首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1H NMR spectroscopy at 360 MHz has been used to study the interactions between the calmodulin function inhibitor calmidazolium (R24571) and (i) calmodulin (CaM) and (ii) skeletal muscle troponin C (sTnC). One equivalent of racemic calmidazolium binds tightly to CaM and perturbs a number of protein signals, corresponding to residues in both dicalcium-binding domains, in a manner characteristic of slow exchange. Calmidazolium binds with lower affinity to sTnC but still induces widespread perturbations in both domains. Extensive spectral overlap precludes definite assignment of intermolecular nuclear Overhauser effect (NOEs) although intraprotein NOEs do indicate the nature of some drug-induced conformational changes. Relaxation enhancements induced by two spin-labeled calmidazolium analogues demonstrate that several methionine residues of CaM, significantly immobilized by calmidazolium binding, are in fact located at or near its binding sites. These and other residue-specific broadening effects have enabled low resolution models to be constructed of the predominantly hydrophobic drug-binding sites on each domain of CaM. The hydrophobic portions of calmidazolium itself, and its analogues, contact side chains of Ala-15, Leu-18, Phe-19, Val-35, Met-36, Leu-37, Leu-39, Met-51, Met-71, Met-72, and Met-76 in the N-terminal domain of calmodulin, and Ala-88, Val-91, Phe-92, Val-108, Met-109, Leu-112, Phe-141, and Met-145 in its C-terminal domain. The model, and an analogous one of sTnC, can be used to rationalize drug-induced changes in intraprotein NOEs. Issues pertaining to the possible simultaneous binding of calmidazolium to both globular domains of the proteins are discussed in terms of the experimental results and the overall structures of each protein.  相似文献   

2.
The direct oxygen sensor protein isolated from Escherichia coli (Ec DOS) is a heme-based signal transducer protein responsible for phosphodiesterase (PDE) activity. Binding of O(2), CO, or NO to a reduced heme significantly enhances the PDE activity toward 3',5'-cyclic diguanylic acid. We report stationary and time-resolved resonance Raman spectra of the wild-type and several mutants (Glu-93 --> Ile, Met-95 --> Ala, Arg-97 --> Ile, Arg-97 --> Ala, Arg-97 --> Glu, Phe-113 --> Leu, and Phe-113 --> Thr) of the heme-containing PAS domain of Ec DOS. For the CO- and NO-bound forms, both the hydrogen-bonded and non-hydrogen-bonded conformations were found, and in the former Arg-97 forms a hydrogen bond with the heme-bound external ligand. The resonance Raman results revealed significant interactions of Arg-97 and Phe-113 with a ligand bound to the sixth coordination site of the heme and profound structural changes in the heme propionates upon dissociation of CO. Mutation of Phe-113 perturbed the PDE activities, and the mutation of Arg-97 and Phe-113 significantly influenced the transient binding of Met-95 to the heme upon photodissociation of CO. This suggests that the electrostatic interaction of Arg-97 and steric interaction of Phe-113 are crucial for regulating the competitive recombination of Met-95 and CO to the heme. On the basis of these results, we propose a model for the role of the heme propionates in communicating the heme structural changes to the protein moiety.  相似文献   

3.
Identification of calmodulin activity in purified retroviruses   总被引:1,自引:0,他引:1  
Several viruses have been shown to require calcium for their function, and to bind calcium at specific sites. However, the nature of the calcium binding molecule on viruses has not been established. One possibility is the ubiquitous calcium-binding protein calmodulin. Our studies were designed to determine whether feline leukemia virus contained calmodulin. Accordingly, we tested purified feline leukemia virus for the presence of calmodulin-like activity. The virus, like authentic calmodulin, activated cyclic AMP phosphodiesterase. The ability of the virus to activate the enzyme was blocked in the presence of the known calmodulin inhibitors trifluoperazine and W-7. This indirect evidence for the presence of calmodulin was confirmed by radioimmunoassay. Several other retroviruses were also tested using radioimmunoassay and found to contain calmodulin. Our results indicate that the calcium binding site in retroviruses may be calmodulin.  相似文献   

