首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is presented to improve the enantioselectivity of lipase-catalyzed hydrolysis of naproxen methyl ester in water-saturated isooctane. It is shown that coupling of the enantioselective hydrolysis of Naproxen methyl ester with the photo-dissociation methanol leads to the photocatalytic conversion of methanol into water, by which the equilibrium constant (K) of the lipase-catalyzed hydrolysis was changed. The equilibrium yield and enantiomeric excess are increased. Because the lipase would not dissolve in the organic solvent, it was adsorbed on photocatalyst particles, which may facilitate the isolation of enzyme from reaction system.  相似文献   

2.
A trapped aqueous-organic biphase system for the continuous production of (S)-(+)-2-(6-methoxy-2-naphthyl) propionic acid (Naproxen) has been developed. The process consists of a stereoselective hydrolysis of the racemic Naproxen methyl ester by Candida rugosa lipase in a trapped aqueous-organic biphase system. The reaction has been carried out in a laboratory-scale continuous-flow stirred tank reactor (CSTR). The staring material has been supplied in and remaining substrate recovered by organic phase. YWG-C(6)H(5), a poorly polar synthetic support, has been employed to immobilize the lipase and to restrict the aqueous phase. Lipase immobilized on YWG-C(6)H(5) containing aqueous phase has been added into the CSTR to catalyze the hydrolysis. A dialysis membrane tube containing a continuous flow closed-loop buffer has been applied in the CSTR for the extraction of product and recruiting of the aqueous part consumed. Various reaction conditions have been studied. The activity of immobilized enzyme was effected by the polarity of support, the substrate concentration, logP value of organic phase and the product inhibition. At steady-state operating conditions, an initial conversion of 35% has been obtained. The CSTR was allowed to operate continuously for 60 days at 30 degrees C with a 30% loss of activity. The hydrolysis reaction yielded (S)-(+)-Naproxen with >90% enantiomeric excess and overall conversion of 30%.  相似文献   

3.
The lipase selective hydrolysis of Naproxen methyl ester was explored in both water-saturated isooctane and water-saturated ionic liquid 1-butyl-3-methylimidazolium hexafluoro-phoshate ([bmim]PF6) to see any significant differences in terms of enantioselectivity and stability between two different classes of reaction media. It is shown that polar and hydrophobic of [bmim]PF6 made it an unearthly reaction medium for hydrolysis of Naproxen methyl ester. It not only decreases the equilibrium constant (K) and enhances the enantiomeric ratio (E), consequently improves the equilibrium conversion (CEq) of the hydrolysis reaction and enantiomeric excess of product (eep), but also maintains the lipase activity. Because the lipase would not dissolve in the 1-butyl-3-methylimidazolium hexafluoro-phoshate, it can be filtrated up from 1-butyl-3-methylimidazolium hexafluoro-phoshate and recycled for several runs. The stability of lipase was improved due to the higher solubility of methanol in 1-butyl-3-methylimidazolium hexafluoro-phoshate than in isooctane.  相似文献   

4.
Lipase from Candida rugosa (CRL) was encapsulated within a chemically inert sol-gel support in the presence of calix(aza)crowns as the new additives. The catalytic activity of the encapsulated lipases was evaluated both in the hydrolysis of p-nitrophenyl palmitate (p-NPP) and the enantioselective hydrolysis of racemic Naproxen methyl ester. It has been observed that the percent activity yields of the calix(aza)crown based encapsulated lipases were higher than that of the free lipase. Improved enantioselectivity was observed with the calix(aza)crown-based encapsulated lipases as compared to encapsulated free lipase. The reaction of Naproxen methyl ester resulted in 48.4% conversion for 24 h and 98% enantiomeric excess for the S-acid, corresponding to an E value of >300 (= 166 for the encapsulated free enzyme). Moreover, the encapsulated lipases were still retained about 18% of their conversion ratios after the sixth reuse in the enantioselective reaction.  相似文献   

