首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 571 毫秒
1.
The cells of Helicobacter pylori were suspended in the medium containing35S-methionine. After a heat shock of the cells at 42 C for 5, 10, and 30 min, the production of proteins was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Out of many proteins produced by the cells, only 66 kDa protein production was dramatically increased by heat treatment. The N-terminal amino acid sequence of 66 kDa protein was quite similar to that of 62 kDa and 54 kDa proteins previously suggested as heat shock protein (HSP) of H. pylori based on the reaction with polyclonal and monoclonal antibodies against HSP 60 family proteins produced by other bacteria. Therefore, it was concluded that H. pylori produces the 66 kDa protein as its major heat shock protein which belongs to HSP 60 family.  相似文献   

2.
We isolated a 38 kDa ssDNA-binding protein from the unicellular cyanobacterium Synechococcus sp. strain PCC 6301 and determined its N-terminal amino acid sequence. A genomic clone encoding the 38 kDa protein was isolated by using a degenerate oligonucleotide probe based on the amino acid sequence. The nucleotide sequence and predicted amino acid sequence revealed that the 38 kDa protein is 306 amino acids long and homologous to the nuclear-encoded 370 amino acid chloroplast ribosomal protein CS1 of spinach (48% identity), therefore identifying it as ribosomal protein (r-protein) S1. Cyanobacterial and chloroplast S1 proteins differ in size from Escherichia coli r-protein S1 (557 amino acids). This provides an additional evidence that cyanobacteria are closely related to chloroplasts. The Synechococcus gene rps1 encoding S1 is located 1.1 kb downstream from psbB, which encodes the photosystem 11 P680 chlorophyll a apoprotein. An open reading frame encoding a potential protein of 168 amino acids is present between psbB and rps1 and its deduced amino acid sequence is similar to that of E. coli hypothetical 17.2 kDa protein. Northern blot analysis showed that rps1 is transcribed as a monocistronic mRNA.  相似文献   

3.
Interactions of pathogenic Entamoeba histolytica (HM 1) with human intestinal epithelial cells (Henle-407) were investigated. The E. histolytica trophozoites adhered and cytolysed 87% of cultured epithelial cell monolayers. A significant (P less than 0.001) inhibition of cytopathic effect of amoebic trophozoites pretreated with monoclonal antibodies to a 29 kDa surface associated protein suggested utilization of the 29 kDa surface protein in recognition and cytolysis of epithelial target cells. The polyclonal sera from treated patients of amoebic liver abscess and anti-amoebic hyperimmune serum inhibited cytopathogenicity to a greater degree (P less than 0.001) than did the monoclonal antibodies. The data thus suggest involvement of several amoebic molecules in exercising cytopathogenicity to epithelial cells.  相似文献   

4.
A monoclonal antibody obtained by immunization of mice with heat-killed cells of Listeria monocytogenes serotype 4d showed reactivity towards a protein (P45) from L. monocytogenes with an apparent molecular mass of 45 kDa. This protein was detected in the culture supernatant and at the cell surface of L. monocytogenes. Proteins cross-reacting with the monoclonal antibody were present in all Listeria strains investigated, except L. grayi. The structural gene was cloned in Escherichia coli and sequenced. Translation of the gene starts at a TTG initiation codon. The gene was found to code for a protein of 402 amino acid residues with a predicted molecular mass of 42.7 kDa. It has a signal peptide of 27 amino acid residues, resulting in a molecular mass for the mature polypeptide of 39.9 kDa. Protein database searches showed that this protein has 55% similarity and 38% identity to protein p60 of L. monocytogenes and exhibits significant sequence similarities to p54 from Enterococcus faecium and Usp45 from Lactococcus lactis. P45 was shown to have peptidoglycan lytic activity and the encoding gene was named spl (secreted protein with lytic property). Revision received: 11 August 1999 / Accepted: 8 September 1999  相似文献   

