首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The general stress regulon of Bacillus subtilis comprises approximately 200 genes and is under the control of the alternative sigma factor σ(B). The activation of σ(B) occurs in response to multiple physical stress stimuli as well as energy starvation conditions. The expression of the general stress proteins provides growing and stationary nonsporulating vegetative cells with nonspecific and broad stress resistance. A previous comprehensive phenotype screening analysis of 94 general stress gene mutants in response to severe growth-inhibiting stress stimuli, including ethanol, NaCl, heat, and cold, indicated that secondary oxidative stress may be a common component of severe physical stress. Here we tested the individual contributions of the same set of 94 mutants to the development of resistance against exposure to the superoxide-generating agent paraquat and hydrogen peroxide (H(2)O(2)). In fact, 62 mutants displayed significantly decreased survival rates in response to paraquat and/or H(2)O(2) stress compared to the wild type at a confidence level of an α value of ≤ 0.01. Thus, we were able to assign 47 general stress genes to survival against superoxide, 6 genes to protection from H(2)O(2) stress, and 9 genes to the survival against both. Furthermore, we show that a considerable overlap exists between the phenotype clusters previously assumed to be involved in oxidative stress management and the actual group of oxidative-stress-sensitive mutants. Our data provide information that many general stress proteins with still unknown functions are implicated in oxidative stress resistance and further support the notion that different severe physical stress stimuli elicit a common secondary oxidative stress.  相似文献   

2.
3.
Stress induced the serious disorder of cardiac function and cardiovascular diseases. Apoptosis is the cellular basis in stress induced cardiac injury. In our previous study we found that many stressors resulted in mitochondrial damage. It is certain that mitochondria is important mediator in triggering apoptotic cell death, but the mechanism, by which the stress induced mitochondrial injury leads to cardiomyocyte apoptosis, remains unclear. We designed the present study to investigate the changes of the mitochondria in cardiomyocytes undergoing stress and its role in inducing apoptosis. Here we reported that stress changed the membrane fluidity of mitochondria and induced the lipid peroxidation of mitochondrial membrane in  相似文献   

4.
This study reports on the dieback and recovery of red-osier dogwood, Cornus sericea L. plants from near-lethal (NL, sublethal) stress after varying lengths of post-stress environment (PSE). Intact dormant stems were subjected to 47° C for one hour during either October, November or December, and then placed into either constant 0° C or 23° C (dark condition) or kept under natural conditions at Corvallis, OR. Plants exposed to NL-heat stress in October died prior to 9 weeks of 0° C PSE, while none of the plants from other PSE treatments showed signs of injury. For plants exposed to NL-heat stress during November and December, stemdieback occurred at 0° C after 12 and 15 weeks, respectively. None of the plants from the other PSE treatments were injured. Post-stress temperatures of 0° or 5° C following NL-heat in October were lethal while temperatures above 10° C allowed recovery. Post-stress exposure to 0° C injured excised stems within 48 h, whereas irreversible damage to whole plants occurred by two weeks. Dormant plants exposed in October to other stresses, e.g., freezing temperature and hydrogen cyanamide, at NL dosages showed that these stresses also caused plant dieback at 0° C and little or no dieback at 23° C PSE.Abbreviations NL Near-Lethal - PSE Post-Stress Environment  相似文献   

5.
Is NF-kappaB the sensor of oxidative stress?   总被引:23,自引:0,他引:23  
N Li  M Karin 《FASEB journal》1999,13(10):1137-1143
  相似文献   