5.
In our screening program for new photosensitizers from Malaysian biodiversity for photodynamic therapy (PDT) of cancer, MeOH extracts of ten terrestrial plants from Cameron Highlands in Pahang, Peninsular Malaysia, were tested. In a short-term 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 20 μg/ml each of these extracts were incubated in a pro-myelocytic leukemia cell-line, HL60, with or without irradiation with 9.6 J/cm(2) of a broad spectrum light. Three samples, Labisia longistyla, Dichroa febrifuga, and Piper penangense, were photocytotoxic by having at least twofold lower cell viability when irradiated compared to the unirradiated assay. The extract of the leaves of Piper penangense, a shrub belonging to the family Piperaceae and widely distributed in the tropical and subtropical regions in the world, was subsequently subjected to bioassay-guided fractionation using standard chromatography methods. Eight derivatives of pheophorbide-a and -b were identified from the fractions that exhibited strong photocytotoxicity. By spectroscopic analysis, these compounds were identified as pheophorbide-a methyl ester (1), (R,S)-13(2) -hydroxypheophorbide-a methyl ester (2 and 3), pheophorbide-b methyl ester (4), 13(2) -hydroxypheophorbide-b methyl ester (5), 15(2) -hydroxylactone pheophorbide-a methyl ester (6), 15(2) -methoxylactone pheophorbide-a methyl ester (7), 15(2) -methoxylactone pheophorbide-b methyl ester (8).  相似文献   

6.
《Process Biochemistry》2007,42(6):1021-1027
Candida rugosa lipase (CRL) was immobilized on Amberlite XAD 7 and the advantage of immobilization under the best reaction conditions in achieving high activity and enantioselectivity was shown for the hydrolysis of racemic Naproxen methyl ester. The performance of CRL was found to be better when the enzyme was immobilized at the temperature and pH values where higher conversion and enantioselectivity were obtained. The effects of immobilized lipase load, temperature, pH and substrate concentration on the conversion and enantioselectivity toward S-Naproxen production in aqueous phase/isooctane biphasic batch system were also evaluated. The increase in immobilized lipase load in 320–800 U/mL range increased the conversion of the substrate and enantioselectivity for S-Naproxen. The kinetic resolution of racemic Naproxen methyl ester conducted at the temperatures of 40, 45 and 50 °C and at the pH values of 4, 6, 7.5 and 9 resulted in the highest conversion and enantioselectivity at 45 °C and pH 6. Higher concentration of racemic Naproxen methyl ester than 10 mg/mL decreased both the conversion and enantioselectivity. CRL, which was immobilized at the temperature and pH values where the enzyme was more enantioselective, was successfully used in three successive batch runs each of 180 h. The highest enantiomeric ratio achieved in the S-Naproxen production was 174.2 with the conversion of 49%.  相似文献   

7.
Nahar L  Turner AB 《Steroids》2003,68(14):1157-1161
Four lithocholic acid dimers were synthesised via esterification. The ester-linked dimer, 3-oxo-5beta-cholan-24-oic acid (cholan-24-oic acid methyl ester)-3-yl ester, (3alpha,5beta), was obtained by condensation of methyl lithocholate with 3-oxo-5beta-cholan-24-oic acid. Borohydride reduction of this ester-linked dimer gave 3alpha-hydroxy-5beta-cholan-24-oic acid (cholan-24-oic acid methyl ester)-3-yl ester, (3alpha,5beta), which was acetylated to 3alpha-acetoxy-5beta-cholan-24-oic acid (cholan-24-oic acid methyl ester)-3-yl ester, (3alpha,5beta). Reaction of methyl lithocholate with oxalyl chloride yielded the oxalate dimer, bis(5beta-cholan-24-oic acid methyl ester)-3alpha-yl oxalate.  相似文献   

8.
To eliminate methanol inhibition of the activity of a lipase, methanotrophic bacteria, which can convert methanol into water and CO2, were introduced to the reaction of enantioselective hydrolysis of Naproxen methyl ester catalysed by lipase from Candida rugosa. Both the activity and stability of lipase were improved by the removal of methanol by the bacteria.  相似文献   

9.
Novel matrix metalloproteinase (MMP) inhibitor radiotracers, (S)-3-methyl-2-(2',3',4'-methoxybiphenyl-4-sulfonylamino)-butyric acid [(11)C]methyl ester (1a-c), (S)-3-methyl-2-(2',3',4'-fluorobiphenyl-4-sulfonylamino)-butyric acid [(11)C]methyl ester (1d-f), and (S)-3-methyl-2-(4'-nitrobiphenyl-4-sulfonylamino)-butyric acid [(11)C]methyl ester (1g), a series of substituted biphenylsulfonamide derivatives, have been synthesized for evaluation as new potential positron emission tomography (PET) cancer imaging agents.  相似文献   

