首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of the plasma membrane of Schizosaccharomyces pombe was studied by freeze-fracture using invaginations of the plasma membrane as natural markers and filipin-induced deformations as artificial markers. In accord with the mode of growth of this organism, ultrastructural aspects of the plasma membrane were related to the following ring zones: the growing pole, adjacent regions, proximal regions, the new cell pole, and the middle in dividing cells. The growing pole and adjacent regions had no or only a few invaginations. Filipin induced numerous deformations in these regions. By contrast, the proximal regions of the plasma membrane had several invaginations and resisted filipin-induced deformation. Concomitantly with commitment to cytokinesis, both the invaginations and the resistance to filipin-induced deformation disappeared in the middle. The results presented here strongly suggest the existence of two states of the plasma membrane of S. pombe, a fact which correlates well with the mode of growth of this organism.  相似文献   

2.
The plasma membrane H+-ATPase from the fission yeast Schizosaccharomyces pombe does not support growth of H+-ATPase-depleted cells of the budding yeast Saccharomyces cerevisiae , even after deletion of the enzyme's carboxy terminus. Functional chimerical H+-ATPase proteins in which appropriate regions of the S. pombe enzyme were replaced with their S. cerevisiae counterparts were generated by in vivo gene recombination. Site-directed mutagenesis of the H+-ATPase chimeras showed that a single amino acid replacement, tyrosine residue 596 by alanine, resulted in functional expression of the S. pombe H+-ATPase. The reverse Ala-598 →Tyr substitution was introduced into the S. cerevisiae enzyme to better understand the role of this alanine residue. However, no obvious effect on ATPase activity could be detected. The S. cerevisiae cells expressing the S. pombe H+-ATPase substituted with alanine were enlarged and grew more slowly than wild-type cells. ATPase activity showed a more alkaline pH optimum, lower K m values for MgATP and decreased V max compared with wild-type S. cerevisiae activity. None of these kinetic parameters was found to be modified in glucose-starved cells, indicating that the S. pombe H+-ATPase remained fully active. Interestingly, regulation of ATPase activity by glucose was restored to a chimera in which the S. cerevisiae sequence spans most of the catalytic site.  相似文献   

3.
Permissive and restrictive phenotypes of two secretory mutants of Saccharomyces cerevisiae, sec 1 and sec 18, were studied by freeze-fracture technique. The sec 1 mutant, in addition to accumulating secretory vesicles, was characterized by a disappearance of the plasma membrane invaginations and by an aggregation of intra-membrane particles in vacuolar membranes. A prolonged incubation of the cells at 37 degrees C led to pathological fusion of some vesicles with the plasma membrane. After the cells were transferred back to the permissive temperature the invaginations reappeared rapidly while the accumulated vesicles disappeared only after budding had been resumed. The sec 18 mutant, apart from having distended endoplasmic reticulum membranes, also lost the plasma membrane invaginations at 37 degrees C and regained them at 24 degrees C. The described ultrastructural changes are typical for the restrictive phenotypes and represent further manifestations of the pleiotropic effect of the respective sec mutations.  相似文献   

4.
The two model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe appear to have diverged 1000 million years ago. Here, we describe that S.?pombe vectors can be propagated efficiently in S.?cerevisiae as pUR19 derivatives, and the pREP and pJR vector series carrying the S.?cerevisiae LEU2 or the S.?pombe ura4(+) selection marker are maintained in S.?cerevisiae cells. In addition, genes transcribed from the S.?pombe nmt1(+) promoter and derivatives are expressed in budding yeast. Thus, S.?pombe vectors can be used as shuttle vectors in S.?cerevisiae and S.?pombe. Our finding greatly facilitates the testing for functional orthologs of protein families and simplifies the cloning of new S.?pombe plasmids by using the highly efficient in vivo homologous recombination activity of S.?cerevisiae.  相似文献   

