首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Night shift work is associated with a myriad of health and safety risks. Phase-shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a "snapshot" of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (approximately 3500 lux; approximately 1100 microW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths--especially short wavelengths ("blue-blockers")--while traveling home after the shifts, and sleep in the dark (08:30-15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24+/-0.8 h (mean+/-SD) at baseline and 7:36+/-1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00+/-1.2 h at baseline and drifted to 4:36+/-1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

2.
3.
Endogenously generated circadian rhythms are synchronized with the environment through phase-resetting actions of light. Starlight and dim moonlight are of insufficient intensity to reset the phase of the clock directly, but recent studies have indicated that dim nocturnal illumination may otherwise substantially alter entrainment to bright lighting regimes. In this article, the authors demonstrate that, compared to total darkness, dim illumination at night (< 0.010 lux) alters the entrainment of male Syrian hamsters to bright-light T cycles, gradually increasing in cycle length (T) from 24 h to 30 h. Only 1 of 18 hamsters exposed to complete darkness at night entrained to cycles of T > 26 h. In the presence of dim nocturnal illumination, however, a majority of hamsters entrained to Ts of 28 h or longer. The presence or absence of a running wheel had only minor effects on entrainment to lengthening light cycles. The results further establish the potent effects of scotopic illumination on circadian entrainment and suggest that naturalistic ambient lighting at night may enhance the plasticity of the circadian pacemaker.  相似文献   

4.
Melatonin increases sleepiness, decreases core temperature, and increases peripheral temperature in humans. Melatonin may produce these effects by activating peripheral receptors or altering autonomic activity. The latter hypothesis was investigated in 16 supine subjects. Three conditions were created by using bright light and exogenous melatonin: normal endogenous, suppressed, and pharmacological melatonin levels. Data during wakefulness from 1.5 h before to 2.5 h after each subject's estimated melatonin onset (wake time + 14 h) were analyzed. Respiratory sinus arrhythmia (cardiac parasympathetic activity) and preejection period (cardiac sympathetic activity) did not vary among conditions. Pharmacological melatonin levels significantly decreased systolic blood pressure [5.75 +/- 1.65 (SE) mmHg] but did not significantly change heart rate. Suppressed melatonin significantly increased rectal temperature (0.27 +/- 0.06 degrees C), decreased foot temperature (1.98 +/- 0.70 degrees C), and increased sleep onset latency (5.53 +/- 1.87 min). Thus melatonin does not significantly alter cardiac autonomic activity and instead may bind to peripheral receptors in the vasculature and heart. Furthermore, increases in cardiac parasympathetic activity before normal nighttime sleep cannot be attributed to the concomitant increase in endogenous melatonin.  相似文献   

5.

Background

Seasonal fluctuations in physiology and behavior depend on the duration of nocturnal melatonin secretion programmed by the circadian system. A melatonin signal of a given duration, however, can elicit different responses depending on whether an animal was previously exposed to longer or shorter photoperiod signals (i.e., its photoperiodic history). This report examined in male Siberian hamsters which of two aspects of photoperiod history – prior melatonin exposure or entrainment state of the circadian system – is critical for generating contingent responses to a common photoperiodic signal.

Results

In Experiment #1, daily melatonin infusions of 5 or 10 h duration stimulated or inhibited gonadal growth, respectively, but had no effect on entrainment of the locomotor activity rhythm to long or short daylengths, thereby demonstrating that melatonin history and entrainment status could be experimentally dissociated. These manipulations were repeated in Experiment #2, and animals were subsequently exposed to a 12 week regimen of naturalistic melatonin signals shown in previous experiments to reveal photoperiodic history effects. Gonadal responses differed as a function of prior melatonin exposure but were unaffected by the circadian entrainment state. Experiment #3 demonstrated that a new photoperiodic history could be imparted during four weeks of exposure to long photoperiods. This effect, moreover, was blocked in animals treated concurrently with constant release melatonin capsules that obscured the endogenous melatonin signal: Following removal of the implants, the gonadal response depended not on the immediately antecedent circadian entrainment state, but on the more remote photoperiodic conditions prior to the melatonin implant.