5.
Gonzalez-Ceron, L., Rodriguez, M. H., Wirtz, R. A., Sina, B. J., Palomeque, O. L., Nettel, J. A., and Tsutsumi, V. 1998.Plasmodium vivax:A monoclonal antibody recognizes a circumsporozoite protein precursor on the sporozoite surface.Experimental Parasitology90, 203–211. The major surface circumsporozoite (CS) proteins are known to play a role in malaria sporozoite development and invasion of invertebrate and vertebrate host cells.Plasmodium vivaxCS protein processing during mosquito midgut oocyst and salivary gland sporozoite development was studied using monoclonal antibodies which recognize different CS protein epitopes. Monoclonal antibodies which react with the CS amino acid repeat sequences by ELISA recognized a 50-kDa precursor protein in immature oocyst and additional 47- and 42-kDa proteins in older oocysts. A 42-kDa CS protein was detected after initial sporozoite invasion of mosquito salivary glands and an additional 50-kDa precursor CS protein observed later in infected salivary glands. These data confirm previous results with otherPlasmodiumspecies, in which more CS protein precursors were detected in oocysts than in salivary gland sporozoites. A monoclonal antibody (PvPCS) was characterized which reacts with an epitope found only in the 50-kDa precursor CS protein. PvPCS reacted with allP. vivaxsporozoite strains tested by indirect immunofluorescent assay, homogeneously staining the sporozoite periphery with much lower intensity than that produced by anti-CS repeat antibodies. Immunoelectron microscopy using PvPCS showed that the CS protein precursor was associated with peripheral cytoplasmic vacuoles and membranes of sporoblast and budding sporozoites in development oocysts. In salivary gland sporozoites, the CS protein precursor was primarily associated with micronemes and sporozoite membranes. Our results suggest that the 50-kDa CS protein precursor is synthesized intracellularly and secreted on the membrane surface, where it is proteolytically processed to form the 42-kDa mature CS protein. These data indicate that differences in CS protein processing in oocyst and salivary gland sporozoites development may occur.  相似文献   

6.
Heat-shock proteins of Porphyromonas gingivalis were demonstrated and two of them were purified and further characterized. The amplified de novo synthesis of two different proteins, with apparent molecular weights of 75 kDa and 68 kDa, was observed by autofluorography when a P. gingivalis culture incubated in a 14C-labeled amino acid mixture was shifted from 37°C to 44°C. Both proteins possessed ATP-binding abilities and were purified to almost homogeneity employing affinity chromatography on ATP-agarose followed by preparative SDS-PAGE. Purified 75 kDa and 68 kDa proteins had isoelectric points of 4.4 and 4.6, respectively. They were shown to be immunoreactive with commercial anti-DnaK and anti-GroEL polyclonal antibodies, respectively. Immunoblotting analysis of whole cells using antiserum raised against each purified protein from P. gingivalis, confirmed elevated synthesis of both proteins during thermal shock. A GroEL protein reacted strongly with antiserum against the 68 kDa protein. However, a DnaK protein reacted weakly with antiserum to the 75 kDa protein. Analysis of the N-terminal amino acid sequence of the DnaK-like protein (75 kDa) showed a high degree of homology with those of the HSP70 family including both prokaryotic and eukaryotic cells. The N-terminal amino acid analysis of the GroEL-like protein (68 kDa) indicated that it was identical to those of cloned GroEL homologues from P. gingivalis.  相似文献   

7.
A membrane-associated nitrite-oxidizing system of Nitrospira moscoviensis was isolated from heat-treated membranes. The four major proteins of the enzyme fraction had apparent molecular masses of 130, 62, 46, and 29 kDa, respectively. The nitrite-oxidizing activity was dependent on the presence of molybdenum. In contrast to the nitrite oxidoreductase of Nitrobacter hamburgensis X14, the activity of the nitrite-oxidizing system of Ns. moscoviensis increased when solubilized by heat treatment. Electron microscopy of the purified enzyme revealed uniform particles with a size of approximately 7 × 9 nm. SDS-immunoblotting analysis of crude extracts showed that the monoclonal antibodies Hyb 153–3, which recognize the β-subunit of the nitrite oxidoreductase from Nitrobacter, reacted with a protein of 50 kDa in Ns. moscoviensis. This protein corresponded to the protein of 46 kDa of the purified enzyme and contained a b-type cytochrome. Using electron microscopic immunocytochemistry and the monoclonal antibodies Hyb 153–3, the nitrite-oxidizing system of Ns. moscoviensis was shown to be located in the periplasmic space. Here a periodic arrangement of membrane-associated particles was found on the outside of the cytoplasmic membrane in the form of a hexagonal pattern. It is supposed that these particles represent the nitrite-oxidizing system in Nitrospira. Received: 22 August 1997 / Accepted: 1 November 1997  相似文献   

