首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cultured pituatary gonadotrophs, gonadotropin-releasing hormone (GnRH) caused dose-dependent and biphasic increases in cytoplasmic calcium concentration ([Ca2+]i) and LH release. Both extra- and intracellular calcium pools participate in GnRH-induced elevation of [Ca2+]i and LH secretion. The spike phase of the [Ca2+]i response represents the primary signal derived predominantly from the rapid mobilization of intracellular Ca2+. In contrast, the prolonged phase of the Ca2+ signal depends exclusively on Ca2+ entry from the extracellular pool. The influx of Ca2+ occurs partially through dihydropyridine-sensitive calcium channels. Both [Ca2+]i and LH responses to increasing concentrations of GnRH occur over very similar time scales, suggesting that increasing degrees of receptor occupancy are transduced into amplitude-modulated Ca2+ responses, which in turn activate exocytosis in a linear manner. However, several lines of evidence indicated the complexity over the relationship between Ca2+ signaling and LH exocytosis. In contrast to [Ca2+]i measurements in cell suspension, single cell Ca2+ measurements revealed the existence of a more complicated pattern of Ca2+ response to GnRH, with a biphasic response to high agonist doses and prominent oscillatory responses to lower GnRH concentrations, with a log-linear correlation between GnRH dose and the frequency of Ca2+ spiking. In addition, analysis of the magnitudes of the magnitudes of the [Ca2+]i and LH responses of gonadotrophs to a wide range of GnRH concentrations in the presence and absence of extracellular Ca2+, and to K+ and phorbol ester stimulation, showed non-linearity between these parameters with amplification of [Ca2+]i-mediated exocytosis. Studies on cell depleted of protein kinase C under conditions that did not change the LH pool suggested the participation of protein kinase C in this amplication, especially during the plateau phase of the secretory response to GnRH.  相似文献   

2.
To elucidate the relationship between intracellular free Ca2+ concentration ([Ca2+]i) and Ca2+-signalling by the sarcoplasmic reticulum (SR) in Ca2+-overloaded heart muscle cells, the direct effects of “basal” [Ca2+]i on calcium waves were investigated by altering the membrane potential. When basal inter-calcium wave (BCW) [Ca2+]i was maintained at a high level, (i) calcium waves showed more gradual and more rapidly suppressed increase in [Ca2+]-profile (P < 0.005), and (ii) calcium waves occurred at a significantly higher frequency and velocity (259% and 137%), than when low BCW [Ca2+]i was maintained. Similar investigations on inhibition of the Na+-Ca2+ exchanger, however, showed that membrane potential did not elicit direct effects on calcium waves. These results showed that the elevation of BCW [Ca2+]i per se directly influences Ca2+-signalling in heart muscle cells through non-equilibrated release-restoration Ca2+-handling by the SR.  相似文献   

3.
The dynamic polar polymers actin filaments and microtu-bules are usually employed to provide the structural ba-sis for establishing cell polarity in most eukaryotic cells. Radially round and immotile spermatids from nematodes contain almost no actin or tubulin, but still have the abil-ity to break symmetry to extend a pseudopod and initiate the acquisition of motility powered by the dynamics of cytoskeleton composed of major sperm protein (MSP) during spermiogenesis (sperm activation). However, the signal transduction mechanism of nematode sperm activation and motility acquisition remains poorly under-stood. Here we show that Ca2+ oscillations induced by the Ca2+ release from intracellular Ca2+ store through inositol (1,4,5)-trisphosphate receptor are required for Ascaris suumsperm activation. The chelation of cytosolic Ca2+ suppresses the generation of a functional pseudopod, and this suppression can be relieved by introducing ex-ogenous Ca2+ into sperm cells. Ca2+ promotes MSP-based sperm motility by increasing mitochondrial membrane potential and thus the energy supply required for MSP cytoskeleton assembly. On the other hand, Ca2+ promotes MSP disassembly by activating Ca2+/calmodulin-depend-ent serine/threonine protein phosphatase calcineurin. In addition, Ca2+/camodulin activity is required for the fusion of sperm-specific membranous organelle with the plasma membrane, a regulated exocytosis required for sperm mo-tility. Thus, Ca2+ plays multifunctional roles during sperm activation in Ascaris suum.  相似文献   