4.
Brain spectrin, through its beta subunit, binds with high affinity to protein-binding sites on brain membranes quantitatively depleted of ankyrin (Steiner, J., and Bennett, V. (1988) J. Biol. Chem. 263, 14417-14425). In this study, calmodulin is demonstrated to inhibit binding of brain spectrin to synaptosomal membranes. Submicromolar concentrations of calcium are required for inhibition of binding, with half-maximal effects at pCa = 6.5. Calmodulin competitively inhibits binding of spectrin to protein(s) in stripped synaptosomal membranes, with Ki = 1.3 microM in the presence of 10 microM calcium. A reversible receptor-mediated process, and not proteolysis, is responsible for inhibition since the effect of calcium/calmodulin is reversed by the calmodulin antagonist trifluoperazine and by chelation of calcium with sodium [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. The target of calmodulin is most likely the spectrin attachment protein(s) rather than spectrin itself since: (a) membrane binding of the brain spectrin beta subunit, which does not associate with calmodulin, is inhibited by calcium/calmodulin, and (b) red cell spectrin which binds calmodulin very weakly, is inhibited from interacting with membrane receptors in the presence of calcium/calmodulin. Ca2+/calmodulin inhibited association of erythrocyte spectrin with synaptosomal membranes but had no effect on binding of erythrocyte or brain spectrin to ankyrin in erythrocyte membranes. These experiments demonstrate the potential for differential regulation of spectrin-membrane protein interactions, with the consequence that Ca2+/calmodulin can dissociate direct spectrin-membrane interactions locally or regionally without disassembly of the areas of the membrane skeleton stabilized by linkage of spectrin to ankyrin. A membrane protein of Mr = 88,000 has been identified that is dissociated from spectrin affinity columns by calcium/calmodulin and is a candidate for the calmodulin-sensitive spectrin-binding site in brain.  相似文献   

5.
To elucidate the interaction of calmodulin with calmodulin binding proteins, we studied the location of the interaction sites on calmodulin by using a chemical cross-linking reagent. Calmodulin prepared from wheat germ was cross-linked to myosin light chain kinase and troponin-I with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. The cross-linked products were cleaved partially with cyanogen bromide and cross-linked sites were determined by peptide mapping analysis using SDS-urea polyacrylamide gel electrophoresis. Peptides which contain the cross-linked site were displaced from their position because of the attached fragments of myosin light chain kinase or troponin I. The peptide of calmodulin from the N-terminal to Met-73 in the cross-linked product with myosin light chain kinase had the same mobility as that of uncross-linked calmodulin on the map though the amount of the peptide was decreased in the cross-linked product. The peptide from the N-terminal to Met-110 in the cross-linked product was displaced from its position. Similar change in the mobility of the calmodulin peptides was also observed in the cross-linked products with troponin I. It was concluded, therefore, that at least one cross-linked site for myosin light chain kinase and one for troponin I were located between Met-73 and Met-110 of the wheat germ calmodulin.  相似文献   

6.
Yeast frequenin (Frq1), a small N-myristoylated EF-hand protein, activates phosphatidylinositol 4-kinase Pik1. The NMR structure of Ca2+-bound Frq1 complexed to an N-terminal Pik1 fragment (residues 121-174) was determined. The Frq1 main chain is similar to that in free Frq1 and related proteins in the same branch of the calmodulin superfamily. The myristoyl group and first eight residues of Frq1 are solvent-exposed, and Ca2+ binds the second, third, and fourth EF-hands, which associate to create a groove with two pockets. The Pik1 peptide forms two helices (125-135 and 156-169) connected by a 20-residue loop. Side chains in the Pik1 N-terminal helix (Val-127, Ala-128, Val-131, Leu-132, and Leu-135) interact with solvent-exposed residues in the Frq1 C-terminal pocket (Leu-101, Trp-103, Val-125, Leu-138, Ile-152, and Leu-155); side chains in the Pik1 C-terminal helix (Ala-157, Ala-159, Leu-160, Val-161, Met-165, and Met-167) contact solvent-exposed residues in the Frq1 N-terminal pocket (Trp-30, Phe-34, Phe-48, Ile-51, Tyr-52, Phe-55, Phe-85, and Leu-89). This defined complex confirms that residues in Pik1 pinpointed as necessary for Frq1 binding by site-directed mutagenesis are indeed sufficient for binding. Removal of the Pik1 N-terminal region (residues 8-760) from its catalytic domain (residues 792-1066) abolishes lipid kinase activity, inconsistent with Frq1 binding simply relieving an autoinhibitory constraint. Deletion of the lipid kinase unique motif (residues 35-110) also eliminates Pik1 activity. In the complex, binding of Ca2+-bound Frq1 forces the Pik1 chain into a U-turn. Frq1 may activate Pik1 by facilitating membrane targeting via the exposed N-myristoyl group and by imposing a structural transition that promotes association of the lipid kinase unique motif with the kinase domain.  相似文献   