6.
7.
This study aimed to analyze individual cortisol levels in relation to work conditions, sleep, and health parameters among truck drivers working day shifts (n = 21) compared to those working irregular shifts (n = 21). A total of 42 male truck drivers (39.8 (+/-) 6.2 yrs) completed questionnaires about sociodemographics, job content, work environment, health, and lifestyle. Rest-activity profiles were measured using actigraphy, and cardiovascular blood parameters were collected. Salivary cortisol samples were obtained: (i) at waking time, (ii) 30?min after waking, and (iii) at bedtime, during both one workday and one day off from work. Irregular-shift workers, compared to day-shift workers, showed significantly higher waist-hip ratio, very-low-density lipoprotein (VLDL) cholesterol, tiredness after work, years working as a driver, truck vibration, and less job demand (p < .05). High cortisol levels in irregular-shift workers were correlated with certain stressors, such as short sleep duration and low job satisfaction, and to metabolic parameters, such as total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), VLDL, and triglycerides. Day-shift workers had higher cortisol levels collected 30?min after waking (p = .03) and a higher cortisol awakening response (CAR; p = .02) during workdays compared to off days. Irregular-shift workers had higher cortisol levels on their off days compared to day-shift workers (p = .03). In conclusion, for the day-shift workers, a higher cortisol response was observed on workdays compared to off days. Although no direct comparisons could be made between groups for work days, on off days the irregular-shift workers had higher cortisol levels compared to day-shift workers, suggesting a prolonged stress response in the irregular-shift group. In addition, cortisol levels were correlated with stressors and metabolic parameters. Future studies are warranted to investigate further stress responses in the context of irregular work hours.  相似文献   

8.
9.
Being grounded to one place, plants are constantly exposed to unexpected changes in the surrounding environment. Often, the changes in environmental conditions can be very rapid, compelling the plants to continuously monitor the outside environment and to adjust their metabolism to new conditions. Many of the primary environmental stresses ensue the development of a secondary oxidative stress, resulting in tissue damage and necrosis. The acclimation process almost invariably involves changes in the pattern of expressed proteins and other molecules. This necessitates the removal of the existing molecules from their compartments and the delivery of new compounds to their target organelles. The trafficking of macromolecules is performed by a bi-directional intracellular vesicle trafficking system that delivers newly synthesized molecules to organelles and retrieves material from the organelles to cytosolic compartments, such as vacuoles or lysosomes. The plasma membrane is among the organelles that are most exposed to oxidative stress damage and therefore must be constantly recycled. Here I propose that, by adjusting the rate of trafficking to and from the plasma membrane, the cells can regulate the stress outcome. Since the vesicle trafficking is closely linked to general signal transduction pathways, such as the phosphoinositide kinase pathway, and is influenced by major plant hormones, such as abscisic acid and auxin, the vesicle trafficking machinery holds the potential to regulate the plant responses to different environmental stresses.  相似文献   

10.
When comparing magnitudes of "behavioural despair" (duration of immobility) and stress-induced analgesia in the tail suspension test and cold water swim test with SHR and NMRI male mice. The results might depend on saline injection prior the test and on the fact that exposure to cold water in swim test was sufficient to alter the response patterns. The findings show that the main parameters are closely related to each other. Stress-induced analgesia seems to be a measure of stress as the stress becomes stronger analgesia changes in linear dependence, whereas duration of immobility has an invert U-shaped function.  相似文献   

11.
Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. While data from studies in invertebrates (e.g., C. elegans and Drosophila) and rodents show a correlation between increased lifespan and resistance to oxidative stress (and in some cases reduced oxidative damage to macromolecules), direct evidence showing that alterations in oxidative damage/stress play a role in aging are limited to a few studies with transgenic Drosophila that overexpress antioxidant enzymes. Over the past eight years, our laboratory has conducted an exhaustive study on the effect of under- or overexpressing a large number and wide variety of genes coding for antioxidant enzymes. In this review, we present the survival data from these studies together. Because only one (the deletion of the Sod1 gene) of the 18 genetic manipulations we studied had an effect on lifespan, our data calls into serious question the hypothesis that alterations in oxidative damage/stress play a role in the longevity of mice.  相似文献   

