首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous studies have shown that SMAD5, an important intracellular mediator of transforming growth factor beta (TGF-beta) family, is required for normal development of the cardiovascular system in vivo. In the current study, we reported that the lack of the Smad5 gene resulted in apoptosis of cardiac myocytes in vivo. To further investigate the mechanism of the Smad5 gene in cardiomyocyte apoptosis, the embryonic stem (ES) cell differentiation system was employed. We found that the myotubes that differentiated from the homozygous Smad5ex6/ex6 mutant ES cells underwent collapse and degeneration during the late stages of in vitro differentiation, mimicking the in vivo observation. By electron microscopy, abnormal swollen mitochondria were observed in cardiomyocytes both from Smad5-deficient embryos and from ES-differentiated cells. There was also a significant reduction in mitochondrial membrane potential (Deltapsi m) and a leakage of cytochrome c from mitochondria into the cytosol of myocytes differentiated from Smad5 mutant ES cells. The expression of p53 and p21 was found to be elevated in the differentiated Smad5 mutant myocytes, and this was accompanied by an up-regulation in caspase 3 expression. These results suggest that the Smad5-mediated TGF-beta signals may protect cardiomyocytes from apoptosis by maintaining the integrity of the mitochondria, probably through suppression of p53 mediated pathways.  相似文献   

2.
3.
4.
5.
TGFβ/BMP signaling regulates the fate of multipotential cranial neural crest (CNC) cells during tooth and jawbone formation as these cells differentiate into odontoblasts and osteoblasts, respectively. The functional significance of SMAD4, the common mediator of TGFβ/BMP signaling, in regulating the fate of CNC cells remains unclear. In this study, we investigated the mechanism of SMAD4 in regulating the fate of CNC-derived dental mesenchymal cells through tissue-specific inactivation of Smad4. Ablation of Smad4 results in defects in odontoblast differentiation and dentin formation. Moreover, ectopic bone-like structures replaced normal dentin in the teeth of Osr2-IresCre;Smad4(fl/fl) mice. Despite the lack of dentin, enamel formation appeared unaffected in Osr2-IresCre;Smad4(fl/fl) mice, challenging the paradigm that the initiation of enamel development depends on normal dentin formation. At the molecular level, loss of Smad4 results in downregulation of the WNT pathway inhibitors Dkk1 and Sfrp1 and in the upregulation of canonical WNT signaling, including increased β-catenin activity. More importantly, inhibition of the upregulated canonical WNT pathway in Osr2-IresCre;Smad4(fl/fl) dental mesenchyme in vitro partially rescued the CNC cell fate change. Taken together, our study demonstrates that SMAD4 plays a crucial role in regulating the interplay between TGFβ/BMP and WNT signaling to ensure the proper CNC cell fate decision during organogenesis.  相似文献   

6.
7.
8.
SMAD3 is one of the intracellular mediators that transduces signals from transforming growth factor-beta (TGF-beta) and activin receptors. We show that SMAD3 mutant mice generated by gene targeting die between 1 and 8 months due to a primary defect in immune function. Symptomatic mice exhibit thymic involution, enlarged lymph nodes, and formation of bacterial abscesses adjacent to mucosal surfaces. Mutant T cells exhibit an activated phenotype in vivo, and are not inhibited by TGF-beta1 in vitro. Mutant neutrophils are also impaired in their chemotactic response toward TGF-beta. Chronic intestinal inflammation is infrequently associated with colonic adenocarcinoma in mice older than 6 months of age. These data suggest that SMAD3 has an important role in TGF-beta-mediated regulation of T cell activation and mucosal immunity, and that the loss of these functions is responsible for chronic infection and the lethality of Smad3-null mice.  相似文献   

9.
SMAD3 regulates gonadal tumorigenesis   总被引:3,自引:0,他引:3  
Inhibin is a secreted tumor suppressor and an activin antagonist. Inhibin alpha null mice develop gonadal sex cord-stromal tumors with 100% penetrance and die of a cachexia-like syndrome due to increased activin signaling. Because Sma and Mad-related protein (SMAD)2 and SMAD3 transduce activin signals in vitro, we attempted to define the role of SMAD3 in gonadal tumorigenesis and the wasting syndrome by generating inhibin alpha and Smad3 double mutant mice. Inhibin alpha and Smad3 double homozygous males were protected from early tumorigenesis and the usual weight loss and death. Approximately 90% of these males survived to 26 wk in contrast to 95% of inhibin-deficient males, which develop bilateral testicular tumors and die of the wasting syndrome by 12 wk. Testicular tumors were either absent or unilaterally slow growing and less hemorrhagic in the majority of double-knockout males. In contrast, development of the ovarian tumors and wasting syndrome was delayed, but still occurred, in the majority of the double-knockout females by 26 wk. In double mutant females, tumor development was accompanied by typical activin-induced pathological changes. In summary, we identify an important function of SMAD3 in gonadal tumorigenesis in both sexes. However, this effect is significantly more pronounced in the male, indicating that SMAD3 is the primary transducer of male gonadal tumorigenesis, whereas SMAD3 potentially overlaps with SMAD2 function in the ovary. Moreover, the activin-induced cachexia syndrome is potentially mediated through both SMAD2 and SMAD3 or only through SMAD2 in the liver and stomach. These studies identify sexually dimorphic functions of SMAD3 in gonadal tumorigenesis.  相似文献   