7.
R E Reid 《Biochemistry》1987,26(19):6070-6073
The sequential solid-phase synthesis of a peptide analogue of bovine brain calmodulin calcium binding site III covering residues 81-113 of the natural sequence is described. Methionine-109 is replaced by a leucine residue to avoid complications in the synthesis and purification. In an attempt to relate the structure of the calcium binding sites in the naturally occurring calcium binding protein to the calcium affinity of these sites, the synthetic analogue is examined for calcium binding by circular dichroism spectroscopy. The calcium binding characteristics are compared to those of a synthetic analogue of the homologous calcium binding site III in rabbit skeletal troponin C. The Kd of the calmodulin site III fragment for Ca2+ is determined as 878 microM whereas the Kd of the troponin C fragment is 30 times smaller at 28 microM. Structural changes induced in the peptides by Ca2+ and trifluoroethanol are similar. This study supports our contention that the single synthetic calcium binding site is a reasonable model for the study of the structure-activity relationships of the calcium binding sites in calcium-regulated proteins such as calmodulin and troponin C.  相似文献   

8.
Stopped-flow fluorescence kinetic measurements, circular dichroism (CD), and 1H nuclear magnetic resonance (NMR) spectroscopy at 360 MHz have been used to study the interaction of the calcium-channel blocker and calmodulin antagonist bepridil with cardiac troponin C (cTnC) in the presence of calcium. The kinetic data show that bepridil reduces the rate of calcium release only from the low affinity, calcium-specific site and not from the two high affinity calcium/magnesium sites. CD measurements indicate that drug binding leads to a small increase in the alpha-helical content of the complex. 1H NMR shows that the protein binds one equivalent of bepridil, with a dissociation constant of approximately 20 microM, only when the low affinity calcium site is occupied. Exchange is fast or intermediate on the chemical shift time scale. Drug binding is shown to be largely localized in the N-terminal domain, containing the low affinity calcium site, by observing the shifting and broadening of several resonances associated with that domain. These include assigned aromatic signals together with methionyl and other methyl signals. Observation of intermolecular nuclear Overhauser effects was precluded by extensive spectral overlap. Consideration of the data from the three techniques permitted a model of the bepridil-cTnC complex to be constructed, using the model of cTnC derived from the x-ray structure of calmodulin (MacLachlan L. K., Reid, D. G., and Carter, N. (1990) J. Biol. Chem. 265, 9754-9763). Binding of bepridil to a prominent hydrophobic depression in the N-terminal domain can be invoked to explain many of the induced changes in the spectral and kinetic properties of the protein. The implications of the model for the calcium sensitizing action of bepridil are discussed.  相似文献   

9.
10.
Plasma sex hormone-binding globulin (SHBG) and testicular androgen-binding protein (ABP) are homodimeric glycoproteins that share the same primary structure, and differ only with respect to the types of oligosaccharides associated with them. The biological significance of these differences is not understood, but enzymatically deglycosylated SHBG and a non-glycosylated SHBG mutant both bind steroids normally. Various affinity-labelling experiments, and studies of recombinant SHBG mutants have indicated that a region encompassing and including Met-139 in human SHBG represents an important component of its steroid-binding site. Analyses of chimeric proteins comprising various portions of human SHBG and rat ABP have also indicated that residues important for the much higher affinity of human SHBG for steroid ligands are probably located within the N-terminal portion of these molecules. Recent studies of SHBG mutants have confirmed this, and a deletion mutant containing only the first 205 N-terminal residues of human SHBG has been produced which dimerizes and binds steroids appropriately. The introduction of amino-acid substitutions between Lys-134 and Phe-148 of SHBG has also indicated that residues including and immediately N-terminal of Met-139 may influence steroid-binding specificity, while those immediately C-terminal of Met-139 represent at least a part of the dimerization domain. These studies have also demonstrated that dimerization is induced by the presence of steroid ligand in the binding site, and that divalent cations play an important role in this process. Together, these data have led us to conclude that SHBG is a modular protein, which comprises an N-terminal steroid-binding and dimerization domain, and a C-terminal domain containing a highly-conserved consensus sequence for glycosylation that may be required for other biological activities, such as cell-surface recognition.  相似文献   

