首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conformation of drug-free d(GGGGCCCC)2 and the chromomycin-d(GGGGCCCC)2 complex in aqueous solution were studied by NMR spectroscopy. The present study has indicated that free d(GGGGCCCC)2 takes the B form in solution, although it takes the A form in the crystalline state. The NMR spectrum of the complex indicated that chromomycin binds as a symmetry-related dimer to the minor groove of the central four residues of d(GGGGCCCC)2. The drastic conformational change in the central four residues of d(GGGGCCCC)2 on going from the B form family to the A form was demonstrated by the characteristic NOEs and coupling patterns. The change seems to be indispensable for accommodation of the bulky chromomycin dimer in the minor groove. On the basis of the intermolecular NOEs between chromomycin and d(GGGGCCCC)2, the structure of the complex has been constructed and refined by energy minimization.  相似文献   

2.
Solution structure of the chromomycin-DNA complex   总被引:8,自引:0,他引:8  
X L Gao  D J Patel 《Biochemistry》1989,28(2):751-762
The structure of the chromomycin-DNA complex at the deoxyoctanucleotide duplex level has been determined from one- and two-dimensional proton NMR studies in Mg-containing aqueous solution. The NMR results demonstrate that the antitumor agent binds as a symmetrical dimer to the self-complementary d[T-T-G-G-C-C-A-A] duplex with retention of the 2-fold symmetry in the complex. A set of intermolecular nuclear Overhauser enhancements (NOEs) establishes that two chromomycin molecules in the dimer share the minor groove at the G-G-C-C.G-G-C-C segment in such a way that each hydrophilic edge of the chromophore is located next to the G-G.C-C half-site and each C-D-E trisaccharide chain extends toward the 3'-direction of the octanucleotide duplex. In addition, the A-B disaccharide segment and the hydrophilic side chain of the antitumor agent are directed toward the phosphate backbone. The observed changes in nucleic acid NOEs and coupling patterns on complex formation establish a transition to a wider and shallower minor groove at the central G-G-C-C.G-G-C-C segment required for accommodating the chromomycin dimer. The present demonstration that chromomycin binds as a dimer and switches the conformation of the DNA at its G.C-rich minor groove binding site provides new insights into antitumor agent design and the sequence specificity of antitumor agent-DNA recognition.  相似文献   

3.
We have refined the initial docking model of the Mg(II)-co-ordinated chromomycin-d(A2G2C2T2) complex (2 drug equivalents per duplex) by a complete relaxation matrix analysis simulation of the two-dimensional nuclear Overhauser effect (NOESY) spectrum of the complex in 2H2O solution. This relaxation matrix refined structure of the complex exhibits the following characteristics. (1) We observe an unwound and elongated duplex that exhibits characteristics distinct from the A and B-DNA family of helices at the central (G-G-C-C).(G-G-C-C) chromomycin dimer binding and flanking sites. On the other hand sugar puckers, glycosidic torsion angles, displacement of the base-pairs from the helix axis and the minor groove width for this central tetranucleotide segment all fall within the A-family of helical parameters. (2) The chromomycin monomers are aligned in a head-to-tail orientation in the Mg(II)-co-ordinated dimer in the complex. The chromophores are aligned with a slight tilt relative to each other and make an angle of 75 degrees between their planes. The C-D-E trisaccharide segments from individual monomers adopt an extended conformation that projects in opposite directions in the dimer. The divalent metal cation is co-ordinated to the O(1) carbonyl and O(9) enolate atoms of the chromophores and aligns them such that the O(9)-Mg-O(9) angle is 170 degrees while all other O-Mg-O angles are in the 95(+/- 15)degrees range. (3) The sequence specificity of the chromomycin dimer for the widened and shallower (G3-G4-C5-C6).(G3-G4-C5-C6) minor groove binding site is associated with intermolecular hydrogen bonds formed between the OH group at C(8) of the chromophore and the minor groove NH2 group at position 2 and N(3) groups of G4 and between the O(1) oxygen of the E-sugar and the minor groove NH2 group at position 2 of G3 in the complex. (4) Additional intermolecular interactions are primarily van der Waals contacts between anomeric and adjacent CH2 protons on each sugar in the C-D-E trisaccharide segments of the chromomycin dimer and the minor groove surface of the DNA. These results provide insights into the induced conformational transitions required to generate a complementary match between the drug dimer and its DNA binding site on complex formation.  相似文献   