12.
Enteric bacteria have evolved an impressive array of mechanisms that allow the cell to grow at widely different external osmotic pressures. These serve two linked functions; firstly, they allow the cell to maintain a relatively constant turgor pressure which is essential for cell growth; and secondly they permit changes in cytoplasmic composition such that the accumulation of intracellular osmolytes required to restore turgor pressure does not impair enzyme function. The primary event in turgor regulation is the controlled accumulation of potassium and its counterion glutamate. At high external osmolarities the cytoplasmic levels of potassium glutamate can impair enzyme function. Rapid growth is therefore dependent upon secondary responses, principally the accumulation of compatible solutes, betaine (N-trimethylglycine), proline and trehalose. The accumulation of these solutes is achieved by the controlled activity of transport systems and enzymes in response to changes in external osmotic pressure. It has been proposed that the accumulation of potassium glutamate during turgor regulation acts as a signal for the activation of these systems [1,2]. This brief review will examine the evidence that control over the balance of cytoplasmic osmolytes is achieved by sensing of the intracellular potassium (and glutamate) concentration.  相似文献   

13.
The oxidant status of an individual is assessed by determining a group of markers in noninvasive samples. One limitation when measuring these biomarkers is that they do not give information about tissue localization of oxidative stress. The present study was undertaken to establish whether the serum oxidative stress biomarkers are indicative of oxidative stress in tissues of an individual. To accomplish this, we determined a few generic markers of oxidation in serum and tissues of six groups of rats treated experimentally, to modulate their oxidative stress status. The correlation between serum and tissue levels was calculated for each marker. Also, for each tissue, the correlation between the values of these oxidative stress biomarkers was analysed. Our results show that only lipid peroxides in serum could be useful to predict the oxidative stress in tissues. No correlation was found between any of the oxidative stress markers in serum.  相似文献   

14.
XPC is one of the key DNA damage recognition proteins in the global genome repair route of the nucleotide excision repair (NER) pathway. Previously, we demonstrated that NER-deficient mouse models Xpa?/? and Xpc?/? exhibit a divergent spontaneous tumor spectrum and proposed that XPC might be functionally involved in the defense against oxidative DNA damage. Others have mechanistically dissected several functionalities of XPC to oxidative DNA damage sensitivity using in vitro studies. XPC has been linked to regulation of base excision repair (BER) activity, redox homeostasis and recruitment of ATM and ATR to damage sites, thereby possibly regulating cell cycle checkpoints and apoptosis. XPC has additionally been implicated in recognition of bulky (e.g. cyclopurines) and non-bulky DNA damage (8-oxodG). However, the ultimate contribution of the XPC functionality in vivo in the oxidative DNA damage response and subsequent mutagenesis process remains unclear. Our study indicates that Xpc?/? mice, in contrary to Xpa?/? and wild type mice, have an increased mutational load upon induction of oxidative stress and that mutations arise in a slowly accumulative fashion. The effect of non-functional XPC in vivo upon oxidative stress exposure appears to have implications in mutagenesis, which can contribute to the carcinogenesis process. The levels and rate of mutagenesis upon oxidative stress correlate with previous findings that lung tumors in Xpc?/? mice overall arise late in the lifespan and that the incidence of internal tumors in XP-C patients is relatively low in comparison to skin cancer incidence.  相似文献   

15.
Oligodendrocyte precursor cells (OPCs) are most susceptible to oxidative stress in the brain. However, the cause of differences in susceptibility to oxidative stress between OPCs and mature oligodendrocytes (mOLs) remains unclear. Recently, we identified in vivo that αB-crystallin (aBC) is expressed in mOLs but not in OPCs. Therefore, we examined in the present study whether aBC expression could affect cell survival under oxidative stress induced by hydrogen peroxide using primary cultures of OPCs and mOLs from neonatal rat brains. Expression of aBC was greater in mOLs than in OPCs, and the survival rate of mOLs was significantly higher than that of OPCs under oxidative stress. Suppression of aBC by siRNA transfection resulted in a decrease in the survival rate of mOLs under oxidative stress. These data suggest that higher susceptibility of OPCs than mOLs to oxidative stress is due, at least in part, to low levels of aBC expression. [BMB Reports 2013; 46(10): 501-506]  相似文献   