Conclusions

The interpretation of photoperiodic signals as a function of prior conditions depends specifically on the history of melatonin exposure. The photoperiodic regulation of circadian entrainment state contributes minimally to the interpretation of melatonin signals.
  相似文献   

6.
The prevalence of hazardous incidents induced by attentional impairment during night work and ensuing commute times is attributable to circadian misalignment and increased sleep pressure. In a 10-day shift work simulation protocol (4 day shifts and 3 night shifts), the efficacies of 2 countermeasures against nighttime (2300 to 0700 h) attentional impairment were compared: (1) Morning Sleep (0800 to 1600 h; n = 18) in conjunction with a phase-delaying light exposure (2300 to 0300 h), and (2) Evening Sleep (1400 to 2200 h; n = 17) in conjunction with a phase-advancing light exposure (0300 to 0700 h). Analysis of the dim light salivary melatonin onset indicated a modest but significant circadian realignment in both sleep groups (evening sleep: 2.27 +/- 0.6 h phase advance, p < 0.01; morning sleep: 4.98 +/- 0.43 h phase delay, p < 0.01). Daytime sleep efficiency and total sleep time did not differ between them or from their respective baseline sleep (2200 to 0600 h; p > 0.05). However, on the final night shift, the evening sleep subjects had 37% fewer episodes of attentional impairment (long response times: 22 +/- 4 vs. 35 +/- 4; p = 0.02) and quicker responses (p < 0.01) on the Psychomotor Vigilance Task than their morning sleep counterparts. Their response speed recovered to near daytime levels (p = 0.47), whereas those of the morning sleep subjects continued to be slower than their daytime levels (p = 0.008). It is concluded that partial circadian realignment to night work in combination with reduced homeostatic pressure contributed to the greater efficacy of a schedule of Evening Sleep with a phase-advancing light exposure as a countermeasure against attentional impairment, over a schedule of Morning Sleep with a phase-delaying light exposure. These results have important implications for managing patients with shift work disorder.  相似文献   

7.
Light exposure was measured in 30 permanent night nurses to determine if specific light/dark profiles could be associated with a better circadian adaptation. Circadian adaptation was defined as a significant shift in the timing of the episode of melatonin secretion into the daytime. Light exposure was continuously recorded with ambulatory wrist monitors for 56 h, including 3 consecutive nights of work. Participants were then admitted to the laboratory for 24 h where urine was collected every 2 h under dim light for the determination of 6-sulphatoxymelatonin concentration. Cosinor analysis was used to estimate the phase position of the episode of melatonin secretion. Five participants showed a circadian adaptation by phase delay ("delayed participants") and 3 participants showed a circadian adaptation by phase advance ("advanced participants"). The other 22 participants had a timing of melatonin secretion typical of day-oriented people ("nonshifters"). There was no significant difference between the 3 groups for total light exposure or for bright light exposure in the morning when traveling home. However, the 24-h profiles of light exposure were very distinctive. The timing of the main sleep episode was associated with the timing of light exposure. Delayed participants, however, slept in darker bedrooms, and this had a major impact on their profile of light/dark exposure. Delayed and advanced participants scored as evening and morning types, respectively, on a morningness-eveningness scale. This observation suggests that circadian phase prior to night work may contribute to the initial step toward circadian adaptation, later reinforced by specific patterns of light exposure.  相似文献   

8.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean ± SD] age: 39.2 ± 12.5 yrs; mean yrs on shift = 9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6 ± 8.6 yrs; mean years on shift = 8.4) participated. All participants were admitted to the sleep center at 16:00 h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00 h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42 ± 3.25 h, whereas in the SWD group it was 20:42 ± 2.21 h (z = 2.4; p 相似文献   