4.
We have investigated intermolecular interactions and conformational features of the netropsin X d(G-G-A-A-T-T-C-C) complex by one- and two-dimensional NMR studies in aqueous solution. Netropsin removes the 2-fold symmetry of the d(G-G-A-A-T-T-C-C) duplex at the AATT binding site and to a lesser extent at adjacent dG X dC base pairs resulting in doubling of resonances for specific positions in the spectrum of the complex at 25 degrees C. We have assigned the amide, pyrrole, and CH2 protons of netropsin, and the base and sugar H1' protons of the nucleic acid from an analysis of the nuclear Overhauser effect (NOESY) and correlated (COSY) spectra of the complex at 25 degrees C. We observe intermolecular nuclear Overhauser effects (NOE) between all three amide and both pyrrole protons on the concave face of the antibiotic and the minor groove adenosine H2 proton of the two central A4 X T5 base pairs of the d(G1-G2-A3-A4-T5-T6-C7-C8) duplex. Weaker intermolecular NOEs are also observed between the pyrrole concave face protons and the sugar H1' protons of residues T5 and T6 in the AATT minor groove of the duplex. We also detect intermolecular NOEs between the guanidino CH2 protons at one end of netropsin and adenosine H2 proton of the two flanking A3 X T6 base pairs of the octanucleotide duplex. These studies establish a set of intermolecular contacts between the concave face of the antibiotic and the minor groove AATT segment of the d(G-G-A-A-T-T-C-C) duplex in solution. The magnitude of the NOEs require that there be no intervening water molecules sandwiched between the antibiotic and the DNA so that release of the minor groove spine of hydration is a prerequisite for netropsin complex formation.  相似文献   

5.
Keniry MA  Owen EA  Shafer RH 《Biopolymers》2000,54(2):104-114
Mithramycin and chromomycin, two antitumor drugs, each having an identical aglycone and nearly identical disaccharide and trisaccharide side chains, have differing binding properties to a small oligonucleotide, d(ACCCGGGT)(2) (M. A. Keniry et al., Journal of Molecular Biology, 1993, Vol. 231, pp. 753-767). In order to understand the forces that induce four mithramycin molecules to bind to d(ACCCGGGT)(2) instead of two drug molecules in the case of chromomycin, the structure of the 4:2:1 mithramycin: Mg(2+):d(ACCCGGGT)(2) complex was investigated by (1)H-nmr and restrained molecular dynamics. The resulting three-dimensional model showed that in order to accommodate the close approach of one neighboring mithramycin dimer, the inwardly directed CDE saccharide chain of the neighboring mithramycin dimer undergoes a conformational change such that the E saccharide no longer spans the minor groove but reorients so that the hydrophilic face of the E saccharides from the two dimers oppose each other. Two hydrogen bonds are formed between the hydroxyl groups of the two opposing E saccharide groups. The results are interpreted in terms of the differences in stereochemistry and functional group substitutions between mithramycin and chromomycin. A mithramycin dimer is able to self-associate on an oligonucleotide template because it has two hydroxyl groups on the same face of its terminal E saccharide. A chromomycin dimer is unable to self-associate because one of these hydroxyl groups is acetylated and the neighboring hydroxyl group has a stereochemistry that cannot permit close contact of the hydroxyl group with a neighbouring chromomycin dimer.Copyright 2000 John Wiley & Sons, Inc.  相似文献   

6.
A Fede  A Labhardt  W Bannwarth  W Leupin 《Biochemistry》1991,30(48):11377-11388
We have investigated the interaction of the bisbenzimidazole derivative Hoechst 33258 with the self-complementary dodecadeoxynucleotide duplex d(GTGGAATTCCAC)2 using one-dimensional (1D) and two-dimensional (2D) proton nuclear magnetic resonance (1H NMR) spectroscopy. To monitor the extent of complex formation, we used the imino proton region of the 1D 1H NMR spectra acquired in H2O solution. These spectra show that the DNA duplex loses its inherent C2v symmetry upon addition of the drug, indicating that the two molecules form a kinetically stable complex on the NMR time scale (the lifetime of the complex has been measured to be around 450 ms). We obtained sequence-specific assignments for all protons of the ligand and most protons of each separate strand of the oligonucleotide duplex using a variety of homonuclear 2D 1H NMR experiments. The aromatic protons of the DNA strands, which are symmetrically related in the free duplex, exhibit exchange cross peaks in the complex. This indicates that the drug binds in two equivalent sites on the 12-mer, with an exchange rate constant of 2.2 +/- 0.2 s-1. Twenty-five intermolecular NOEs were identified, all involving adenine 2 and sugar 1' protons of the DNA and protons in all four residues of the ligand, indicating that Hoechst 33258 is located in the minor groove at the AATT site. Only protons along the same edge of the two benzimidazole moieties of the drug show NOEs to DNA protons at the bottom of the minor groove. Using molecular mechanics, we have generated a unique model of the complex using distance constraints derived from the intermolecular NOEs. We present, however, evidence that the piperazine group may adopt at least two locally different conformations when the drug is bound to this dodecanucleotide.  相似文献   