8.
Phytolacca anti-viral protein (PAP) was purified from Phytolacca leaves and the N-terminal was sequenced. A cDNA library was made from mRNAs isolated from Phytolacca leaves and cDNA clones for PAP were identified using oligonucleotide probes derived from the N-terminal amino acid sequence. The PAP-cDNA clone was sequenced from both directions. The predicted amino acid sequence of PAP was compared with the amino acid sequences of other ribosome-inactivating proteins. The identities of these proteins to PAP ranged from 29 to 38%, and a region was found in each with a sequence similar to the PAP sequence (AIQMVSEAARFKYI). Southern blot analysis indicates that PAP is encoded by a multi-gene family.Abbreviations MAP Mirabilis jalapa anti-viral protein - PAP Phytolacca anti-viral protein - SO6 30 kDa ribosome-inactivating protein from the seeds of Saponaria officinalis  相似文献   

9.
The carboxysomal polypeptides of Thiobacillus neapolitanus with apparent molecular masses of 85 and 130 kDa were isolated and subjected to N-terminal sequencing. The first 17 amino acids of the two peptides were identical. The sequence perfectly matched the deduced amino acid sequence of an open reading frame in the carboxysome operon. The gene was subsequently named csoS2. Expression of the gene in Escherichia coli resulted in the production of two peptides with apparent molecular masses of 85 and 130 kDa. Immunospecific antibodies generated against the smaller peptide recognized both peptides; the peptides were named CsoS2A and CsoS2B, respectively. A digoxigenin-hydrazide glycosylation assay revealed that both CsoS2A and CsoS2B are post-translationally modified by glycosylation. CsoS2 was localized to the edges of purified carboxysomes by immunogold electron microscopy using the monospecific CsoS2A antibodies. The molecular mass of CsoS2A calculated from the nucleotide sequence was 92.3 kDa. Received: 1 March 1999 / Accepted: 29 June 1999  相似文献   

10.
Porcine brain pyridoxal kinase has been cloned. A 1.2 kilo-based cDNA with a 966-base pair open reading frame was determined from a porcine brain cortex cDNA library using PCR technique. The DNA sequence was shown to encode a protein of 322 amino acid residues with a molecular mass of 35.4 kDa. The amino acid sequence deduced from the nucleotide sequence of the cDNA was shown to match the partial primary sequence of pyridoxal kinase. Expression of the cloned cDNA in E. coli has produced a protein which displays both pyridoxal kinase activity and immunoreactivity with monoclonal antibodies raised against natural enzyme from porcine brain. With respect to the physical properties, it is shown that the recombinant protein exhibits identical kinetic parameters with the pure enzyme from porcine brain. Although the primary sequence of porcine pyridoxal kinase has been shown to share 87% homology with the human enzyme, we have shown that the porcine enzyme carries an extra peptide of ten amino acid residues at the N-terminal domain.  相似文献   

11.
Porphyromonas gingivalis, a gram-negative anaerobic oral bacterium, causes periodontal disease by binding to saliva-coated oral surfaces. The FimA protein from P. gingivalis is a crucial pathogenic component of the bacterium and a target for vaccine development against periodontal disease. Complementary DNAs encoding the heavy and light chains of two monoclonal antibodies that bind specifically to the FimA protein were cloned into a plant expression vector under the control of the duplicated Cauliflower Mosaic Virus 35S promoter, and agroinfiltration was used to allow the vectors to infiltrate tobacco plants. The expressions of the heavy and light chains in the leaf tissue were detected using antibodies specific to each antibody chain. Western blot analysis showed the specific binding of the plant-derived monoclonal antibodies to the native FimA protein purified from P. gingivalis. Our finding that plant-derived monoclonal antibodies bound specifically to the native FimA protein indicates that plantderived monoclonal antibodies can protect against P. gingivalis invasion.  相似文献   