11.
The distribution of the bovine cardiac binding sites for the organic calcium-channel blockers was studied. Crude microsomal membranes were separated into three fractions, which contained mainly membranes derived from sarcolemma, 'junctional' sarcoplasmic reticulum containing transversal tubuli, and free sarcoplasmic reticulum. The high-affinity binding site for the dihydropyridines, determined in the presence of nitrobenzylthioinosine, was enriched 12-fold and 17-fold in sarcolemma and junctional sarcoplasmic reticulum. The binding sites for the phenylalkylamines, determined with [3H]verapamil or [3H](-)desmethoxyverapamil, were enriched 1.5-3.4-fold in sarcolemma and junctional sarcoplasmic reticulum but 6-10-fold in free sarcoplasmic reticulum. The phenylalkylamine-binding site, present in free sarcoplasmic reticulum, was partially destroyed by chymotrypsin or phospholipase A2 and C treatment. Specific binding was proportional to the concentration of the added membrane protein. The binding of (-)desmethoxyverapamil was half-maximally inhibited by 6.5 mM calcium chloride and was optimal in the presence of 5 mM EGTA. In three out of five preparations (-)desmethoxyverapamil bound to a single site with an apparent Kd value of 191 +/- 42.8 nM and a density of 34.5 +/- 7.7 pmol/mg protein. In two out of five preparations an additional high-affinity site (Kd approximately 0.67 nM) was detected. The low-affinity site bound other phenylalkylamines, but stereospecific binding of phenylalkylamines was not observed. Binding of phenylalkylamines to the low-affinity site was inhibited by some but not all calmodulin 'antagonists'. Furthermore dihydropyridines did not affect the binding of (--)desmethoxyverapamil suggesting that the low-affinity site differs considerably from the high-affinity sarcolemmal site. These results suggest that free sarcoplasmic reticulum contains a binding site for phenylalkylamines at a relative high density, which is not related to the high-affinity site present in the voltage-dependent calcium channel.  相似文献   

12.
Androcam is a testis-specific protein of Drosophila melanogaster, with 67% sequence identity to calmodulin and four potential EF-hand calcium-binding sites. Spectroscopic monitoring of the thermal unfolding of recombinant calcium-free androcam shows a biphasic process characteristic of a two-domain protein, with the apo-N-domain less stable than the apo-C-domain. The two EF hands of the C-domain of androcam bind calcium cooperatively with 40-fold higher average affinity than the corresponding calmodulin sites. Magnesium competes with calcium binding [Ka(Mg) approximately 3 x 10(3) M(-1)]. Weak calcium binding is also detected at one or more N-domain sites. Compared to apo-calmodulin, apo-androcam has a smaller conformational response to calcium and a lower alpha-helical content over a range of experimental conditions. Unlike calmodulin, a tryptic cleavage site in the N-domain of apo-androcam remains trypsin sensitive in the presence of calcium, suggesting an altered calcium-dependent conformational change in this domain. The affinity of model target peptides for androcam is 10(3)-10(5) times lower than for calmodulin, and interaction of the N-domain of androcam with these peptides is significantly reduced. Thus, androcam shows calcium-induced conformational responses typical of a calcium sensor, but its properties indicate calcium sensitivity and target interactions significantly different from those of calmodulin. From the sequence differences and the altered calcium-binding properties it is likely that androcam differs from calmodulin in the conformation of residues in the second calcium-binding loop. Molecular modeling supports the deduction that there are significant conformational differences in the N-domain of androcam compared to calmodulin, and that these could affect the surface, conferring a different specificity on androcam in target interactions related to testis-specific calcium signaling functions.  相似文献   

13.
Proton nuclear magnetic resonance (NMR) spectra of crotamine, a myotoxic protein from a Brazilian rattlesnake (Crotalus durissus terrificus), have been analyzed. All the aromatic proton resonances have been assigned to amino acid types, and those from Tyr-1, Phe-12, and Phe-25 to the individual residues. ThepH dependence of the chemical shifts of the aromatic proton resonances indicates that Tyr-1 and one of the two histidines (His-5 or His-10) are in close proximity. A conformational transition takes place at acidicpH, together with immobilization of Met-28 and His-5 or His-10. Two sets of proton resonances have been observed for He-17 and His-5 or His-10, which suggests the presence of two structural states for the crotamine molecule in solution.  相似文献   