7.
Aureolic acid group compounds, such as chromomycin A3(CHM) and mithramycin (MIT), are known as antitumor drugs. Recently we isolated a novel aureolic acid group antitumor drug, UCH9, from Streptomyces sp. The chemical structure of UCH9 is unique in that mono- (A ring) and tetrasaccharide (B-E rings) segments and a longer hydrophobic sidechain are attached to the chromophore, while di- and trisaccharide segments and a methyl group are attached to it in the cases of CHM and MIT. It has been shown by two-dimensional agarose gel electrophoresis that the three drugs cause DNA unwinding, UCH9 causing less than the others. A photo-CIDNP experiment has revealed that UCH9 binds to the minor groove of DNA. The structure of the UCH9-d(TTGGCCAA)2 complex has been determined by 1H NMR and simulated annealing calculations. The obtained structure indicates that UCH9 binds as a dimer to the minor groove of d(TTGGCCAA)2, like CHM and MIT, but that the structural change in DNA induced on binding of UCH9 is moderate in comparison with those on binding of the other two drugs. It turns out that the dimer structure of UCH9, stabilized presumably through a hydrophobic interaction involving the A, D and E rings and the hydrophobic sidechain is different from that of CHM and thus DNA can interact with UCH9 in the minor groove with a moderate structural change.  相似文献   

8.
The hydration in the minor groove of double stranded DNA fragments containing the sequences 5'-dTTAAT, 5'-dTTAAC, 5'-dTTAAA and 5'-dTTAAG was investigated by studying the decanucleotide duplex d(GCATTAATGC)2 and the singly cross-linked decameric duplexes 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3' and 5'-d(GCCTTAAAGC)-3'-linker-5'-d(GCTTTAAGGC)-3' by NMR spectroscopy. The linker employed consisted of six ethyleneglycol units. The hydration water was detected by NOEs between water and DNA protons in NOESY and ROESY spectra. NOE-NOESY and ROE-NOESY experiments were used to filter out intense exchange cross-peaks and to observe water-DNA NOEs with sugar 1' protons. Positive NOESY cross-peaks corresponding to residence times longer than approximately 0.5 ns were observed for 2H resonances of the central adenine residues in the duplex containing the sequences 5'-dTTAAT and 5'-dTTAAC, but not in the duplex containing the sequences 5'-dTTAAA and 5'-dTTAAG. In all nucleotide sequences studied here, the hydration water in the minor groove is significantly more mobile at both ends of the AT-rich inner segments, as indicated by very weak or negative water-A 2H NOESY cross-peaks. No positive NOESY cross-peaks were detected with the G 1'H and C 1'H resonances, indicating that the minor groove hydration water near GC base pairs is kinetically less restrained than for AT-rich DNA segments. Kinetically stabilized minor groove hydration water was manifested by positive NOESY cross-peaks with both A 2H and 1'H signals of the 5'-dTTAA segment in d(GCATTAATGC)2. More rigid hydration water was detected near T4 in d(GCATTAATGC)2 as compared with 5'-d(GCATTAACGC)-3'-linker-5'-d(GCGTTAATGC)-3', although the sequences differ only in a single base pair. This illustrates the high sensitivity of water-DNA NOEs towards small conformational differences.  相似文献   