9.
The human circadian timing system has previously been shown to free run with a period slightly longer than 24 h in subjects living in the laboratory under conditions of forced desynchrony. In forced desynchrony, subjects are shielded from bright light and periodic time cues and are required to live on a day length outside the range of circadian entrainment. The work schedule used for most personnel aboard American submarines is 6 h on duty alternating with 12 h off duty. This imposed 18-h cycle is too short for human circadian synchronization, especially given that there is no bright-light exposure aboard submarines. However, crew members are exposed to 24-h stimuli that could mediate synchronization, such as clocks and social contacts with personnel who are living on a 24-h schedule. The authors investigated circadian rhythms of salivary melatonin in 20 crew members during a prolonged voyage on a Trident nuclear submarine. The authors found that in crew members living on the 18-h duty cycle, the endogenous rhythm of melatonin showed an average period of 24.35 h (n = 12, SD = 0.18 h). These data indicate that social contacts and knowledge of clock time are insufficient for entrainment to a 24-h period in personnel living by an 18-h rest-activity cycle aboard a submarine.  相似文献   

10.
Intolerance to shift work may result from individual susceptibility to an internal desynchronization. Some shift workers (SW) who show desynchronization of their circadian rhythms (e.g., sleep-wake, body temperature, and grip strength of both hands) exhibit symptoms of SW intolerance, such as sleep alteration, persistent fatigue, sleep medication dependence, and mood disturbances, including depression. Existing time series data previously collected from 48 male Caucasian French SW were reanalyzed specifically to test the hypothesis that internal synchronization of circadian rhythms is associated with SW intolerance and symptoms. The entry of the subjects into the study was randomized. Three groups were formed thereafter: SW with good tolerance (n=14); SW with poor tolerance, as evident by medical complaints for at least one year (n=19); and former SW (n=15) with very poor tolerance and who had been discharged from night work for at 1.5 yr span but who were symptom-free at the time of the study. Individual and longitudinal time series of selected variables (self-recorded sleep-wake data using a sleep log, self-measured grip strength of both hands using a Colin Gentile dynamometer, and oral temperature using a clinical thermometer) were gathered for at least 15 days, including during one or two night shifts. Measurements were performed 4-5 times/24 h. Power spectra used to quantify the prominent period (tau) and t-test, chi square, and correlation coefficient were used as statistical tools. The mean (+/-SEM) age of SW with good tolerance was greater than that of SW with poor tolerance (44.9+/-2.1 yrs vs. 40.1+/-2.6 yrs, p<.001) and of former SW discharged from night work (very poor tolerance; 33.4+/-1.7, p<.001). The shift-work duration (yrs) was longer in SW with good than poor tolerance (19.9+/-2.2 yrs vs. 15.7+/-2.2; p<0.002) and former SW (10.7+/-1.2; p<.0001). The correlation between subject age and shift-work duration was stronger in tolerant SW (r=0.97, p<.0001) than in non-tolerant SW (r=0.80, p<0.001) and greater than that of former SW (r=0.72, p<.01). The mean sleep-wake rhythm tau was 24 h for all 48 subjects. The number of desynchronized circadian rhythms (tau differing from 24 h) was greater in non-tolerant than in tolerant SW (chi square=38.9, p<.0001). In Former SW (i.e., 15 individuals assessed in follow-up studies done 1.5 to 20 yrs after return to day work), both symptoms of intolerance and internal desynchronization were reduced or absent. The results suggest that non-tolerant SW are particularly sensitive to the internal desynchronization of their circadian time organization.  相似文献   

