denitrifying reactor and the other was a single reactor directly fed with the raw effluents. In both cases, denitrification was achieved at a nitrate load of 9.54 g NO- 3 l-1 day-1 (2.19 g N as NO- 3 l-1 day-1) with good specific reduction rates: 32.6 mg and 35.2 mg N as NO x  g volatile suspended solids h-1, calculated on a single day, for the two-step and the one-step process respectively. Dissimilatory nitrate reduction to ammonium did not occur, even in the one-step process. Received: 26 October 1995/Received revision: 15 February 1996/Accepted: 20 February 1996  相似文献   

6.
Toluene vapour removal in a laboratory-scale biofilter   总被引:4,自引:0,他引:4  
A bench-scale biofilter with a 0.5-m high filter bed, inoculated with a toluene-degrading strain of Acinetobacter sp. NCIMB 9689, was used to study toluene removal from a synthetic waste air stream. Different sets of continuous tests were conducted at influent toluene concentrations ranging over 0.1–4.0 g m−3 and at superficial gas velocities ranging over 17.8–255 m h−1. The maximum volumetric toluene removal rate for the biofilter (242 g m−3 h−1) was obtained at a superficial gas velocity of 127.5 m h−1 (corresponding to a residence time of 28 s) and a toluene inlet concentration of 4.0 g m−3. Under these operating conditions, toluene removal efficiency was only 0.238, which suggested that effective operation required higher residence times. Removal efficiencies higher than 0.9 were achieved at organic loads less than 113.7 g m−3 h−1. A macro-kinetic study, performed using concentration profiles along the bioreactor, revealed this process was limited by diffusion at organic loads less than 100 g m−3 h−1 and by biological reaction beyond this threshold. Received: 10 October 1999 / Received revision: 15 February 2000 / Accepted: 18 February 2000  相似文献   

7.
 In recent years, it has become clear that the rapidly acidifying chemical oxygen demand (RACOD) content of the waste water and the surface tension of the reactor liquid contribute to the phenomenon of granular growth in upflow anaerobic sludge-blanket reactors (UASB). By adding 20% of directly soluble RACOD, in the form of a sucrose/starch mixture, on top of the original COD load and by adjusting the reactor liquid surface tension below 50 mN m−1 with linear alkylbenzenesulphonate, granular growth and sludge-bed stability could be enhanced significantly within 40 days. Carrot pulp, a waste product having a high short-chain fatty acid precursor potential, was applied as an alternative fibrous RACOD source. Best results were obtained when adding the carrot pulp freshly to the laboratory-scale UASB reactor in an in-recycle liquefying chamber. This concept of adding carrot pulp waste product as a granular growth supplement by means of an in-recycle liquefying chamber therefore merits testing in practice. Received: 30 October 1996 / Received version: 3 February 1997 / Accepted: 10 February 1997  相似文献   

8.
Streptococcus salivarius subsp. thermophilus was cultivated in a chemostat in order to obtain an adhesive phenotype of this strain. When the system was operated at low dilution rates (D<0.2 h-1) for about 4 weeks, the strain formed a visible film on the surface of the culture vessel. The biofilm cells were not washed out even when dilution rates were increased (D=6.9 h-1), and this resulted in a high biomass productivity (P=4.1 g l-1h-1). On the other hand, when the culture was grown at dilution rates faster than 0.2 h-1, only the free suspended cells were present in the culture broth, and were washed out at velocities of about 1.0 h-1. The biomass productivity was consequently lower (P=1.33 g l-1h-1) than in the previous case. The selected adhesive phenotype was grown on different glass beads and the possibility of lactate fermentation in a continuous and semicontinuous mode was demonstrated. Received: 16 August 1995/Received revision: 18 March 1996/Accepted: 25 March 1996  相似文献   

9.
This study deals with combining the biologi cal removal of organic halogens with the removal of nitrogen from bleached kraft pulp mill wastewater in fluidized-bed reactors under nitrifying and denitrifying conditions. Untreated and biotreated bleached kraft pulp mill wastewaters had no detrimental effect on nitrification or denitrification. The nitrifying biofilm reactor, pregrown on synthetic inorganic feed with ammonia, removed without a lag phase adsorbable organic halogens [7.2 mg Cl (g biomass volatile solids)−1day−1] from bleached kraft pulp mill wastewater and selected chlorophenols from synthetic wastewater. Electron microscopical examination of the biofilm showed that bacteria, morphologically similar to the nitrifying species Nitrosomonas or Nitrobacter, and Nitrosospira were dominant. The denitrifying fluidized-bed reactor, pregrown on nitrate and methanol, denitrified without a lag phase bleached kraft pulp mill wastewater. Under denitrifying conditions, 35% of the total organic carbon content of untreated bleached kraft pulp mill waste water was removed. The reducing power delivered by untreated bleached kraft pulp mill wastewater for denitrification was 2 mmol electrons/mmol carbon mineralized. Dechlorination under denitrifying conditions was negligible. Received: 21 November 1996 / Received revision: 27 January 1997 / Accepted: 1 February 1997  相似文献   