9.
D J Patel  L Shapiro 《Biochimie》1985,67(7-8):887-915
We have investigated intermolecular interactions and conformational features of the netropsin complexes with d(G1-G2-A3-A4-T5-T6-C7-C8) duplex (AATT 8-mer) and the d(G1-G2-T3-A4-T5-A6-C7-C8) duplex (TATA 8-mer) by one and two-dimensional NMR studies in solution. We have assigned the amide, pyrrole and methylene protons of netropsin and the base and sugar H1' protons of the nucleic acid from an analysis of the nuclear Overhauser effect (NOESY) and correlated (COSY) spectra of the complex at 25 degrees C. The directionality of the observed distance-dependent NOEs demonstrates that the 8-mer helices remain right-handed and that the arrangement of concave and convex face protons of netropsin are retained in the complexes. The observed changes in NOE patterns and chemical shift changes on complex formation suggest small conformational changes in the nucleic acid at the AATT and TATA antibiotic binding sites and possibly the flanking G.C base pairs. We observe intermolecular NOEs between all three amide and both pyrrole protons on the concave face of the antibiotic and the minor groove adenosine H2 proton of the two central A4.T5 base pairs of the AATT 8-mer and TATA 8-mer duplexes. The concave face pyrrole protons of the antibiotic also exhibit NOEs to the sugar H1' protons of residues 5 and 6 in the AATT and TATA 8-mer complexes. We also detect intermolecular NOEs between the guanidino and propioamidino methylene protons at either end of netropsin and the adenosine H2 proton of the two flanking A3.T6 base pairs in the AATT 8-mer and T3.A6 base pairs in the TATA 8-mer duplexes. These studies establish a set of nine contacts between the concave face of the antibiotic and the minor groove AATT segment and TATA segment of the 8-mer duplexes in solution. The observed magnitude of the NOEs require that there be no intervening water molecules sandwiched between the concave face of the antibiotic and the minor groove of the DNA so that release of the minor groove spine of hydration is a prerequisite for netropsin complex formation. The observed differences in the netropsin amide proton chemical shifts in the AATT 8-mer and TATA 8-mer complexes suggest differences in the strength and/or type of intermolecular hydrogen bonds at the AATT and TATA binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
X L Gao  D J Patel 《Biochemistry》1990,29(49):10940-10956
This paper reports on a solution NMR characterization of the sequence selectivity and metal ion specificity in chromomycin-DNA oligomer complexes in the presence of divalent cations. The sequence selectivity studies have focused on chromomycin complexes with the self-complementary d(A1-A2-G3-G4-C5-C6-T7-T8) duplex containing a pair of adjacent (G3-G4).(C5-C6) steps and the self-complementary d(A1-G2-G3-A4-T5-C6-C7-T8) duplex containing a pair of separated (G2-G3).(C6-C7) steps in aqueous solution. The antitumor agent (chromomycin) and nucleic acid protons have been assigned following analysis of distance connectivities in NOESY spectra and coupling connectivities in DQF-COSY spectra for both complexes in H2O and D2O solution. The observed intermolecular NOEs establish that chromomycin binds as a Mg(II)-coordinated dimer [1 Mg(II) per complex] and contacts the minor-groove edge with retention of 2-fold symmetry centered about the (G3-G4-C5-C6).(G3-G4-C5-C6) segment of the d(A2G2C2T2) duplex. By contrast, complex formation is centered about the (G2-G3-A4-T5).(A4-T5-C6-C7) segment and results in removal of the two fold symmetry of the d(AG2ATC2T) duplex. Thus, the binding of one subunit of the chromomycin dimer at its preferred (G-G).(C-C) site assists in the binding of the second subunit to the less preferred adjacent (A-T).(A-T) site. These observations suggest a hierarchy of chromomycin binding sites, with a strong site detected at the (G-G) step due to the hydrogen-bonding potential of acceptor N3 and donor NH2 groups of guanosine that line the minor groove. The divalent cation specificity has been investigated by studies on the symmetric chromomycin-d(A2G2C2T2) complex in the presence of diamagnetic Mg(II), Zn(II), and Cd(II) cations and paramagnetic Ni(II) and Co(II) cations. A comparative NOESY study of the Mg(II) and Ni(II) symmetric complexes suggests that a single tightly bound divalent cation aligns the two chromomycins in the dimer through coordination to the C1 carbonyl and C9 enolate ions on the hydrophilic edge of each aglycon ring. Secondary divalent cation binding sites involve coordination to the major-groove N7 atoms on adjacent guanosines in G-G steps. This coordination is perturbed on lowering the pH below 6.0, presumably due to protonation of the N7 atoms. The midpoint of the thermal dissociation of the symmetric complex is dependent on the divalent cation with the stability for reversible transitions decreasing in the order Mg(II) greater than Zn(II) greater than Cd(II) complexes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The interaction of chromomycin A3 with the oligodeoxyribonucleotides 1, d(ATGCAT), 2, d(ATCGAT), 3, d(TATGCATA), and 4, d(ATAGCTAT), has been investigated by 1H and 31P NMR. In the presence of Mg2+, chromomycin binds strongly to the three GC-containing oligomers 1, 3, and 4 but not to the CG-containing oligomer 2. The proton chemical shift changes for 1 and 3 are similar, and these DNA duplexes appear to bind with a stoichiometry of 2 drugs:1 Mg2+:1 duplex. The same stoichiometry of 2 drugs:1 duplex is confirmed with 4; however, proton chemical shift changes differ. An overall C2 symmetry is exhibited by the drug complex with 1, 3, and 4. At a molar ratio of 2.0 (drugs:duplex), no free DNA proton NMR signals remain. Two-dimensional nuclear Overhauser exchange spectroscopy (NOESY) of the saturated chromomycin complex with 1 and 3 positions both chromomycinone hydroxyls and the E carbohydrates in the minor groove and provides evidence suggesting that the B carbohydrates lie on the major-groove side. This is supported by several dipolar coupling cross-peaks between the drug and the DNA duplex. Drug-induced conformational changes in duplex 1 are evaluated over a range of NOESY mixing times and found to possess some characteristics of both B-DNA and A-DNA, where the minor groove is wider and shallower. A widening of the minor groove is essential for the DNA duplex to accommodate two drug molecules. This current minor-groove model is a substantial revision of our earlier major-groove model [Keniry, M.A., Brown, S.C., Berman, E., & Shafer, R.H. (1987) Biochemistry 26, 1058-1067] and is in agreement with the model recently proposed by Gao and Patel [Gao, X., & Patel, D. J. (1989a) Biochemistry 28, 751-762].  相似文献   