12.
The objective of this research was to characterize specific protein(s) from Alexandrium catenella to evaluate its use as markers for specific physiological functions. To identify such protein(s) we concentrated our efforts on characterizing proteins with a high level of expression in vegetative cells of A. catenella. The electrophoretic analysis of a total protein cell extract showed the presence of a very abundant 29 kDa protein that we have named AC29. Analysis by 2D SDS-PAGE shows that the 29 kDa band contains one abundant protein (AC29) and various less abundant polypeptides, suggesting the presence of either different proteins with similar molecular weight or isoforms of AC29 protein. Ultracytolocalization using antibodies raised against gel purified AC29 indicates that this protein localizes within the chloroplast and that it is associated with thylakoid membranes, as well as with other membranes surrounding the chloroplast. Western blot analysis of cells grown under light starvation shows that the expression of the AC29 protein is down regulated. A similar analysis shows that this protein is not expressed in natural cysts or by isolated intracellular bacterium. The amino terminus of the AC29 protein that was recovered from 2D SDS-PAGE was sequenced. The sequence shows homology to the peridinin-chlorophyll a-protein from the marine organisms Alexandrium cohorticula, Amphidinium carterae and Symbiodinium. Based on these results, we suggest that the AC29 protein has the potential of being used as a marker for A. catenella encystment and excystment processes.  相似文献   

13.
Aims: To identify and characterize a new adhesin‐like protein of probiotics that show specific adhesion to human blood group A and B antigens. Methods and Results: Using the BIACORE assay, the adhesion of cell surface components obtained from four lactobacilli strains that adhered to blood group A and B antigens was tested. Their components showed a significant adhesion to A and B antigens when compared to the bovine serum albumin (BSA) control. The 1 mol l?1 GHCl fraction extracted from Lactobacillus mucosae ME‐340 contained a 29‐kDa band (Lam29) using SDS–PAGE. The N‐terminal amino acid sequence and homology analysis showed that Lam29 was 90% similar to the substrate‐binding protein of the ATP‐binding cassette (ABC) transporter from Lactobacillus fermentum IFO 3956. The complete nucleotide sequence (858 bp) of Lam29 was determined and encoded a protein of 285 amino acid residues. Phylogenetic analysis and multiple sequence alignments indicated this protein may be related to the cysteine‐binding transporter. Conclusions: The adhesion of ME‐340 strain to blood group A and B antigens was mediated by Lam29 that is a putative component of ABC transporter as an adhesin‐like protein. Significance and Impact of the Study: Lactobacillus mucosae ME‐340 expressing Lam29 may be useful for competitive exclusion of pathogens via blood group antigen receptors in the human gastrointestinal mucosa and in the development of new probiotic foods.  相似文献   

14.
Homogenate fractions (soluble and particulate) from transformed roots of Catharanthus roseus (L.) G. Don showed several phosphorylated proteins when incubated with γ-[32P]ATP. The phosphorylation in the proteins of 55, 40, 25, 18 and 10 kDa in the particulate fraction and 63 kDa in the soluble fraction was resistant to alkali treatment. Several proteins in both fractions gave a positive signal with monoclonal antiphosphotyrosine antibodies. In-situ phosphorylation in both fractions showed several proteins that cross-reacted with the antiphosphotyrosine antibodies. Tyrosine kinase activity was detected using an exogenous substrate RR-SRC, a synthetic peptide derived from the amino acid sequence surrounding the phosphorylation site in pp60src. This activity was inhibited by genistein, a tyrosine kinase inhibitor. These results indicate, for the first time, the presence of protein-tyrosine kinase (EC 2.7.1.112) activity in transformed plant tissues. Received: 29 March 1997 / Accepted: 21 May 1997  相似文献   