4.
We investigated the effect of lysophosphatidic acid (LPA), a bioactive phospholipid, on the response in cytosolic free Ca2+ concentration ([Ca2+]i) to mechanical stress in cultured bovine lens epithelial cells. Spritzing of bath solution onto cells as mechanical stress caused marked increase in [Ca2+]i in the presence of LPA and this increase was concentration-dependent (1–10 μM), whereas neither addition of LPA alone nor the mechanical stress in the absence of LPA affected [Ca2+]i. The mechanical stress-induced increase in [Ca2+]i in the presence of LPA was inhibited by removing extracellular Ca2+ or by addition of Gd3+, a blocker of mechanosensitive cation channels, but not by nicardipine, thapsigargin, an inhibitor of endoplasmic reticulum-ATPase pump, or U73122, a phospholipase C inhibitor. These results show that LPA sensitises Ca2+ influx through cation-selective mechanosensitive channels, but does not sensitise Ca2+ release from intracellular stores, triggered by changes in mechanical stress. On the other hand, phosphatidic acid had less of a sensitising effect than LPA, and neither lysophosphatidylcholine nor chlorpromazine had any effect. Also Ca2+ mobilising agonists, ATP, histamine and carbachol, did not sensitise Ca2+ response to the mechanical stress. These results show that LPA sensitises mechanoreceptor-linked response in lens epithelial cells, suggesting that it plays a role in the development of cataracts due to increases in [Ca2+]i induced by mechanical stress.  相似文献   

5.
Oxidative stress and Mrp2 internalization   总被引:2,自引:0,他引:2  
Oxidative stress in the liver is sometimes accompanied by cholestasis. We have described the internalization of multidrug resistance-associated protein 2/ATP-binding cassette transporter family 2 (Mrp2/Abcc2), a biliary transporter involved in bile-salt-independent bile flow, under ethacrynic acid (EA)-induced acute oxidative stress in rat liver. However, the signaling pathway and regulatory molecules have not been investigated. In the present study, we investigated the mechanism of EA-induced Mrp2 internalization using isolated rat hepatocyte couplets (IRCHs). The Mrp2 index, defined as the ratio of Mrp2-positive canalicular membrane staining in IRCHs per number of cell nuclei, was significantly reduced by treatment with EA. This reduction was abolished by a nonspecific protein kinase C (PKC) inhibitor Gö6850, a Ca2+ chelator, EGTA, but not by a protein kinase A (PKA)-selective inhibitor, a Ca2+-dependent conventional PKC (cPKC) inhibitor Gö6976, or a protein kinase G (PKG) inhibitor (1 μM). Moreover, an increase in the intracellular Ca2+ level and NO release into medium were observed shortly after the EA treatment. Both of these increases, as well as Mrp2 internalization, were completely blocked by EGTA. In conclusion, EA produced a reduction in GSH, Ca2+ elevation, NO production, and nPKC activation in a sequential manner, finally leading to Mrp2 internalization.  相似文献   

6.
Airway myocytes are the primary effectors of airway reactivity which modulates airway resistance and hence ventilation. Stimulation of airway myocytes results in an increase in the cytosolic Ca2+ concentration ([Ca2+]i) and the subsequent activation of the contractile apparatus. Many contractile agonists, including acetylcholine, induce [Ca2+]i increase via Ca2+ release from the sarcoplasmic reticulum through InsP3 receptors. Several models have been developed to explain the characteristics of InsP3-induced [Ca2+]i responses, in particular Ca2+ oscillations. The article reviews the modelling of the major structures implicated in intracellular Ca2+ handling, i.e., InsP3 receptors, SERCAs, mitochondria and Ca2+-binding cytosolic proteins. We developed theoretical models specifically dedicated to the airway myocyte which include the major mechanisms responsible for intracellular Ca2+ handling identified in these cells. These biocomputations pointed out the importance of the relative proportion of InsP3 receptor isoforms and the respective role of the different mechanisms responsible for cytosolic Ca2+ clearance in the pattern of [Ca2+]i variations. We have developed a theoretical model of membrane conductances that predicts the variations in membrane potential and extracellular Ca2+ influx. Stimulation of this model by simulated increase in [Ca2+]i predicts membrane depolarisation, but not great enough to trigger a significant opening of voltage-dependant Ca2+ channels. This may explain why airway contraction induced by cholinergic stimulation does not greatly depend on extracellular calcium. The development of such models of airway myocytes is important for the understanding of the cellular mechanisms of airway reactivity and their possible modulation by pharmacological agents.  相似文献   