11.
Effects of two different light intensities during daytime were examined on human circadian rhythms in plasma melatonin, core body temperature, and wrist activity under a fixed sleep schedule. Sleep qualities as indicated by polysomnography and subjective sleepiness were also measured. In the first week, under dim light conditions ( approximately 10 lx), the onset and peak of nocturnal melatonin rise were significantly delayed, whereas the end of melatonin rise was not changed. The peak level of melatonin rise was not affected. As a result, the width of nocturnal melatonin rise was significantly shortened. In the second week, under bright light conditions ( approximately 5,000 lx), the phases of nocturnal melatonin rise were not changed further, but the peak level was significantly increased. Core body temperature at the initial sleep phase was progressively elevated during the course of dim light exposure and reached the maximum level at the first night of bright light conditions. Subjective sleepiness gradually declined in the course of dim light exposure and reached the minimum level at the first day of bright light. These findings indicate that repeated exposures to daytime bright light are effective in controlling the circadian phase and increasing the peak level of nocturnal melatonin rise in plasma and suggest a close correlation between phase-delay shifts of the onset of nocturnal melatonin rise or body temperature rhythm and daytime sleepiness.  相似文献   

12.
Although extraocular light can entrain the circadian rhythms of invertebrates and nonmammalian vertebrates, almost all studies show that the mammalian circadian system can only be affected by light to the eyes. The exception is a recent study by Campbell and Murphy that reported phase shifts in humans to bright light applied with fiber-optic pads behind the knees (popliteal region). We tested whether this extraocular light stimulus could accelerate the entrainment of circadian rhythms to a shift of the sleep schedule, as occurs in shift work or jet lag. In experiment 1, the sleep/dark episodes were delayed 8h from baseline for 2 days, and 3h light exposures were timed to occur before the temperature minimum to help delay circadian rhythms. There were three groups: (1) bright (about 13,000 lux) extraocular light from fiber-optic pads, (2) control (dim light, 10-20 lux), and (3) medium-intensity (about 1000 lux) ocular light from light boxes. In experiment 2, the sleep/dark episodes were inverted, and extraocular light was applied either before the temperature minimum to help delay circadian rhythms or after the temperature minimum to help advance rhythms. Circadian phase markers were the salivary dim light melatonin onset (DLMO) and the rectal temperature minimum. There was no evidence that the popliteal extraocular light had a phase-shifting effect in either experiment. Possible reasons for phase shifts in the Campbell and Murphy study and not the current study include the many differences between the protocols. In the current study, there was substantial sleep deprivation before the extraocular light was applied. There was a large shift in the sleep/dark schedule, rather than allowing subjects to sleep each day from midnight to noon, as in the Campbell and Murphy study. Also, when extraocular light was applied in the current protocol, subjects did not experience a change from sleeping to awake, a change in posture (from lying in bed to sitting in a chair), or a change in ocular light (from dark to dim light). Further research is necessary to determine the conditions under which extraocular light might produce phase shifts in human circadian rhythms. (Chronobiology International, 17(6), 807-826, 2000).  相似文献   

13.
Daily rhythms in melatonin secretion were monitored in four healthy adult males by measuring the melatonin contents of sequential 4-hour urine specimens and of plasma samples collected at 12-hour intervals, or, in one subject, continuously for 24 hours. All subjects exhibited similar diurnal rhythms, with peak urinary melatonin excretion rates and blood melatonin levels occurring during the daily period of darkness and sleep. When the daily light/dark regimen was phase-shifted by 180°, the plasma and urinary melatonin rhythms required 5–7 days (depending on the subject) to re-entrain to the new schedule. Simultaneous measurements of plasma melatonin levels and melatonin excretion rates indicate that urinary melatonin reflects, with remarkable fidelity, circulating melatonin levels.  相似文献   