5.
Homologous mRNA 3'' end formation in fission and budding yeast.   总被引:7,自引:1,他引:6       下载免费PDF全文
T Humphrey  P Sadhale  T Platt    N Proudfoot 《The EMBO journal》1991,10(11):3503-3511
Sequences resembling polyadenylation signals of higher eukaryotes are present downstream of the Schizosaccharomyces pombe ura4+ and cdc10+ coding regions and function in HeLa cells. However, these and other mammalian polyadenylation signals are inactive in S. pombe. Instead, we find that polyadenylation signals of the CYC1 gene of budding yeast Saccharomyces cerevisiae function accurately and efficiently in fission yeast. Furthermore, a 38 bp deletion which renders this RNA processing signal non-functional in S. cerevisiae has the equivalent effect in S. pombe. We demonstrate that synthetic pre-mRNAs encoding polyadenylation sites of S. pombe genes are accurately cleaved and polyadenylated in whole cell extracts of S. cerevisiae. Finally, as is the case in S. cerevisiae, DNA sequences encoding regions proximal to the S. pombe mRNA 3' ends are found to be extremely AT rich; however, no general sequence motif can be found. We conclude that although fission yeast has many genetic features in common with higher eukaryotes, mRNA 3' end formation is significantly different and appears to be formed by an RNA processing mechanism homologous to that of budding yeast. Since fission and budding yeast are evolutionarily divergent, this lower eukaryotic mechanism of mRNA 3' end formation may be generally conserved.  相似文献   

6.
Eisosomes are stable domains at the plasma membrane of the budding yeast Saccharomyces cerevisiae and have been proposed to function in endocytosis. Eisosomes are composed of two main cytoplasmic proteins, Pil1 and Lsp1, that form a scaffold around furrow-like plasma membrane invaginations. We show here that the poorly characterized eisosome protein Seg1/Ymr086w is important for eisosome biogenesis and architecture. Seg1 was required for efficient incorporation of Pil1 into eisosomes and the generation of normal plasma membrane furrows. Seg1 preceded Pil1 during eisosome formation and established a platform for the assembly of other eisosome components. This platform was further shaped and stabilized upon the arrival of Pil1 and Lsp1. Moreover, Seg1 abundance controlled the shape of eisosomes by determining their length. Similarly, the Schizosaccharomyces pombe Seg1-like protein Sle1 was necessary to generate the filamentous eisosomes present in fission yeast. The function of Seg1 in the stepwise biogenesis of eisosomes reveals striking architectural similarities between eisosomes in yeast and caveolae in mammals.  相似文献   

7.
The Saccharomyces cerevisiae CDC3, CDC10, CDC11, and CDC12 genes encode a family of homologous proteins that are not closely related to other known proteins [Haarer BK, Ketcham SR, Ford SK, Ashcroft DJ, and Pringle JR (submitted)]. Temperature-sensitive mutants defective in any of these four genes display essentially identical pleiotropic phenotypes that include abnormal cell-wall deposition and bud growth, an inability to complete cytokinesis, and a failure to form the ring of 10 nm filaments that normally lies directly subjacent to the plasma membrane in the neck region of budding cells. We showed previously that the CDC3 and CDC12 gene products localize to the region of the mother-bud neck and are probably constituents of the ring of 10 nm filaments. We now report the generation of polyclonal antibodies specific for the CDC11 product (Cdc11p) and the use of these antibodies in immunofluorescence experiments with wild-type and mutant cells. The results suggest that Cdc11p is also a constituent of the filament ring, and thus support the hypothesis that the S. cerevisiae 10 nm filaments represent a novel type of eukaryotic cytoskeletal element. Cdc11p and actin both localize to the budding site well in advance of bud emergence and at approximately the same time, and both proteins also remain localized at the old budding site for some time after cytokinesis. Cdc11p also localizes to regions of cell-wall reorganization in mating cells and in cells responding to purified mating pheromone. Surprisingly, most preparations of affinity purified Cdc11p-specific antibodies also stained the nuclear and cytoplasmic microtubules. Although this staining probably reflects the existence of an epitope shared by Cdc11p and some microtubule-associated protein, the possibility that a fraction of the Cdc11p is associated with the microtubules could not be eliminated.  相似文献   