7.
Stimulation of rat cerebral cortex with endothelin-1 (ET-1) caused an increase in the tyrosine phosphorylation of several proteins. Two of these phosphoproteins were identified by the immunoprecipitation assays as being the focal adhesion kinase p125FAK and crk-associated substrate p130Cas. This effect was time- and dose-dependent, with an EC50 value of 3.9×10−8 M. In addition, the cerebral cortex ET receptor subtype involved in this action was determined by using BQ-123 and BQ-788, which are ETA and ETB receptor antagonists respectively. Our results indicate that the ET-1 effect on protein tyrosine phosphorylation occurred through ETB receptors. The requirement for extracellular Ca2+ on ET-1 action was also studied. ET-1-stimulated tyrosine phosphorylation of both p125FAK and p130Cas was abolished in the absence of external Ca2+ or in the presence of nimodipine, a Ca2+ channel-blocker. These results suggest that the ET-1-stimulated protein tyrosine phosphorylation was secondary to Ca2+ influx through the dihydropyridine Ca2+-channel. In slices where protein kinase C was inhibited, ET-1-stimulated tyrosine phosphorylation of both proteins was reduced. These results indicate that ET-1 modulates the tyrosine phosphorylation of specific proteins, which may be involved in adhesion processes in the brain.  相似文献   

8.
9.
Mitochondrial calcium uniporter (MCU) is a conserved Ca2+ transporter at mitochondrial in eukaryotic cells. However, the role of MCU protein in oxidative stressinduced cell death remains unclear. Here, we showed that ectopically expressed MCU is mitochondrial localized in both HeLa and primary cerebellar granule neurons (CGNs). Knockdown of endogenous MCU decreases mitochondrial Ca2+ uptake following histamine stimulation and attenuates cell death induced by oxidative stress in both HeLa cells and CGNs. We also found MCU interacts with VDAC1 and mediates VDAC1 overexpression-induced cell death in CGNs. This finding demonstrates that MCU-VDAC1 complex regulates mitochondrial Ca2+ uptake and oxidative stress-induced apoptosis, which might represent therapeutic targets for oxidative stress related diseases.  相似文献   

10.
Endothelial cell (EC) cytoskeletal proteins are one of the earliest primary targets of second messenger cascades generated in response to inflammatory agonists. Actin binding proteins, by modulating actin gelation-solation state and membrane-cytoskeleton interactions, in part regulate cell motility and cell-cell apposition. This in turn can also modulate interendothelial junctional diameter and permeability. Nonmuscle filamin (ABP-280), a dimeric actincrosslinking protein, promotes orthogonal branching of F-actin and links microfilaments to membrane glycoproteins. In the present study, immunoblot analysis demonstrates that filamin protein levels are low in sparse EC cultures, increase once cell-cell contact is initiated and then decrease slightly at post-confluency. Both bradykinin and ionomycin cause filamin redistribution from the peripheral cell border to the cytosol of confluent EC. Forskolin, an activator of adenylate cyclase, blocks filamin translocation. Bradykinin activation of EC is not accompanied by significant proteolytic cleavage of filamin. Instead, intact filamin is recycled back to the membrane within 5–10 min of bradykinin stimulation. Inhibitors of calcium/calmodulin dependent protein kinase (KT-5926 and KN-62) attenuate bradykinin-induced filamin translocation. H-89, an inhibitor of cAMP-dependent protein kinase, causes translocation of filamin in unstimulated cells. Calyculin A, an inhibitor of protein phosphatases, also causes translocation of filamin in the absence of an inflammatory agent. ML-7, an inhibitor of myosin light chain kinase and phorbol myristate acetate, an activator of protein kinase C, do not cause filamin movement into the cytosol, indicating that these pathways do not modulate the translocation. Pharmacological data suggest that filamin translocation is initiated by the calcium/calmodulin-dependent protein kinase whereas the cAMP-dependent protein kinase pathway prevents translocation. Inflammatory agents therefore may increase vascular junctional permeability by increasing cytoplasmic calcium, which disassembles the microfilament dense peripheral band by releasing filamin from F-actin. © 1996 Wiley-Liss, Inc.  相似文献   