10.
 Previously it was demonstrated that bacteria are capable of transforming soluble uranyl ion, U(VI), to insoluble uraninite, U(IV); however, the rate for this transformation has not been determined. We report the kinetic coefficients for Desulfovibrio desulfuricans DSM 1924 grown in a continuous-flow chemostat where pyruvate was the electron donor and sulfate was the electron acceptor. The medium was supplemented with 1 mM uranyl nitrate, and the chemostat flow rate ranged from 1.12 ml/h to 4.75 ml/h with incubation at 28°C. The maximum rate of pyruvate utilization (k) was determined to be 4.7 days-1, while the half-velocity constant (K s) was 127 mg/l. The yield coefficient (Y) of cells per mole of pyruvate oxidized was calculated to be 0.021 g, while the endogenous decay coefficient (k d) was determined to be 0.072 days-1. More than 90% of U(VI) was transformed to U(VI) in the chemostat under the conditions employed. Received: 7 September 1995/Received last revision: 10 January 1996/Accepted: 5 February 1996  相似文献   

11.
 The impact of ozone fumigation on chlorophyll a fluorescence parameters and chlorophyll content of birch trees grown at high and low fertilization were studied for 6-, 8-, and 12-week old leaves. Fluorescence parameters were measured with a portable fluorometer with its fibre optics tightly inserted in a gas exchange cuvette at light intensities from 0 to 220 μmol photons m−2 s−1. Ozone caused significant changes of primary photosynthetic reactions: a decrease of the quantum yield of photosystem II and an increase of non-photochemical quenching. In all leaves a biphasic light response of non-photochemical quenching was observed. Ozone fumigation shifted the onset of the second phase from a PFD of about 60 μmol m−2 s−1 to about 30 μmol m−2 s−1. While the fertilizer concentration had no influence on this character, high fertilization supply of plants partially reduced O3-induced damage. The light responses of Ft, Fm′ and NPQ observed in birch leaves grown in O3-free air indicate the existence of at least two different processes governing energy conversion of the photosynthetic apparatus at PS II in the range of PFD 0–200 μmol photons m−2 s−1. The first phase was attributed to a rather slowly relaxing type of non-photochemical quenching, which, at least at low PFD, is thought to be related to a state 1–2 transition. The further changes of the fluorescence parameters studied at higher PFD might be explained by an increase of energy-dependent quenching, connected with the energization of the thylakoid membrane and zeaxanthin synthesis. A major effect of ozone treatment was a lowering of PS II quantum yield. This reflects a reduction of PS II electron transport and corresponds to the reduction of CO2-fixation observed in ozonated leaves. Received: 24 September 1996 / Accepted: 27 January 1999  相似文献   

12.
The biotreatment of complex mixtures of volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene, and xylene isomers (BTEX) has been investigated by many workers. However, the majority of the work has dealt with the treatment of aqueous or soil phase contamination. The biological treatment of gas and vapor phase sources of VOC wastes has recently received attention with increased usage of biofilters and bioscrubbers. Although these systems are relatively inexpensive, performance problems associated with biomass plugging, gas channeling, and support media acidification have limited their adoption. In this report we describe the development and evaluation of an alternative biotreatment system that allows rapid diffusion of both BTEX and oxygen through a silicone membrane to an active biofilm. The bioreactor system has a rapid liquid recycle, which facilitates nutrient medium mixing over the biofilm and allows for removal of sloughing cell mass. The system removed BTEX at rates up to 30 μg h−1 cm−2 of membrane area. BTEX removal efficiencies ranged from 75% to 99% depending on the BTEX concentration and vapor flowrate. Consequently, the system can be used for continuous removal and destruction of BTEX and other potential target VOCs in vapor phase streams. Journal of Industrial Microbiology & Biotechnology (2001) 26, 316–325. Received 14 August 2000/ Accepted in revised form 28 February 2001  相似文献   