8.
絮凝特性对自絮凝颗粒酵母耐酒精能力的影响及作用机制   总被引:7,自引:2,他引:5  
首次报道絮凝特性提高酵母菌耐酒精能力的现象及其机制。融合株SPSC与其两亲本粟酒裂殖酵母变异株和酿酒酵母变异株于 30℃经 18% (V/V)酒精冲击 7h的存活率分别为 52%、37%和 9%。细胞膜磷脂脂肪酸组成分析表明 ,两絮凝酵母 (融合株SPSC和粟酒裂殖酵母变异株 )的棕榈酸含量均约为非絮凝酵母 (酿酒酵母变异株 )的两倍 ,而棕榈油酸和油酸的含量明显低于后者。研究表明 ,当两絮凝酵母在培养中由于柠檬酸钠的作用 (抑制絮凝体的形成 )而以游离细胞生长存在时 ,其细胞膜磷脂棕榈酸含量显著下降 ,而棕榈油酸和油酸的含量明显增加 ,结果细胞膜磷脂脂肪酸组成特点与酿酒酵母变异株相似 ;而且实验表明 ,絮凝特性的消失伴随菌体耐酒精能力的急剧下降 ,变得与酿酒酵母变异株的水平相当。这些结果提示两絮凝酵母具有较强的耐酒精能力与其细胞膜磷脂脂肪酸组成中含有更高比例的棕榈酸有关。  相似文献   

9.
Schizosaccharomyces pombe accumulates glycerol as an osmotic regulatory solute in response to hyper-osmotic conditions. Upon a decrease in the external osmolarity, the intracellular glycerol levels should be adjusted in order to attain osmotic homeostasis. In this study, the patterns and kinetics of glycerol export from S. pombe were investigated. Upon a decrease in external osmolarity, glycerol was rapidly exported from cells to the external medium. The amount of glycerol released from the cells was proportional to the degree of change in the external osmolarity. The export process was well controlled and was not affected by reduced temperature. This points to S. pombe controlling glycerol export using specialized facilitating proteins as has been found in Saccharomyces cerevisiae where a MIP family channel protein Fps1p is involved. Analysis of the S. pombe databases revealed a putative transport protein (Spac977.17p) with homology to glycerol channel proteins of the MIP family. However, expression of the gene into the S. cerevisiae strain lacking a glycerol channel protein (fps1Delta mutant), did not complement the defect in glycerol export during hypo-osmotic stress. Deletion of spac977.17, did not affect glycerol accumulation or release in S. pombe. The patterns and kinetics of glycerol release in the mutant were similar to those of the wild type strains suggesting that the export process is independent of Spac977.17p, the only putative MIP family glycerol channel homologue in S. pombe. While the process of glycerol export in response to hypo-osmotic stress is similar to budding yeast, the underlying molecular mechanism in S. pombe appears distinct from that described in S. cerevisiae. Further studies are needed to elucidate the physiological role of the Spac977.17p channel.  相似文献   

10.
We report the identification of a novel nucleolar protein from fission yeast, p17(nhp2), which is homologous to the recently identified Nhp2p core component of H+ACA snoRNPs in Saccharomyces cerevisiae. We show that the fission yeast p17(nhp2) localizes to the nucleolus in live S. cerevisiae or Schizosaccharomyces pombe cells and is functionally conserved since the fission yeast gene can complement a deletion of the NHP2 gene in budding yeast. Analysis of p17(nhp2) during the mitotic cell cycles of living fission and budding yeast cells shows that this protein, and by implication H+ACA snoRNPs, remains localized with nucleolar material during mitosis, although the gross organization of partitioning of p17(nhp2) during anaphase is different in a comparison of the two yeasts. During anaphase in S. pombe p17(nhp2) trails segregating chromatin, while in S. cerevisiae the protein segregates alongside bulk chromatin. The pattern of segregation comparing haploid and diploid S. cerevisiae cells suggests that p17(nhp2) is closely associated with the rDNA during nuclear division.  相似文献   

11.
12.
Amiloride, a diuretic drug that acts by inhibition of various sodium transporters, is toxic to the fission yeast Schizosaccharomyces pombe. Previous work has established that amiloride sensitivity is caused by expression of car1+, which encodes a protein with similarity to plasma membrane drug/proton antiporters from the multidrug resistance family. Here we isolated car1+ by complementation of Saccharomyces cerevisiae mutants that are deficient in pyridoxine biosynthesis and uptake. Our data show that Car1p represents a new high-affinity, plasma membrane-localized import carrier for pyridoxine, pyridoxal, and pyridoxamine. We therefore propose the gene name bsu1+ (for vitamin B6 uptake) to replace car1+. Bsu1p displays an acidic pH optimum and is inhibited by various protonophores, demonstrating that the protein works as a proton symporter. The expression of bsu1+ is associated with amiloride sensitivity and pyridoxine uptake in both S. cerevisiae and S. pombe cells. Moreover, amiloride acts as a competitor of pyridoxine uptake, demonstrating that both compounds are substrates of Bsu1p. Taken together, our data show that S. pombe and S. cerevisiae possess unrelated plasma membrane pyridoxine transporters. The S. pombe protein may be structurally related to the unknown human pyridoxine transporter, which is also inhibited by amiloride.  相似文献   