11.
The ability of neurotensin (NT) to elevate cytosolic Ca2+ in small cell lung cancer (SCLC) cells was investigated using the fluorescent Ca2+ indicator Fura 2-AM. Using SCLC cell line NCI-H345, NT elevated cytosolic Ca2+ levels in a concentration-dependent manner. Using a 10 nM dose, NT and C-terminal fragments such as NT(8–13) but not N-terminal fragments such as NT(1–8) elevated the cytosolic Ca2+ levels. Because EGTA (5 mM) did not affect the NT response, NT may cause release of Ca2+ from intracellular stores. These data indicate that SCLC NT receptors may use Ca2+ as a second messenger.  相似文献   

12.
This study explored the effects of inhibition of endoplasmic reticulum (ER) Ca2+-ATPase on lipopolysaccharide (LPS)-induced protein kinase C (PKC) activation, nuclear factor-κB (NF-κB) translocation, inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in RAW 264.7 macrophages. Thapsigargin (TG) irreversibly inhibits ER Ca2+-ATPase and LPS-induced NO production is reduced even after washout. TG also attenuated LPS-stimulated iNOS expression by using immunoblot analysis. However, another distinct fully reversible ER Ca2+-ATPase inhibitor, 2,5-di-tert-butylhydroquinone (DBHQ), ionophore A23187 and ionomycin could exert a similar effect to TG in increasing intracellular calcium concentration; however, these agents could not mimic TG in reducing iNOS expression and NO production. LPS increased PKC- and -β activation, and TG pretreatment attenuated LPS-stimulated PKC activation. Not did pretreatment with DBHQ, A23187 and ionomycin reduce LPS-stimulated PKC activation. Furthermore, NF-κB-specific DNA–protein-binding activity in the nuclear extracts was enhanced by treatment with LPS, and TG pretreatment attenuated LPS-stimulated NF-κB activation. None of DBHQ, A23187 and ionomycin pretreatment reduced LPS-stimulated NF-κB activation. These data suggest that persistent inhibition of ER Ca2+-ATPase by TG would influence calcium release from ER Ca2+ pools that was stimulated by the LPS activated signal processes, and might be the main mechanism for attenuating PKC and NF-κB activation that induces iNOS expression and NO production.  相似文献   

13.
Tumour-promoting phorbol esters (phorbol-12-myristate-13-acetate, PMA; phorbol-12,13-dibutyrate, PDBu) but not 4β-phorbol, activate protein kinase C. Using human platelets pre-labelled with quin2 or 32PO4 we examined the effects of these compounds on human platelet cytosolic free Ca2+ ([Ca2+]j) and on [32]phosphatidic acid ([32P]PtdOH). PMA and PDBu, but not 4β-phorbol inhibited thrombin-, PAF- and vasopressin-induced elevation of [Ca2+], and [2+P]PtdOH formation. It is suggested that protein kinase C may act to terminate the transduction processes that link receptor occupancy to cellular activation.  相似文献   