14.
Light/dark (L/D) and temperature are two major factors in the entrainment of circadian rhythms. The input pathways of these two environmental factors for the entrainment of circadian rhythms in Synechococcus RF-1 are different since the overt rhythms in mutant CR-1, one of the circadian-rhythm mutants of Synechococcus RF-1, could be established by temperature cycles but not by L/D. Therefore, it was of interest to investigate the phases of Synechococcus RF-1 cells entrained simultaneously by L/D and temperature. The circadian rhythms of nitrogenase activity and protein synthesis in RF-1 cells entrained by L/D, and by lowered or raised temperatures differed in their peaks of activity. Comparison of the phases of RF-1 cells entrained by L/D and temperature independently, and by L/D and temperature simultaneously indicated that L/D entrainment has priority over the temperature effect. Received: 8 February 1999 / Accepted: 1 April 1999  相似文献   

15.
The objective of this study was to assess whether melatonin accelerates the re-entrainment of locomotor activity after 6 h of advance and delay phase shifts following exposure to LD 12:12 cycle (simulating jet-lag/shift work). An experimental group of adult male field mice Mus booduga were subjected to melatonin (1 mg/kg) through i.p. and the control group were treated with 50 % DMSO. The injections were administered on three consecutive days following 6h of phase advance and delay, at the expected time of “lights off”. The results show that melatonin accelerates the re-entrainment after phase advance (29%) when compared with control mice. In the 6 h phase delay study, the experimental mice (melatonin administered) take more cycles for re-entrainment (51%) than the control. Further, the results suggest that though melatonin may be useful for the treatment of jet-lag caused by eastward flight (phase advance) it may not be useful for westward flight (phase delay) jet-lag  相似文献   

16.
The current study investigated changes in night-time performance, daytime sleep, and circadian phase during a week of simulated shift work. Fifteen young subjects participated in an adaptation and baseline night sleep, directly followed by seven night shifts. Subjects slept from approximately 0800 hr until they naturally awoke. Polysomnographic data was collected for each sleep period. Saliva samples were collected at half hourly intervals, from 2000 hr to bedtime. Each night, performance was tested at hourly intervals. Analysis indicated that there was a significant increase in mean performance across the week. In general, sleep was not negatively affected. Rather, sleep quality appeared to improve across the week. However, total sleep time (TST) for each day sleep was slightly reduced from baseline, resulting in a small cumulative sleep debt of 3.53 (SD = 5.62) hours. Finally, the melatonin profile shifted across the week, resulting in a mean phase delay of 5.5 hours. These findings indicate that when sleep loss is minimized and a circadian phase shift occurs, adaptation of performance can occur during several consecutive night shifts.  相似文献   

17.
Previous research points to some inappropriate nutritional habits among nurses working night shifts. However, the knowledge of specific nutritional components of their diet has been limited. In the present study, we aimed to investigate the association between rotating night shifts of nurses and midwives and their usual dietary intake of energy and nutrients.

A cross-sectional study was conducted among 522 Polish nurses and midwives: 251 working rotating night shifts (i.e. working night shift followed by a day off on a subsequent day) and 271 day workers. Polish adaptation of the Food Frequency Questionnaire, regarding 151 food items, was used to assess the usual dietary energy and nutrient intake. Data on occupational history and potential confounders were collected via face-to-face interviews. Body weight, height, waist and hip circumference were measured. Linear regression models: univariate (crude) and multivariate (adjusted) were run, with the nutrient intake as dependent variables, night work characteristics, and important confounders.

Among nurses and midwives working rotating night shifts, a significantly higher adjusted mean intake was found for the total energy (2005 kcal vs 1850 kcal) and total fatty acids (77.9 g vs 70.4 g) when compared to day workers, as well as for cholesterol (277 mg vs 258 mg), carbohydrates (266 g vs 244 g) and sucrose (55.8 g vs 48.6 g). Night shift work duration was inversely related to the consumption of calcium, phosphorus, vitamin A, vitamin C and % energy from proteins. The higher energy consumption may contribute to increase risk of overweight and obesity among nurses working night shifts.  相似文献   