13.
Filament ring formation in the dimorphic yeast Candida albicans   总被引:11,自引:0,他引:11       下载免费PDF全文
Stationary phase cultures of Candida albicans inoculated into fresh medium at 37 degrees C synchronously from buds at pH 4.5 and mycelia at pH 6.5. During bud formation, a filament ring forms just under the plasma membrane at the mother cell-bud junction at roughly the time of evagination. A filament ring also forms in mycelium-forming cells, but it appears later than in a budding cell and it is positioned along the elongating mycelium, on the average 2 microns from the mother cell-mycelium junction. Sections of filament rings in early and late budding cells and in mycelia appear similar. Each contains approximately 11 to 12 filaments equidistant from one another and closely associated with the plasma membrane. In both budding and mycelium-forming cells, the filament ring disappears when the primary septum grows inward. The close temporal and spatial association of the filament ring and the subsequent chitin-containing septum suggests a role for the filament ring in septum formation. In addition, a close temporal correlation is demonstrated between filament ring formation and the time at which cells become committed to bud formation at pH 4.5 and mycelium formation at pH 6.5. The temporal and spatial differences in filament ring formation between the two growth forms also suggest a simple model for the positioning of the filament ring.  相似文献   

14.
Squalene synthetase (farnesyl diphosphate:farnesyl diphosphate farnesyltransferase; EC 2.5.1.21) is thought to represent a major control point of isoprene and sterol biosynthesis in eukaryotes. We demonstrate structural and functional conservation between the enzymes from humans, a budding yeast (Saccharomyces cerevisiae), and a fission yeast (Schizosaccharomyces pombe). The amino acid sequences of the human and S. pombe proteins deduced from cloned cDNAs were compared to those of the known S. cerevisiae protein. All are predicted to encode C-terminal membrane-spanning proteins of approximately 50 kDa with similar hydropathy profiles. Extensive sequence conservation exists in regions of the enzyme proposed to interact with its prenyl substrates (i.e., two farnesyl diphosphate molecules). Many of the highly conserved regions are also present in phytoene and prephytoene diphosphate synthetases, enzymes which catalyze prenyl substrate condensation reactions analogous to that of squalene synthetase. Expression of cDNA clones encoding S. pombe or hybrid human-S. cerevisiae squalene synthetases reversed the ergosterol requirement of S. cerevisiae cells bearing ERG9 gene disruptions, showing that these enzymes can functionally replace the S. cerevisiae enzyme. Inhibition of sterol synthesis in S. cerevisiae and S. pombe cells or in cultured human fibroblasts by treatment with the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor lovastatin resulted in elevated levels of squalene synthetase mRNA in all three cell types.  相似文献   

15.
16.
Telomeres are essential for chromosome integrity, protecting the ends of eukaryotic linear chromosomes during cell proliferation. Telomeres also function in meiosis; a characteristic clustering of telomeres beneath the nuclear membrane is observed during meiotic prophase in many organisms from yeasts to plants and humans, and the role of the telomeres in meiotic pairing and the recombination of homologous chromosomes has been demonstrated in the fission yeast Schizosaccharomyces pombe and in the budding yeast Saccharomyces cerevisiae. Here we report that S. pombe Rap1 is a telomeric protein essential for meiosis. While Rap1 is conserved in budding yeast and humans, schemes for telomere binding vary among species: human RAP1 binds to the telomere through interaction with the telomere binding protein TRF2; S. cerevisiae Rap1, however, binds telomeric DNA directly, and no orthologs of TRF proteins have been identified in this organism. In S. pombe, unlike in S. cerevisiae, an ortholog of human TRF has been identified. This ortholog, Taz1, binds directly to telomere repeats [18] and is necessary for telomere clustering in meiotic prophase. Our results demonstrate that S. pombe Rap1 binds to telomeres through interaction with Taz1, similar to human Rap1-TRF2, and that Taz1-mediated telomere localization of Rap1 is necessary for telomere clustering and for the successful completion of meiosis. Moreover, in taz1-disrupted cells, molecular fusion of Rap1 with the Taz1 DNA binding domain recovers telomere clustering and largely complements defects in meiosis, indicating that telomere localization of Rap1 is a key requirement for meiosis.  相似文献   