15.
16.
Analysis of the interaction between the host immune system and the intracellular parasite Mycobacterium leprae has identified a 35 kDa protein as a dominant antigen. The native 35 kDa protein was purified from the membrane fraction of M. leprae and termed MMPI (major membrane protein I). As the purified protein was not amenable to N-terminal sequencing, partial proteolysis was used to establish the sequences of 21 peptides. A fragment of the 35 kDa protein-encoding gene was amplified by the polymerase chain reaction from M. leprae chromosomal DNA with oligonucleotide primers derived from internal peptide sequences and the whole gene was subsequently isolated from a M. leprae cosmid library. The nucleotide sequence of the gene revealed an open reading frame of 307 amino acids containing most of the peptide sequences derived from the native 35 kDa protein. The calculated subunit mass was 33.7 kDa, but the native protein exists as a multimer of 950 kDa. Database searches revealed no identity between the 35 kDa antigen and known protein sequences. The gene was expressed in Mycobacterium smegmatis under the control of its own promoter or at a higher level using an‘up-regulated’promoter derived from Mycobacterium fortuitum. The gene product reacted with monoclonal antibodies raised to the native protein. Using the bacterial alkaline phosphatase reporter system, we observed that the 35 kDa protein was unable to be exported across the membrane of recombinant M. smegmatis. The 35 kDa protein-encoding gene is absent from members of the Mycobacterium tuberculosis complex, but homologous sequences were detected in Mycobacterium avium, Mycobacterium haemophilum and M. smegmatis. The avaibility of the recombinant 35 kDa protein will permit dissection of both antibody- and T-cell-mediated immune responses in leprosy patients.  相似文献   

17.
Murine monoclonal antibodies to protoplast membrne antigens were generated using mouse myelomas and spleen cells from mice immunized with Nicotiana tabacum L. leaf protoplasts. For selecting antibody-secreting clones, a sensitive and rapid enzyme-linked immunosorbent assay (ELISA) for monoclonal antibody binding to immobilized cellular membrane preparations or immobilized protoplasts was developed. With intact protoplasts as immobilized antigen, the ELISA is selective for antibodies that bind to plasma-membrane epitopes present on the external surface of protoplasts. Using the membrane ELISA, a total of 24 hybridoma lines were identified that secreted antibodies to plant membrane epitopes. The protoplast ELISA and subsequent immunofluorescence studies identified four hybridoma lines as secreting antibodies which bound to the external surface of protoplasts and cells. The corresponding antigens were not species- or tissue-specific, were periodatesensitive, and were located in membranes which equilibrated broadly throughout a linear sucrose gradient. When protein blots of electrophoretically separated membrane proteins were probed with these antibodies, a band of Mr 14 kilodaltons (kDa) and a smear of bands of Mr 45–120 kDa were labeled. An additional set of three antibodies appeared by immunofluorescence to bind to the plasma membrane of broken but not intact protoplasts and labeled membranes equilibrating at a density of approx. 1.12 kg·l-1 in a linear sucrose density gradient. These classes of monoclonal antibodies enlarge the library of monoclonal antibodies (Norman et al. 1986, Planta 167, 452–459) available for the study of plant plasma-membrane structure and function.Abbreviations ELISA Enzyme-linked immunosorbent assay - Ig immunoglobulin - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

18.
 Callus and cell suspension cultures from the little known Andean crop Mirabilis expansa were developed and maintained on Murashige and Skoog medium supplemented with 2,4-dichlorophenoxyacetic acid (1 mg/l) and kinetin (0.1 mg/l). Callus and cell suspension cultures were screened with antibodies raised against ME1 (27.5 kDa) and ME2 (27 kDa), two ribosome-inactivating proteins (RIPs) previously found in roots of M. expansa. A 29-kDa protein found in callus and cell suspensions reacted strongly with ME1 antibodies. The 29-kDa protein, named MEC, was purified to homogeneity by ammonium sulfate precipitation and cation exchange perfusion chromatography. Amino acid N-terminal sequencing revealed close homology between MEC and ME1. The MEC amino acid sequence examined was highly conserved among RIPs from widely different sources. This new RIP was immunolocalized to the cell walls of callus and cell suspension cultures. Received: 20 August 1999 / Revision received: 10 December 1999 / Accepted: 21 December 1999  相似文献   