12.
J L Leroy  X L Gao  M Guéron  D J Patel 《Biochemistry》1991,30(23):5653-5661
Previous structural studies on the complexes of the chromomycin (CHR) dimer with duplexes of d(A1-A2-G3-G4-C5-C6-T7-T8) and of d(A1-G2-G3-A4-T5-C6-C7-T8) in solution [one Mg(II) and two drugs per duplex] are extended to hydrogen exchange measurements. Exchange of the OH8 proton of chromomycin, measured by real time proton-deuterium exchange, is very slow and requires dissociation of the complex, whose lifetime is thus determined. The lifetimes and apparent dissociation constants of base pairs are deduced from the catalysis of imino proton exchange by ammonia. The four central base pairs, which interact with the CHR chromophores in the minor groove (Gao & Patel, 1990), may open within the complex, but the opening rate is less than in the free duplex by one to two orders of magnitude. The activation energy for base-pair opening and the differences between the lifetimes of adjacent pairs suggest that single base-pair opening is the predominant imino proton exchange pathway in all cases. In the symmetrical complex of chromomycin with the first duplex, the lifetimes of the central base pairs (G3.C6 and G4.C5) are in the same range (52 and 29 ms, respectively, at 38 degrees C). In the asymmetrical complex formed with the second duplex, the base-pair lifetimes in the G2-G3-A4-T5 segment that interacts with the chromophore moiety are strongly increased. That of G3.C6 is particularly long. Above 50 degrees C, exchange of the G3 imino proton is opening limited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
S M Chen  W Leupin  M Rance  W J Chazin 《Biochemistry》1992,31(18):4406-4413
The dodecadeoxynucleotide duplex d(GGTTAATGCGGT).d(ACCGCATTAACC) and its 1:1 complex with the minor groove binding drug SN-6999 have been prepared and studied by two-dimensional 1H nuclear magnetic resonance spectroscopy. Complete sequence-specific assignments have been obtained for the free duplex by standard methods. The line widths of the resonances in the complex are greater than those observed for the free duplex, which complicates the assignment process. Extensive use of two-quantum spectroscopy was required to determine the scalar correlations for identifying all of the base proton and most of the 1'H-2'H-2'H spin subsystems for the complex. This permitted unambiguous sequence-specific resonance assignments for the complex, which provides the necessary background for a detailed comparison of the structure of the duplex, with and without bound drug. A series of intermolecular NOEs between drug and DNA were identified, providing sufficient structural constraints to position the drug in the minor groove of the duplex. However, the combination of NOEs observed can only be rationalized by a model wherein the drug binds in the minor groove of the DNA in both orientations relative to the long helix axis and exchanges rapidly between the two orientations. The drug binds primarily in the segment of five consecutive dA-dT base pairs d(T3T4A5A6T7).d(A18T19T20A21A22), but surprisingly strong interactions are found to extend one residue in the 3' direction along each strand to G8 and C23. The observation of intermolecular contacts to residues neighboring the AT-rich region demonstrates that the stabilization of the bis(quaternary ammonium) heterocycle family of AT-specific, minor groove binding drugs is not based exclusively on interactions with dA-dT base pairs.  相似文献   