13.
Pollutant degradation in biotrickling filters for waste air treatment is generally thought to occur only in the biofilm. In two experiments with toluene degrading biotrickling filters, we show that suspended microorganisms in the recycle liquid may substantially contribute to the overall pollutant removal. Two days after reactor start up, the overall toluene elimination capacity reached a maximum of 125 g m−3 h−1, which was twice that found during prolonged operation. High biodegradation activity in the recycle liquid fully accounted for this short-term peak of pollutant elimination. During steady-state operation, the toluene degradation in the recycle liquid was 21% of the overall elimination capacity, although the amount of suspended biomass was only 1% of the amount of immobilized biomass. The results suggest that biotrickling filter performance may be improved by selecting operating conditions allowing for the development of an actively growing suspended culture. Received: 16 June 1999 / Received revision: 17 November 1999 / Accepted: 15 December 1999  相似文献   

14.
A novel type of bioreactor for waste gas treatment has been designed. The reactor contains a microporous hydrophobic membrane to create a large interface between the waste gas and the aqueous phase. To test the new reactor, propene was chosen because of its high air/water partition coefficient, which causes a low water concentration and hampers its removal from air. Propene transfer from air to a suspension of propene-utilizing Xanthobacter Py2 cells in the membrane bioreactor proved to be controlled by mass transfer in the liquid phase. The resistance of the membrane was negligible. Simulated propene transfer rates agreed well with the experimental data. A stable biofilm of Xanthobacter Py2 developed on the membrane during prolonged operation. The propene flux into the biofilm was 1 x 10(-6) mol m(-2) s(-1) at a propene concentration of 9.3 x 10(-2) mol m(-3) in the gas phase. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
 Eight strains of the genus Aureobasidium obtained from culture collections were tested for their capability to produce poly(β-L-malic acid) (PMA). Four of the tested strains showed positive results. The most productive strain, A. pullulans CBS 591.75, was used to study the production of PMA in stirred-tank reactors. It was found that PMA was mainly produced in the late exponential phase, and the production related positively to glucose consumption. At the beginning of the fermentation the pH increased from 4.0 to about 7.0; subsequently the pH decreased and remained stable at around 3.0–3.5 for several days. Temperatures higher than 25°C were detrimental to PMA production and cell growth. PMA production and cell growth at 20°C and 25°C exhibited no significant differences. PMA production and cell growth were studied under pH-controlled fermentation (at pH 2.0, 4.0, 5.5). The highest PMA production occurred at pH 4.0. PMA production was reduced at pH 2.0 although quite reasonable cell growth occurred at this pH value. Under optimized conditions 9.8 g PMA/l was produced during 9 days of fermentation in the stirred-tank reactors with an overall yield of 0.11 g PMA/g glucose. A procedure for the isolation of PMA and its separation from the other components of the fermentation broth was developed. The isolated PMA was characterized by 1H and 13C-NMR spectroscopy as well as by infrared absorption spectroscopy. Gel-permeation chromatography revealed a relative molecular mass of approximately 3000–5000 by comparison with polyethylene glycol standards. Received: 13 February 1996/Received revision: 25 April 1996/Accepted: 1 May 1996  相似文献   

16.
 The thermal properties of atmospheric air surrounding the human body at various altitudes are characterized with a system of parameters. This system comprises resistance of the air to convective heat transfer h c –1, °C (W/m2)−1 and to water vapour transfer h D –1, s/m. The concept of ’evaporative resistance’h e –1, hPa (W/m2)−1) following the similarity of the processes is introduced. In obtaining the altitude dependencies of investigated paramters, a respective heat transfer equation expressing the rate of heat exchange at the boundary body surface – ambient air is applied. The use of the body thermal state of the established altitude dependencies is discussed. The concept of ’thermal stability’ related to the evaporative resistance parameter h e –1 is introduced. This parameter is assumed as: (1) an indicator of the human body thermal stability and (2) distributor and predictor of environmental influence on the body thermal state. Received: 5 January 1996 / Accepted 5 November 1996  相似文献   

17.
A styrene-utilizing mixed microbial culture was isolated and utilized in a biofilter for the biological treatment of a contaminated air stream. Biofilter media consisted of composted wood bark and yard waste. The biofilters were acclimated at 120 s residence time and further evaluated at 60 and 30 s gas residence times. The biofilters received organic loading rates of up to 350 g/m3 h. The styrene volumetric removal rate was a function of the organic loading rate and increased with increasing loading rates. Average volumetric removal rates of 69–118 g/m3 h observed in our studies were higher than reported values for styrene biofilters. Average styrene removal efficiencies ranged from 65% to 75% (maximum 100%). Axial analysis of styrene concentration along the column indicated that the bulk of the styrene removal occurred in the first section of the biofilter. Analyses of the media indicated that the moisture content of the first section (50–55% w/w) was significantly lower than in the second and third sections (65–70% w/w). The pressure drops across the biofilter were low due to the high concentration of large media particles. The total pressure drops were 1–3, 4–6, and 10–16 mm for the 120-, 60-, and 30-s residence time periods, respectively. Journal of Industrial Microbiology & Biotechnology (2001) 26, 196–202. Received 04 March 2000/ Accepted in revised form 25 January 2001  相似文献   