18.
We aimed to examine the effects of night work on salivary melatonin concentration during and subsequent to night work and the mediating role of light. We included 254 day workers and 87 night workers who were followed during 322 work days and 301 days off work. Each day was defined as the 24 hour period starting from the beginning of a night shift or from waking in the mornings with day work and days off. Light levels were recorded and synchronized with diary information (start and end of sleep and work). On average, participants provided four saliva samples per day, and these were analyzed for melatonin concentration by liquid chromatography tandem mass spectrometry (LC-MS/MS). Differences between day and night workers on work days and days off were assessed with multilevel regression models with melatonin concentration as the primary outcome. All models were stratified or adjusted by time of day. For light exposure, we estimated the total, direct and indirect effects of night work on melatonin concentrations obtaining 95% confidence intervals through bootstrapping. On work days, night workers showed 15% lower salivary melatonin concentrations compared with day workers (?15.0%; 95% CI: ?31.4%; 5.2%). During the night, light exposure mediated a melatonin suppression of approximately 6% (?5.9%, 95% CI: ?10.2%; ?1.5%). No mediating effect of light was seen during the day time. On days off, we observed no difference in melatonin concentrations between day and night workers. These findings are in accordance with a transient and partly light-mediated effect of night work on melatonin production.  相似文献   

19.
Internal desynchronization of circadian rhythms and tolerance of shift work   总被引:1,自引:0,他引:1  
Fifteen male subjects including 12 shift workers (oil refinery operators) volunteered to document circadian rhythms in sleep-wake, grip strength of both hands, peak expiratory flow, heart rate, self-rated drowsiness, fatigue and attention. Each of these variables was measured 4 to 6 times/day for 2 to 3 weeks. In addition, both axillary temperature (with a shielded probe) and wrist activity were almost continuously recorded at 15 min intervals during the same time span. Individual time series were analyzed according to several statistical methods (power spectrum, cosinor, chi 2, etc.), in order to estimate the prominent circadian period tau and to evaluate both individual and subgroup differences with regard to tolerance of shift work, age, duration of shift work. The present study confirms for continuously recorded temperature and wrist activity, grip strength of both hands, heart rate and peak expiratory flow that intolerance of shift work is frequently associated with an internal desynchronization. However, this conclusion cannot be extended to circadian rhythms in self-rated drowsiness, fatigue and attention. The internal desynchronization among several circadian rhythms supports the hypothesis that these latter are driven by several oscillators, with presumable differences between right and left hemispheres as suggested by unequal values of tau in rhythms of both hand grip strength. Since an internal desynchronization can be observed in tolerant shift workers having no complaint, it is likely that symptoms of intolerance are related to the subject's sensitivity to internal desynchronization rather than to the desynchronization itself.  相似文献   

20.
Background: Shift work has been associated with increased body mass index (BMI), metabolic disruption and increased chronic disease risk. Typically, these reports compare individuals who work the day shift to those who work the night shift. Because shift assignment is not random, differences may reflect other, unmeasured characteristics that account for outcome differences.

Objective: To compare dietary intake on days on which the participant worked the night shift to days on which she worked the day shift in a population of female nurses who work rotating shifts at a hospital.

Methods: This cross-sectional study recruited 132 female registered nurses who work rotating shifts in surgical or internal medicine departments. Dietary intake was ascertained using food diaries and analyzed on Tzameret Nutrition Analysis Software (Israel Ministry of Health). Demographic and anthropometric variables were also recorded.

Results: Compared to dietary intake on a day the nurse worked the day shift, intake of the following nutrients increased significantly on the day she worked the night shift: energy; protein; carbohydrates; total fat; saturated fat; and calcium.

Discussion: A significant increase in calorie, macronutrient and calcium intake on days the night shift was worked compared to days the day shift was worked among female nurses who work rotating shifts was demonstrated. These findings could be extended to other professionals who work rotating shifts, including physicians and allied healthcare personnel. It appears that the difference detected may be influenced by the food supplied by the hospital as well as by increased food intake in general.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号