15.
Two-dimensional homonuclear and heteronuclear NMR and minimized potential energy calculations have been combined to define the structure of the antitumor agent mitomycin C (MC) cross-linked to deoxyguanosines on adjacent base pairs in the d(T1-A2-C3-G4-T5-A6).d(T7-A8-C9-G10-T11-A12) duplex. The majority of the mitomycin and nucleic acid protons in the MC-X 6-mer complex have been assigned from through-bond and through-space two-dimensional proton NMR studies in aqueous solution at 5 and 20 degrees C. The C3.G10 and G4.C9 base pairs are intact at the cross-link site and stack on each other in the complex. The amino protons of G4 and G10 resonate at 9.36 and 8.87 ppm and exhibit slow exchange with solvent H2O. The NMR experimental data establish that the mitomycin is cross-linked to the DNA through the amino groups of G4 and G10 and is positioned in the minor groove. The conformation of the cross-link site is defined by a set of NOEs between the mitomycin H1" and H2" protons and the nucleic acid imino and amino protons of G4 and the H2 proton of A8 and another set of NOEs between the mitomycin geminal H10" protons and the nucleic acid imino and amino protons of G10 and the H2 proton of A2. Several phosphorus resonances of the d(T-A-C-G-T-A) duplex shift dramatically on mitomycin cross-link formation and have been assigned from proton-detected phosphorus-proton two-dimensional correlation experiments. The proton chemical shifts and NOEs establish fraying at the ends of the d(T-A-C-G-T-A) duplex, and this feature is retained on mitomycin cross-link formation. The base-base and base-sugar NOEs exhibit similar patterns for symmetry-related steps on the two nucleic acid strands in the MC-X 6-mer complex, while the proton and phosphorus chemical shifts are dramatically perturbed at the G10-T11 step on cross-link formation. The NMR distance constraints have been included in minimized potential energy computations on the MC-X 6-mer complex. These computations were undertaken with the nonplanar five-membered ring of mitomycin in each of two pucker orientations. The resulting low-energy structures MX1 and MX2 have the mitomycin cross-linked in a widened minor groove with the chromophore ring system in the vicinity of the G10-T11 step on one of the two strands in the duplex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The interaction between 4',6-diamidino-2-phenylindole (DAPI) and the DNA oligomer [d(CGACGTCG)]2 has been investigated by proton one- and two-dimensional NMR spectroscopy in solution. Compared with the minor groove binding of the drug to [d(GCGATCGC)]2, previously studied by NMR spectroscopy, the interaction of DAPI with [d(CGACGTCG)]2 appears markedly different and gives results typical of a binding mechanism by intercalation. C:G imino proton signals of the [d(CGACGTCG)]2 oligomer as well as DAPI resonances appear strongly upfield shifted and sequential dipolar connectivities between cytosine and guanine residues show a clear decrease upon binding. Moreover, protons lying in both the minor and major grooves of the DNA double helix appear involved in the interaction, as evidenced principally by intermolecular drug-DNA NOEs. In particular, the results indicate the existence of two stereochemically non-equivalent intercalation binding sites located in the central and terminal adjacent C:G base pairs of the palindromic DNA sequence. Different lifetimes of the complexes were also observed for the two sites of binding. Moreover, due to the fast exchange on the NMR timescale between free and bound species, different interactions in dynamic equilibrium with the observed intercalative bindings were not excluded.  相似文献   