18.
 A continuous bioreactor packed with a fibrous matrix was set up. Cells of Pediococcus acidilactici PO2 were inoculated and MRS broth was fed gradually until cell growth and immobilization were achieved. Kinetics of fermentation and production of bacteriocin were investigated at dilution rates ranging from 0.63 day-1 to 1.58 day-1 and at pH values that varied between 4.0 and 5.5. A maximum bacteriocin activity of 6400 AU/ml was detected when the medium was fermented at dilution rates of at least 1.19 day-1 and the pH controlled at 4.5. The maximum bacteriocin productivity was 1.0×107 AUl-1 day-1 at a dilution rate of 1.58 day-1 and pH 4.5. At this high dilution rate, 1.21 g cells/l medium was produced, 95.9% of the glucose in MRS broth was utilized, and 15.1 g lactic acid/l accumulated in the bioreactor effluent. The bioreactor was operated continuously for 3 months without encountering any clogging, degeneration, or contamination problems, indicating good long-term stability of the bioreactor for bacteriocin production. About 94% of the cells in the bioreactor were immobilized, and the remainder were suspended in the medium. According to scanning electron microscopic observations, cell immobilization in the fibrous matrix was attained by natural attachment to fiber surfaces and entrapment in the void volume within the fibrous matrix. In conclusion, conditions for the optimum continuous production of pediocin were defined; this may facilitate the development of large-scale industrial processes for production of this bacteriocin. Received: 25 September 1995/Received revision: 30 November 1995/Accepted: January 1996  相似文献   

19.
Removal of toluene in waste gases using a biological trickling filter   总被引:12,自引:0,他引:12  
The removal of toluene from waste gas was studied in a trickling biofilter. A high level of water recirculation (4.7 m h–1) was maintained in order to keep the liquid phase concentration constant and to achieve a high degree of wetting. For loads in the range from 6 to 150 g m–3 h–1 the maximum volumetric removal rate (elimination capacity) was 35±10 g m–3 h–1, corresponding to a zero order removal rate of 0.11±0.03 g m–2 h–1 per unit of nominal surface area. The surface removal was zero order above the liquid phase concentrations of approximately 1.0 g m–3, corresponding to inlet gas concentrations above 0.7–0.8 g m–3. Below this concentration the surface removal was roughly of first order. The magnitude of the first order surface removal rate constant, k1A , was estimated to be 0.08–0.27 m h–1 (k1A a=24–86 h–1). Near-equilibrium conditions existed in the gas effluent, so mass transfer from gas to liquid was obviously relatively fast compared to the biological degradation. An analytical model based on a constant liquid phase concentration through the trickling filter column predicts the effluent gas concentration and the liquid phase concentration for a first and a zero order surface removal. The experimental results were in reasonable agreement with a very simple model valid for conditions with an overall removal governed by the biological degradation and independent of the gas/liquid mass transfer. The overall liquid mass transfer coefficient, KLa, was found to be a factor 6 higher in the system with biofilm compared to the system without. The difference may be explained by: 1. Difference in the wetting of the packing material, 2. Mass transfer occurring directly from the gas phase to the biofilm, and 3. Enlarged contact area between the gas phase and the biofilm due to a rough biofilm surface.  相似文献   

20.
Halogenating activities detected in Antarctic macroalgae   总被引:1,自引:0,他引:1  
 Halogenating activities were determined in samples of 18 cultivated species of brown, red and green macroalgae from the Antarctic. Activities for the halogenating organic compounds with bromide, iodide and chloride were found. Investigated red algae (rhodophytes) showed higher brominating and iodinating activities compared to brown (phaeophytes) and green (chlorophytes) algae. The highest brominating and iodinating activities were measured in the red algae Plocamium cartilagineum (1.11±0.01 U g-1 wet algal weight and 0.18 U g-1 wet algal weight, respectively) and Myriogramme mangini (3.62±0.17 U g-1 wet algal weight and 4.5 U g-1 wet algal weight, respectively). Chlorinating activities were detected in the red alga Plocamium cartilagineum only (0.086 U g-1 wet algal weight). Received: 12 February 1996/Accepted: 20 June 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号