14.
We previously demonstrated that oxysterols added to the culture medium of NRK 49F cells labelled with [14C] arachidonic acid potentiated arachidonic acid (AA) release and prostaglandin (PG) E2 biosynthesis induced by the activation of these cells with fetal calf serum (FCS). In the absence of FCS, oxysterols had no effect on AA release. As phospholipase (Plase) A2 activity is Ca2+-dependent, we investigated whether oxysterol potentiating effect on AA release was related to an effect of these compounds on cell Ca2+ concentration. In this paper, we show that the intensity of potentiation by oxysterol varies with the external cell Ca2+ concentration; when external Ca2+ is chelated by EGTA, the oxysterol effect persists, though it is decreased. The Ca2+ channel inhibitor nifedipine does not decrease the potentiating effect of 25-OH cholesterol, indicating that, if oxysterol favours Ca2+ entry into the cell, the nifedipine inhibited channel is not involved. At the usual concentration (5 μm/ml), oxysterols are not able to increase, mimmediately or after a short time of contact (90 min) the concentration of intracellular free Ca2+ ([Ca2+])i measured by fluorescence of Quinn-2; at very high concentration of oxysterol (25 μm/ml), [Ca2+]i only slightly increases (+30%). The liberation of AA induced by cell activation with the Ca2+ ionophore ionomycin is also potentiated by 25-OH cholesterol. All these observations are not in favour of a proper effect o oxysterols on cell Ca2+ level.  相似文献   

15.
We have studied the effects of cholinegic agonists on the rates of insulin release and the concentrations of diacylglycerol (DAG) and intracellular free Ca2+ ([Ca2+]i) in the β-cell line MIN6. Insulin secretion was stimulated by glucose, by glibenclamide and by bombesin. In the presence of glucose, both acetylcholine (ACh) and carbachol (CCh) produced a sustained increase in the rate of insulin release which was blocked by EGTA or verapamil. The DAG content of MIN6 β-cells was not affected by glucose. Both CCh and ACh evoked an increase in DAG which was maximal after 5 min and returned to basal after 30 min; EGTA abolished the cholinergic-induced increased in DAG. ACh caused a transient rise in [Ca2+]i which was abolished by omission of Ca2+ or by addition of devapamil. Thus, cholinergic stimulation of β-cell insulin release is associated with changes in both [Ca2+]i and DAG. The latter change persists longer than the former and activation of protein kinase C and sensitization of the secretory process to Ca2+ may underlie the prolonged effects of cholinergic agonists on insulin release. However, a secretory response to CCh was still evident after both [Ca2+]i and DAG had returned to control values suggesting that additional mechanisms may be involved.  相似文献   

16.
In this study, we investigated the vasoactive intestinal polypeptide (VIP)-stimulated cAMP production and its interaction with protein kinase C activation and elevation of intracellular Ca2+ in N1E-115 neuroblastoma cells. VIP treatment caused a 55-fold increase in cAMP accumulation. Addition of 4β-phorbol 12-myristate 13-acetate reduced VIP-but not forskolin-stimulated cAMP response. In comparison, ionomycin potentiated both VIP- and forskolin-induced cAMP accumulation. Our results indicate that VIP stimulates cAMP accumulation in N1E-115 cells, and that although activation of protein kinase C inhibits the VIP-stimulated cAMP response, elevation of intracellular Ca2+ potentiates this signaling pathway.  相似文献   

17.
R. R. Ryan  J. L. Daniel  A. Cowan 《Peptides》1993,14(6):1231-1235
We examined the profile of two bombesin (BN) antagonists, (CH3)2CHCO-His-Trp-Ala-Val- -Ala-His-Leu-NHCH3] (ICI 216140) and [ -Phe6,des-Met14]BN(6–14)ethylamide (DPDM-BN EA), against neuromedin B-induced Ca2+ mobilization in the small cell lung cancer (SCLC) line NCI-H345. Neuromedin B (NMB), a BN-like peptide sharing sequence homology with ranatensin, elicited a concentration-dependent Ca2+ release (in part) from intracellular stores. Sequential addition of NMB attenuated Ca2+ mobilization. Desensitization occurred between BN and NMB; depletion of intracellular Ca2+ is a likely mechanism because thapsigargin stimulated Ca2+ release after a maximally desensitizing dose of NMB. ICI 216140 and DPDM-BN EA competitively inhibited BN-induced Ca2+ transients. In contrast, these compounds antagonized NMB-stimulated Ca2+ transients in a noncompetitive manner. The pharmacological profiles obtained support receptor heterogeneity for BN-like peptides on this SCLC line, underscoring the need for thorough examination of dose-response relationships when investigating effects of BN analogues on intact cells.  相似文献   