17.
18.
The binding of mithramycin A to the d(A1T2G3C4A5T6) duplex was investigated by 1H NMR and found to be similar to that of its analogue chromomycin A3. In the presence of Mg2+, mithramycin binds strongly to d(ATGCAT)2. On the basis of the two-dimensional NOESY spectrum, the complex formed possesses C2 symmetry at a stoichiometry of two drugs per duplex (2:1) and is in slow chemical exchange on the NMR time scale. NOESY experiments reveal contacts from the E-pyranose of mithramycin to the terminal and nonterminal adenine H2 proton of DNA and from the drug hydroxyl proton to both G3NH2 protons, C4H1' proton, and A5H1' proton. These data place the drug chromophore and E pyranose on the minor groove side of d(ATGCAT)2. NOE contacts from the A-, B-, C-, and D-pyranoses of mithramycin to several deoxyribose protons suggest that the A- and B-rings are oriented along the sugar-phosphate backbone of G3-C4, while the C- and D-rings are located along the sugar-phosphate backbone of A5-T6. These drug-DNA contacts are very similar to those found for chromomycin binding to d(ATGCAT)2. Unlike chromomycin, the NOESY spectrum of mithramycin at the molar ratio of one drug per duplex reveals several chemical exchange cross-peaks corresponding to the drug-free and drug-bound proton resonances. From the intensity of these cross-peaks and the corresponding diagonal peaks, the off-rate constant was estimated to be 0.4 s-1. These data suggest that the exchange rate of mithramycin binding to d(ATGCAT)2 is faster than that of chromomycin.  相似文献   

19.
R E Klevit  D E Wemmer  B R Reid 《Biochemistry》1986,25(11):3296-3303
High-resolution NMR techniques have been used to examine the structural and dynamical features of the interaction between distamycin A and the self-complementary DNA dodecamer duplex d-(CGCGAATTCGCG)2. The proton resonances of d(CGCGAATTCGCG)2 have been completely assigned by previous two-dimensional NMR studies [Hare, D. R., Wemmer, D. E., Chou, S. H., Drobny, G., & Reid, B. R. (1983) J. Mol. Biol. 171, 319-336]. Addition of the asymmetric drug molecule to the symmetric dodecamer leads to the formation of an asymmetric complex as evidenced by a doubling of DNA resonances over much of the spectrum. In two-dimensional exchange experiments, strong cross-peaks were observed between uncomplexed DNA and drug-bound DNA resonances, permitting direct assignment of many drug-bound DNA resonances from previously assigned free DNA resonances. Weaker exchange cross-peaks between formerly symmetry related DNA resonances indicate that the drug molecule flips head-to-tail on one duplex with half the frequency at which it leaves the DNA molecule completely. In experiments performed in H2O, nuclear Overhauser effects (NOEs) were observed from each drug amide proton to an adenine C2H and a pyrrole H3 ring proton. In two-dimensional nuclear Overhauser experiments performed on D2O solutions, strong intermolecular NOEs were observed between each of the three pyrrole H3 resonances of the drug and an adenine C2H resonance, with weaker NOEs observed between the drug H3 resonances and C1'H resonances. The combined NOE data allow us to position the distamycin A unambiguously on the DNA dodecamer, with the drug spanning the central AATT segment in the minor groove.  相似文献   

20.
BACKGROUND: The drug chromomycin-A(3) binds to the minor groove of DNA and requires a divalent metal ion for complex formation. (1)H, (31)P and (13)C pseudocontact shifts occurring in the presence of a tightly bound divalent cobalt ion in the complex between d(TTGGCCAA)(2) and chromomycin-A(3) have been used to determine the structure of the complex. The accuracy of the structure was verified by validation with nuclear Overhauser enhancements (NOEs) and J-coupling constants not used in the structure calculation. RESULTS: The final structure was determined to 0.7 A resolution. The structure was compared with a structure obtained in an earlier study using NOEs, in order to assess the accuracy of NOEs in giving global structural information for a DNA complex. Although some basic features of the structures agreed, they differed substantially in the fine structural details and in the DNA axis curvature generated by the drug. The distortion of base-pair planarity that was observed in the NOE structure was not seen in our structure. Differences in drug orientation and hydrogen bonding also occurred. The curvature and elongation of the DNA that was obtained previously was not found to occur in our study. CONCLUSIONS: The use of pseudocontact shifts has enabled us to obtain a high-precision global structure of the chromomycin-DNA complex, which provides an accurate template on which to consider targeting minor groove binding drugs. The effect of such binding is not propagated far along the helix but is restricted to a local kink in the axis that reverts to its original direction within four base pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号