16.
17.
Polyethylene glycol was added to the rooting medium ofmicropropagated grape shoots to induce water stress. At the end of the rooting stage, plantlets treated with 2% polyethylene glycol were compared with untreated control plantlets and greenhouse-grown plants. Leaves of treated plantlets had the highest deposition of epicuticular wax, followed by those of the greenhouse and control. Stomatal index did not vary among treatments. However, differences in leaf epidermal cell configuration were observed among treatments. The morphological changes of treated plantlets, including substantial deposition of epicuticular wax and modified leaf surface anatomy were associated with increasedex vitro survival after four weeks in the greenhouse.  相似文献   

18.
IRE1α (Inositol Requiring kinase Enzyme 1 alpha), a transmembrane protein localized to the endoplasmic reticulum (ER) is a master regulator of the unfolded protein response (UPR) pathway. The fate determining steps during ER stress-induced apoptosis are greatly attributed to IRE1α’s endoribonuclease and kinase activities. Apart from its role as a chief executioner in ER stress, recent studies have shown that upon activation in the presence or absence of ER stress, IRE1α executes multiple cellular processes such as differentiation, immune response, progression and repression of the cell cycle. Besides its crucial role in protein misfolding, the versatile contributions of IRE1α in other cellular functions are greatly unknown. In this review, we have discussed the structural conservation of IRE1 among eukaryotes, the mechanisms underlying its activation and the recent understandings of the non-apoptotic functions of IRE1 other than ER stress-induced cell death.  相似文献   

19.
Mechanically-induced stress (MIS) occurs naturally in plants as the aerial parts are moved, usually by wind, but also by such agents as rain and animals. It can be induced indoors by various actions such as rubbing or bending the stem or shaking or brushing the entire shoot. The most noticeable effect of MIS is a reduction in stem, leaf or petiole length invariably resulting in plants which are smaller and more compact than unstressed controls. However, the response of other variables can often differ between species and there may be either increases or decreases in stem or petiole diameter, root: shoot weight ratio, chlorophyll content or drought resistance. Why species should differ in this way, and what is the endogenous control mechanism for MIS responses, are inanswered questions. Ethylene, which increases as a result of MIS in several species may cause some MIS responses such as increased stem diameter, epinasty or a change in sex expression. However, evidence suggests that MIS retardation of extension growth may equally be due to lower or supraoptimal auxin levels or lower gibberellin levels.The uses in the field of the growth promoter gibberellin or the growth retardant chlormequat chloride (CCC) appear to be examples of respectively reversing or stimulating MIS growth response. MIS may be applied indoors if short compact plants are needed, either for aesthetic purposes as with floral crops, or if hardier and more manageable plants are needed, such as seedlings for transplanting in the field. Much more research is needed to estimate the importance of MIS in the field and to assess how such knowledge may be used to improve crop yield.  相似文献   

20.
《Free radical research》2013,47(8):871-880
Abstract

The antibiotic drug 4,4′-diaminodiphenylsulphone (DDS) is used to treat several dermatologic diseases, including Hansen's disease. This study confirmed the antioxidant nature of DDS in hydrogen peroxide (H2O2)-induced oxidative stress and assessed its role in other apoptotic stresses in human diploid fibroblasts (HDFs). Oxidative stress was effectively reduced by DDS in a dose-dependent manner. Moreover, the oxidative stress-induced increases in the levels of the p53 and p21 proteins were inhibited by pre-treatment with DDS. In addition, H2O2 and DDS increased the level of cytochrome P450 (CYP450) IIE1 in HDFs, implicating a role for DDS in H2O2 scavenging via the activation of CYP450. DDS treatment increased the activity of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR), as well as the GSH/GSSG ratio, indicating activation of the glutathione system against oxidative stress. However, DDS showed no protective effects on HDFs against other apoptotic stimuli, such as thapsigargin and staurosporine, suggesting that DDS would act only against oxidative stress. Therefore, in addition to its antibiotic function, DDS is a potent antioxidant against H2O2-induced oxidative stress in HDFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号