19.
The Chlamydomonas reinhardtii DNA-insertional transformant truncated light-harvesting antenna 1 (tla1) mutant, helped identify the novel TLA1 gene (GenBank Accession # AF534570-71) as an important genetic determinant in the chlorophyll antenna size of photosynthesis. Down-regulation in the amount of the TLA1 23 kDa protein in the cell resulted in smaller chlorophyll antenna size for both photosystems (in Tetali et al. Planta 225:813–829, 2007). Specific polyclonal antibodies, raised against the recombinant TLA1 protein, showed a cross-reaction with the predicted 23 kDa TLA1 protein in C. reinhardtii protein extracts, but also showed a strong cross-reaction with a protein band migrating to 28.5 kDa. Questions of polymorphism, or posttranslational modification of the TLA1 protein were raised as a result of the unexpected 28.5 kDa cross-reaction. Work in this paper aimed to elucidate the nature of the unexpected 28.5 kDa cross-reaction, as this was deemed to be important in terms of the functional role of the TLA1 protein in the regulation of the chlorophyll antenna size of photosynthesis. Immuno-precipitation of the 28.5 kDa protein, followed by LC–mass spectrometry, showed amino acid sequences ascribed to the psbD/D2 reaction center protein of PSII. The common antigenic determinant between TLA1 and D2 was shown to be a stretch of nine conserved amino acids V-F—L(V)LP-GNAL in the C-terminus of the two proteins, constituting a high antigenicity “GNAL” domain. Antibodies raised against the TLA1 protein containing this domain recognized both the TLA1 and the D2 protein. Conversely, antibodies raised against the TLA1 protein minus the GNAL domain specifically recognized the 23 kDa TLA1 protein and failed to recognize the 28.5 kDa D2 protein. D2 antibodies raised against an oligopeptide containing this domain also cross-reacted with the TLA1 protein. It is concluded that the 28.5 kDa cross-reaction of C. reinhardtii protein extracts with antiTLA1 antibodies is due to antibody affinity for the GNAL domain of the D2 protein and has no bearing on the identity or function of the TLA1 protein.  相似文献   

20.
Biofilm formation on a polymer surface which involves initial attachment and accumulation in multilayered cell clusters (intercellular adhesion) is proposed to be the major pathogenicity factor in Staphylococcus epidermidis foreign-body-associated infections. We have characterized two distinct classes of biofilm-negative Tn917 mutants in S. epidermidis affected in initial attachment (class A) or intercellular adhesion (class B). mut1 (class A mutant) lacks five surface-associated proteins with molecular masses of 120, 60, 52, 45 and 38 kDa and could be complemented by transformation with a 16.4 kb wild-type DNA fragment. The complemented mutant was able to attach to a polystyrene surface, to form a biofilm, and produced all of the proteins missing from mut1. Subcloning experiments revealed that the 60 kDa protein is sufficient for initial attachment. Immunofluorescence microscopy using an antiserum raised against the 60 kDa protein showed that this protein is located at the cell surface. DNA-sequence analysis of the complementing region revealed a single open reading frame which consists of 4005 nucleotides and encodes a deduced protein of 1335 amino acids with a predicted molecular mass of 148 kDa. The amino acid sequence exhibits a high similarity (61% identical amino acids) to the atl gene product of Staphylococcus aureus, which represents the major autolysin; therefore the open reading frame was designated atlE. By analogy with the S. aureus autolysin, AtlE is composed of two bacteriolytically active domains, a 60 kDa amidase and a 52 kDa glucosaminidase domain, generated by proteolytic processing. The 120 kDa protein missing from mut1 presumably represents the unprocessed amidase and glucosaminidase domain after proteolytic cleavage of the signal- and propeptide. The 45 and 38 kDa proteins are probably the degradation products of the 60 and 52 kDa proteins, respectively. Additionally, AtlE was found to exhibit vitronectin-binding activity, indicating that AtlE plays a role in binding of the cells not only to a naked polystyrene surface during early stages of adherence, but also to plasma protein-coated polymer surfaces during later stages of adherence. Our findings provide evidence for a new function of an autolysin (AtlE) in mediating the attachment of bacterial cells to a polymer surface, representing the prerequisite for biofilm formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号