17.
Abstract The polyene antibiotic, amphotericin B, at high concentrations (5–20 μg/ml) induced particle-free smooth areas in the plasma membranes of Saccharomyces cerevisiae and Candida albicans . These areas occured more or less over the entire plasma membrane of unbudded cells. In budded cells, however, the neck between the mother and bud did not undergo deformation. This suggests the strong interaction between the filamentous ring, which is firmly attached to the neck plasma membrane, and plasma membrane particles in the neck regions.  相似文献   

18.
Both the gene and the cDNA encoding the Rpb4 subunit of RNA polymerase II were cloned from the fission yeast Schizosaccharomyces pombe. The cDNA sequence indicates that Rpb4 consists of 135 amino acid residues with a molecular weight of 15,362. As in the case of the corresponding subunits from higher eukaryotes such as humans and the plant Arabidopsis thaliana, Rpb4 is smaller than RPB4 from the budding yeast Saccharomyces cerevisiae and lacks several segments, which are present in the S. cerevisiae RPB4 subunit, including the highly charged sequence in the central portion. The RPB4 subunit of S. cerevisiae is not essential for normal cell growth but is required for cell viability under stress conditions. In contrast, S. pombe Rpb4 was found to be essential even under normal growth conditions. The fraction of RNA polymerase II containing RPB4 in exponentially growing cells of S. cerevisiae is about 20%, but S. pombe RNA polymerase II contains the stoichiometric amount of Rpb4 even at the exponential growth phase. In contrast to the RPB4 homologues from higher eukaryotes, however, S. pombe Rpb4 formed stable hybrid heterodimers with S. cerevisiae RPB7, suggesting that S. pombe Rpb4 is similar, in its structure and essential role in cell viability, to the corresponding subunits from higher eukaryotes. However, S. pombe Rpb4 is closer in certain molecular functions to S. cerevisiae RPB4 than the eukaryotic RPB4 homologues.  相似文献   

19.
The interactions between Schizosaccharomyces pombe and Saccharomyces spp. (S. cerevisiae, S. cerevisiae sake, S. bayanus, S. uvarum) were investigated by growing the yeasts in sterile, partially fermented glucose asparagine medium in flasks, and also in the Ecologen containing either synthetic medium or grape must be separating the adjacent chambers with membranes which allow free movement of medium but not of cells. The growth of Sch. pombe was inhibited by Saccharomyces spp. to a varied extent, but the reverse was not observed. Saccharomyces uvarum, and S. cerevisiae more strongly inhibited Sch. pombe than the other species tested. All three strains of Sch. pombe (ICV-M, BG, ATCC-16979) were inhibited by S. cerevisiae although ICV-M and ATCC strains were more sensitive than BG. The higher growth rate of S. cerevisiae resulted in the exhaustion of nutrients, and its metabolic products could possibly be responsible for the growth inhibition of Sch. pombe. In the light of the present experimental results, the suitability of a two-step fermentation process for making better quality wines from acidic grape musts is discussed.  相似文献   

20.
The cDNAs and genes encoding the intron lariat-debranching enzyme were isolated from the nematode Caenorhabditis elegans and the fission yeast Schizosaccharomyces pombe based on their homology with the Saccharomyces cerevisiae gene. The cDNAs were shown to be functional in an interspecific complementation experiment; they can complement an S. cerevisiae dbr1 null mutant. About 2.5% of budding yeast S. cerevisiae genes have introns, and the accumulation of excised introns in a dbr1 null mutant has little effect on cell growth. In contrast, many S. pombe genes contain introns, and often multiple introns per gene, so that S. pombe is estimated to contain approximately 40 times as many introns as S. cerevisiae. The S. pombe dbr1 gene was disrupted and shown to be nonessential. Like the S. cerevisiae mutant, the S. pombe null mutant accumulated introns to high levels, indicating that intron lariat debranching represents a rate-limiting step in intron degradation in both species. Unlike the S. cerevisiae mutant, the S. pombe dbr1::leu1+ mutant had a severe growth defect and exhibited an aberrant elongated cell shape in addition to an intron accumulation phenotype. The growth defect of the S. pombe dbr1::leu1+ strain suggests that debranching activity is critical for efficient intron RNA degradation and that blocking this pathway interferes with cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号