18.
陈娇娆  续旭  胡章立  杨爽 《植物研究》2022,42(4):713-720
盐胁迫对植物的生长和发育造成严重影响,其危害包括渗透胁迫、离子毒害等,严重损害了农业生产和粮食安全。在盐胁迫下,植物相关感受器接受刺激,使得Ca2+通过细胞膜以及细胞内钙库膜上打开的Ca2+通道进入细胞质基质,导致细胞质内Ca2+浓度升高,产生钙信号。钙离子作为重要的第二信使,在植物细胞内和细胞间传递信号,信号往下游传递,在不同生长和发育阶段引起植物一系列的生理响应来应对盐胁迫影响。钙信号主要通过钙调蛋白(CaM)、钙调素样蛋白(CML)、钙依赖性蛋白激酶(CDPK)、钙调磷酸酶B样蛋白(CBL)和CBL互作蛋白激酶(CIPK)感知并将特异的钙信号信息传递到下游;从而激活植物盐胁迫生理响应。本文主要综述植物如何感知盐胁迫刺激,以及钙信号产生与传导机制,并对该研究领域需解决的问题进行了展望。  相似文献   

19.
To quantitatively understand intracellular Na+ and Cl homeostasis as well as roles of Na+/K+ pump and cystic fibrosis transmembrane conductance regulator Cl channel (ICFTR) during the β1-adrenergic stimulation in cardiac myocyte, we constructed a computer model of β1-adrenergic signaling and implemented it into an excitation-contraction coupling model of the guinea-pig ventricular cell, which can reproduce membrane excitation, intracellular ion changes (Na+, K+, Ca2+ and Cl), contraction, cell volume, and oxidative phosphorylation. An application of isoproterenol to the model cell resulted in the shortening of action potential duration (APD) after a transient prolongation, the increases in both Ca2+ transient and cell shortening, and the decreases in both Cl concentration and cell volume. These results are consistent with experimental data. Increasing the density of ICFTR shortened APD and augmented the peak amplitudes of the L-type Ca2+ current (ICaL) and the Ca2+ transient during the β1-adrenergic stimulation. This indirect inotropic effect was elucidated by the increase in the driving force of ICaL via a decrease in plateau potential. Our model reproduced the experimental data demonstrating the decrease in intracellular Na+ during the β-adrenergic stimulation at 0 or 0.5 Hz electrical stimulation. The decrease is attributable to the increase in Na+ affinity of Na+/K+ pump by protein kinase A. However it was predicted that Na+ increases at higher beating rate because of larger Na+ influx through forward Na+/Ca2+ exchange. It was demonstrated that dynamic changes in Na+ and Cl fluxes remarkably affect the inotropic action of isoproterenol in the ventricular myocytes.  相似文献   

20.
Markus Hoth 《FEBS letters》1996,390(3):285-288
Highly Ca2+ selective Ca2+ channels activated by store depletion have been recently described in several cell types and have been termed CRAC channels (for calcium release-activated calcium). The present study shows that following store depletion in mast and RBL-1 cells, monovalent outward currents could be recorded if the internal solution contained K+ but not Cs+. The activation of the outward K+ current correlated with the activation of ICRAC, in both time and amplitude, suggesting that the K+ current might be carried by CRAC channels. The amplitude of the outward current was increased if external Ca2+ was reduced or replaced by external Ba2+. The outward K+ conductance might have a physiological role in maintaining the driving force for Ca2+ entry during the activation of CRAC channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号