10.
Bone morphogenetic proteins (BMPs) play critical roles at various stages in endochondral bone formation. In vitro studies have demonstrated that Smad7 regulates transforming growth factor-beta and BMP signals by inhibiting Smad pathways in chondrocytes. However, the in vivo roles of Smad7 during cartilage development are unknown. To investigate distinct effects of Smad7 at different stages during chondrocyte differentiation, we generated a series of conditional transgenic mice that overexpress Smad7 in chondrocytes at various steps of differentiation by using the Cre/loxP system. We generated Col11a2-lacZ(floxed)-Smad7 transgenic mice and mated them with three types of Cre transgenic mice to obtain Smad7(Prx1), Smad7(11Enh), and Smad7(11Prom) conditional transgenic mice. Smad7(Prx1) mice overexpressing Smad7 in condensing mesenchymal cells showed disturbed mesenchymal condensation associated with decreased Sox9 expression, leading to poor cartilage formation. Smad7(11Enh) mice overexpressing Smad7 in round chondrocytes showed decreased chondrocyte proliferation rates. Smad7(11Prom) mice overexpressing Smad7 in flat chondrocytes showed inhibited maturation of chondrocytes toward hypertrophy. Micromass culture of mesenchymal cells showed that BMP-induced cartilaginous nodule formation was down-regulated by overexpression of Smad7, but not Smad6. Overexpression of Smad7, but not Smad6, down-regulated the phosphorylation of p38 MAPKs. Our data provide in vivo evidence for distinct effects of Smad7 at different stages during chondrocyte differentiation and suggest that Smad7 in prechondrogenic cells inhibits chondrocyte differentiation possibly by down-regulating BMP-activated p38 MAPK pathways.  相似文献   

11.
12.
13.
14.
SMAD3介导TGF-β1抑制MMP9在COS7细胞中的表达   总被引:3,自引:0,他引:3  
用明胶酶谱的方法检查了野生型和Smad3ex8 ex8纯合突变小鼠血清中基质金属蛋白酶(MMP9)的活性 .发现突变小鼠血清中MMP9的含量较正常小鼠的明显增高 ,提示SMAD3有抑制MMP9表达的功能 .通过细胞转染实验证实 ,TGF β1和野生型的SMAD3可以抑制COS7细胞分泌MMP9,而C端缺失的突变型Smad3基因过表达可以解除这种抑制作用 ,说明SMAD3介导TGF β1信号抑制MMP9在COS7细胞中的表达 .  相似文献   

15.
Smads基因功能的研究进展   总被引:18,自引:0,他引:18  
转化生长因子 -β( TGF-β)超家族通过调节细胞的增殖、分化、移行和凋亡而在脊椎动物发育过程中起重要的作用 . SMAD家族是一类新发现的 TGF-β信号的细胞质内介导者 ,它们可将TGF- β信号直接从细胞膜转导入细胞核内 .受体激活的 SMADs被特导性的细胞表面受体磷酸化后 ,与通用介导分子 SMAD4相互作用形成异源三聚体 ,转移至细胞核内并激活靶基因的转录 .抑制型 SMADs通过负反馈途径阻断或减弱 TGF- β信号 .SMADs通过与 TGF- β配体应答的启动子序列及其它转录因子和辅助活化因子相互作用而调节转录 .通过同源重组在小鼠中定位敲除Smads基因的研究已经开始揭示 SMADs分子在脊椎动物发育过程中的功能 .  相似文献   

16.
Chondrogenesis is a critical step in palatogenesis. All-trans retinoic acid (atRA), a vitamin A derivative, is a known teratogenic effector of cleft palate. Here, we evaluated the effects of atRA on the osteo-/chondrogenic differentiation of mouse embryonic palate mesenchymal (MEPM) cells. MEPM cells, in a high-density micromass environment, undergo active chondrogenesis in a manner analogous to that of limb-derived mesenchymal cells, and served as a valid model system to investigate the mechanisms regulating chondrogenesis during palatogenesis. atRA-treated MEPM micromass expressed relatively higher levels of osteoblastic gene markers (alkaline phosphatase and collagen type I) and lower levels of chondrocytic gene markers (collagen type II and aggrecan). As transforming growth factor-beta3 (TGF-beta3) is an essential growth factor for chondrogenesis of embryonic mesenchymal cells both in in vivo and in vitro conditions, we thereby explored the effects of atRA on TGF-beta3 signaling pathway. atRA led to an increase in mRNA expression of TGF-beta3 and an instantaneous decrease in TGF-beta type II receptor (TbetaRII) as determined by real-time RT-PCR. Further study showed that atRA inhibited phosphorylation of Smad2 and Smad3 and increased Smad7 expression. Activation of the Smad pathways by transfection with Smad7deltaC mutant or constitutively active TbetaRII retroviral vector abolished atRA-induced inhibition of chondrogenesis as indicated by Alcian blue staining, indicating that Smad signaling is essential for this response. Taken together, these data for the first time demonstrated a role for RA-induced hypochondrogenesis through regulation of the TGF-beta3 pathway and suggested a role for TbetaRII /Smad in retinoid-induced cleft palate.  相似文献   