14.
Li X  Liu Y  Kay CM  Müller-Esterl W  Fliegel L 《Biochemistry》2003,42(24):7448-7456
We characterized the regulatory cytoplasmic tail of the Na(+)/H(+) exchanger using a histidine-tagged protein containing the C-terminal 182 amino acids (His182). Both tescalcin and calmodulin, two Na(+)/H(+) exchanger binding proteins, bound to the His182 protein. Cascade blue was used to label the His182 protein. Calcium caused an increase in fluorescence, suggesting exposure of the label on the protein to a more hydrophilic environment. Decreasing external pH caused a transient increase in cascade blue fluorescence, followed by a decrease in fluorescence of the cascade blue labeled Na(+)/H(+) exchanger C-terminus. Tescalcin caused a decrease in fluorescence by labeled His182 protein, and calcium reversed this effect. Expression of tescalcin in vivo inhibited activity of the Na(+)/H(+) exchanger when there was an intact C-terminus of the protein. We examined the CD spectra of His182 in the presence and absence of tescalcin. The C-terminal amino acids demonstrated a very small amount of alpha-helical structure and much more beta-sheet and beta-turn. This was not greatly affected by the presence of tescalcin, but calcium caused an increase in the amount of beta-structure and a decrease in the unstructured proportion of the protein. Sedimentation equilibrium analysis demonstrated that the C-terminal 182 amino acids exist predominantly as a monomer. The results suggest that the C-terminus of the Na(+)/H(+) exchanger exists primarily as a monomeric protein that binds regulatory tescalcin and can change conformation depending on pH and calcium. Conformation changes in this region of the protein may be responsible for altering the pH sensitivity of the intact Na(+)/H(+) exchanger.  相似文献   

15.
Calmodulin is the most ubiquitous calcium binding protein. The protein is very sensitive to oxidation and this modification has pronounced effects on calmodulin function. In this work, we decided to fully oxidise calmodulin in order to study the consequences on cation binding, domain stability, and alpha helicity. Oxidation of methionines unfolds completely the apostate of the protein, which upon calcium binding recovers the major part of its secondary and tertiary structure. However, the unstructuring of the apostate results in a protein that binds calcium to any site in an independent manner, does not bind magnesium and does not possess auxiliary sites anymore.  相似文献   

16.
Aquaporin 6 (AQP6) is an anion channel that is expressed primarily in acid secreting α-intercalated cells of the kidney collecting duct. In addition, AQP6 anion channel permeability is gated by low pH. Inspection of the N-terminus of AQP6 revealed a putative calmodulin binding site. AQP6-expressing CHO-K1 cell lysates were mixed with calmodulin beads and AQP6 was pulled down in the presence of calcium. Mutagenesis of the N-terminal calmodulin binding site in full length mouse AQP6 resulted in a loss of calmodulin binding activity. Mouse and human AQP6 calmodulin binding site peptides bound dansyl-calmodulin with a dissociation constant of approximately 1 μM. The binding of AQP6 to calmodulin may be an important key to determining the physiological role of AQP6 in the kidney.  相似文献   

17.
Hydroxylapatite chromatographies of mitochondrial and total enzymes from a rho+ yeast, or from the related rho degrees mitochondrial DNA-less mutant, show the occurrence in the mitochondrial enzyme of one Phe-, one Met-, one Leu-tRNA synthetase peak which elutes distinctly from the cytoplasmic counterpart and charges well mitochondrial tRNA, whereas the cytoplasmic enzyme does not. The measurement of the mitochondrial synthetases activities in various enzymatic extracts shows that they are not repressed in rho+ cells grown on 10% glucose and that they are concentrated in the mitochondria (Phe- and Met- tRNA synthetases) but are also present outside the mitochondria. It is concluded that yeast mitochondrial protein biosynthesis involves the nuclear coded mitochondrial specific Phe-, Met- and Leu-tRNA synthetases and that the entrance of the synthetases into the mitochondria needs no factor depending on the mitochondrial DNA.  相似文献   

18.
In a survey for unknown bioactive peptides in frog (Rana catesbeiana) brain and intestine, we isolated four novel peptides that exhibit potent stimulant effects on smooth muscle preparation of guinea pig ileum. By microsequencing and synthesis, these peptides were identified as Lys- Pro- Ser- Pro- Asp- Arg- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin A), Tyr- Lys- Ser- Asp- Ser- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin B), His- Asn- Pro- Ala- Ser- Phe- Ile- Gly- Leu- Met- NH2 (ranatachykinin C) and Lys- Pro- Ans- Pro- Glu- Arg- Phe- Tyr- Ala- Pro- Met- NH2 (ranatachykinin D). Ranatachykinin (RTK) A, B and C conserve the C- terminal sequence, Phe- X- Gly- Leu- Met- NH2, which is common to known members of the tachykinin family. On the other hand, RTK-D has a striking feature in its C-terminal sequence, Phe- Tyr- Ala- Pro- Met- NH2, which has never been found in other known tachykinins, and may constitute a new subclass in the tachykinin family.  相似文献   

19.
Protein cyclic imide is the putative intermediate in the formation of sites of carboxyl-methylation in eukaryotic proteins. Conditions known to induce the formation of a cyclic imide in model peptides have been applied to a protein, calmodulin. Heating of calmodulin in the dry state at 100 degrees C for 24 h after lyophilization from a pH 2.0 or pH 6.0 solution produces derivatives with altered chromatographic properties in anion-exchange HPLC. At pH 6.0, complete activity of calmodulin was retained. Analysis with Fourier transform infrared (FTIR)-photoacoustic spectroscopy demonstrated the presence of a new structure in the calmodulin molecule consistent with modification of carboxylic acid groups. The conversion of calmodulin is dependent upon the absence of Ca2+ (the presence of 1 mM ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid). A peptide analogous to the calcium binding regions of calmodulin, Asp-Lys-Asp-Gly-Asn-Gly-Thr-Ile-Thr-Thr-Lys-Glu, is also converted, upon heating, to chromatographically different forms in reversed-phase chromatography. This process is also dependent upon the absence of calcium. Sequence analysis of the peptide derivatives reveals a second amino terminus, implicating peptide bond hydrolysis in the product. A dipeptide, Asp-Gly, known to form a cyclic imide structure under similar conditions is also hydrolyzed during sequence analysis consistent with cleavage occurring at the position of the cyclic imide structure. Asp3 is suggested to be the site of cyclic imide formation in the calmodulin peptide. The presence of a cyclic imide structure is also confirmed by the application of FTIR-photoacoustic spectroscopy. These data suggest that cyclic imide formation in calmodulin has been induced, possibly at one, or more, of the calcium binding loops of the protein. These modification reactions may provide a basis for future investigations of cyclic imide formation in proteins.  相似文献   

20.
We have previously demonstrated that a monoclonal antibody (5F7) directed against the heavy chain region of factor XI inhibits the binding of factor XI to high molecular weight kininogen (high Mr kininogen) and the surface-mediated proteolytic activation of factor XI by factor XIIa in the presence of high Mr kininogen. In order to identify the structural domain of factor XI that binds high Mr kininogen, CNBr-digested factor XI was passed over a 5F7 antibody affinity column. One of two CNBr peptides that bound to this 5F7 affinity column inhibited binding of 125I-factor XI to high Mr kininogen, as did intact factor XI. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate of an inhibitory peptide purified by high performance liquid chromatography revealed an Mr of 10,000-15,000. Gas-phase sequencing of this peptide revealed the following amino-terminal sequence: X-X-Val-Thr-Gln-Leu-Leu-Lys-Asp-Thr. These data together with the amino acid composition of the isolated peptide indicate that both the epitope recognized by antibody 5F7 and at least a portion of the high Mr kininogen binding site are contained within the amino-terminal portion of factor XI comprising residues Glu-1 through Met-102. Further cleavage of this peptide with o-iodosobenzoic acid at a tryptophanyl peptide bond revealed that an Mr 5,000 peptide (with the amino-terminal sequence Trp-Phe-Thr-Cys-Val-Leu) bound to a high Mr kininogen affinity column and inhibited binding of 125I-factor XI to high Mr kininogen. Finally, a synthetic peptide comprising residues Phe-56 through Ser-86 inhibited 125I-factor XI binding to high Mr kininogen. These experiments strongly suggest that the high Mr kininogen binding site is contained within the domain in the heavy chain region of factor XI comprising residues Phe-56 through Ser-86.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号