17.
18.
Bone morphogenetic proteins (BMPs) play a crucial role in programmed cell death (PCD), a biological process required for the sculpturing of the embryonic limbs. However, it is unknown if BMP signaling directly promotes cell death, or if it induces a molecular cascade that culminates in cell death. Given that Smad8, which encodes one component of BMP signaling, is expressed during the regression of interdigital tissue and responds to BMPs, we presumed that it may be expressed in other cell death areas during chick limb development such as the anterior and posterior necrotic zones (ANZ and PNZ). The present study found that the Smad8 expression pattern in the anterior mesoderm of the hindlimb is very similar to that observed in limbs stained to detect cell death. Also, BMPs and retinoic acid, which act as apoptosis-promoting factors, induced expression of Smad8 before the onset of cell death, while sonic hedgehog protein, acting as a survival factor, inhibited Smad8 expression in the ANZ. However, although there was correlation between Smad8 expression patterns and PCD in the ANZ, phosphorylated forms of SMAD1/5/8 and TUNEL staining did not co-localize in dying cells. Interestingly, a short pulse of BMP was sufficient to trigger cell death. On the other hand, most dying cells were located in the avascular region, while many cells expressing Smad8 were located in the vascular region of the ANZ. These results suggest that BMPs mediated by SMAD signaling activate a molecular cascade that culminates in PCD.  相似文献   

19.
Endochondral ossification begins from the condensation and differentiation of mesenchymal cells into cartilage. The cartilage then goes through a program of cell proliferation, hypertrophic differentiation, calcification, apoptosis, and eventually is replaced by bone. Unlike most cartilage, articular cartilage is arrested before terminal hypertrophic differentiation. In this study, we showed that TGF-beta/Smad3 signals inhibit terminal hypertrophic differentiation of chondrocyte and are essential for maintaining articular cartilage. Mutant mice homozygous for a targeted disruption of Smad3 exon 8 (Smad3(ex8/ex8)) developed degenerative joint disease resembling human osteoarthritis, as characterized by progressive loss of articular cartilage, formation of large osteophytes, decreased production of proteoglycans, and abnormally increased number of type X collagen-expressing chondrocytes in synovial joints. Enhanced terminal differentiation of epiphyseal growth plate chondrocytes was also observed in mutant mice shortly after weaning. In an in vitro embryonic metatarsal rudiment culture system, we found that TGF-beta1 significantly inhibits chondrocyte differentiation of wild-type metatarsal rudiments. However, this inhibition is diminished in metatarsal bones isolated from Smad3(ex8/ex8) mice. These data suggest that TGF-beta/Smad3 signals are essential for repressing articular chondrocyte differentiation. Without these inhibition signals, chondrocytes break quiescent state and undergo abnormal terminal differentiation, ultimately leading to osteoarthritis.  相似文献   

20.
Bone morphogenetic proteins (BMPs) are secreted signals that regulate apical ectodermal ridge (AER) functions and interdigital programmed cell death (PCD) of developing limb. However the identities of the intracellular mediators of these signals are unknown. To investigate the role of Smad proteins in BMP-regulated AER functions in limb development, we inactivated Smad1 and Smad5 selectively in AER and ventral ectoderm of developing limb, using Smad1 or/and Smad5 floxed alleles and an En1(Cre/+) knock-in allele. Single inactivation of either Smad1 or Smad5 did not result in limb abnormalities. However, the Smad1/Smad5 double mutants exhibited syndactyly due to a reduction in interdigital PCD and an increase in interdigital cell proliferation. Cell tracing experiments in the Smad1/Smad5 double mutants showed that ventral ectoderm became thicker and the descendents of ventral En1(Cre/+) expressing ectodermal cells were located at dorsal interdigital regions. At the molecular level, Fgf8 expression was prolonged in the interdigital ectoderm of embryonic day (E) 13 Smad1/Smad5 double mutants, suggesting that the ectopic Fgf8 expression may serve as a survival signal for interdigital epithelial and mesenchymal cells. Our result suggests that Smad1 and Smad5 are required and function redundantly as intracellular mediators for BMP signaling in the AER and ventral ectoderm. Smad1/Smad5 signaling in the AER and ventral ectoderm regulates interdigital tissue regression of developing limb. Our mutants with defects in interdigital PCD could also serve as a valuable model for investigation of PCD regulation machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号