10.
Condensation of benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2- deoxy-3-O-[(R)-1-carboxyethyl]-alpha-D-glucopyranoside (2) and its 4-acetate (4) with L-alanyl-D-isoglutamine benzyl ester via the mixed anhydride method yielded N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-lacto yl)-L- alanyl-D-isoglutamine benzyl ester (5) and its 4-acetate (6), respectively. Condensation by the dicyclohexylcarbodi-imide-N-hydroxysuccinimide method converted 2 into benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl- 2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside 1',4-lactone (7). In the presence of activating agents, 7 underwent aminolysis with the dipeptide ester to give 5. Zemplén O-deacetylation of 5 and 6 led to transesterification and alpha----gamma transamidation of the isoglutaminyl residue to give N-(2-O-[benzyl 2-acetamido-6-O-(2- acetamido-2-deoxy-beta-D-glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyr anosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (8) and -glutamine methyl ester (9). Treatment of 6 with MgO-methanol caused deacetylation at the GlcNAc residue to give a mixture of N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2- deoxy-beta-D-glucopyranosyl)-4-O-acetyl-2,3-dideoxy-alpha-D-glucopyra nosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (11) and -glutamine methyl ester (12). Benzyl or methyl ester-protection of peptidoglycan-related structures is not compatible with any of the reactions requiring alkaline media. Condensation of 2 with L-alanyl-D-isoglutamine tert-butyl ester gave N-(2-O-[benzyl 2-acetamido- 6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-2,3-d ideoxy- alpha-D-glucopyranosid-3-yl]-(R)-lactoyl-L-alanyl-D-isoglutamine tert-butyl ester (16), deacetylation of which, under Zemplén conditions, proceeded without side-reactions to afford N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-la cotyl)-L- alanyl-D-isoglutamine tert-butyl ester (17).  相似文献   

11.
Synthesis of lobucavir prodrug, L-valine, [(1S,2R,3R)-3-(2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)-2-(hydroxymethyl)cyclobutyl]methyl ester monohydrochloride (BMS 233866), requires regioselective coupling of one of the two hydroxyl groups of lobucavir (BMS 180194) with valine. Either hydroxyl group of lobucavir could be selectively aminoacylated with valine by using enzymatic reactions. N-[(Phenylmethoxy)carbonyl]-L-valine, [(1R,2R,4S)-2-(2-amino-6-oxo-1H-purin-9-yl)-4-(hydroxymethyl)cyclobutyl]methyl ester (3, 82.5% yield), was obtained by selective hydrolysis of N,N′-bis[(phenylmethoxy)carbonyl]bis[L-valine], O,O′-[(1S,2R,3R)-3-(2-amino-6-oxo-1H-purin-9-yl)cyclobuta-1,2-diyl]methyl ester (1) with lipase M, and L-valine, [(1R,2R,4S)-2-(2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)-4-(hydroxymethyl)cyclobutyl]methyl ester monohydrochloride (4, 87% yield) was obtained by hydrolysis of bis[L-valine], O,O′-[(1S,2R,3R)-3-(2-amino-6-oxo-1H-purin-9-yl)cyclobuta-1,2-diyl]methyl ester, dihydrochloride (2), with lipase from Candida cylindracea. The final intermediate for lobucavir prodrug, N-[(phenylmethoxy)carbonyl]-L-valine, [(1S,2R,4R)-3-(2-amino-6-oxo-1H-purin-9-yl)-2-(hydroxymethyl)cyclobutyl]methyl ester (5), could be obtained by transesterification of lobucavir using ChiroCLEC™ BL (61% yield), or more selectively by using immobilized lipase from Pseudomonas cepacia (84% yield).  相似文献   

12.
One newly (1) and 10 known oleanane-type triterpenoids (2-11) were isolated from the methanol extract of Panax stipuleanatus rhizomes. Based on their spectroscopic data, these compounds were identified as spinasaponin A methyl ester (1), pesudoginsenoside RP(1) methyl ester (2), spinasaponin A 28-O-glucoside (3), pseudoginsenoside RT(1) methyl ester (4), pseudoginsenoside RT(1) (5), stipuleanoside R(2) methyl ester (6), stipuleanoside R(2) (7), araloside A methyl ester (8), 3-O-β-D-glucopyranosyl (1→3)-β-D-glucuronopyranoside-28-O-β-D-glucopyranosyl oleanolic acid methyl ester (9), 3-O-β-D-xylopyranosyl (1→2)-β-D-glucopyranosyl-28-O-β-D-glucopyranosyl oleanolic acid (10), and chikusetsusaponin IVa (11). When the cytotoxic activities of the isolated compounds were evaluated, compound 1 exhibited significant cytotoxic activity with IC(50) values of 4.44 and 0.63 μM against HL-60 (leukemia) and HCT-116 (colon cancer) cell lines, respectively. Compound 2 showed potent cytotoxicity with an IC(50) of 6.50 μM against HCT-116, whereas it was less cytotoxic against HL-60 (IC(50)=41.45 μM). After HL-60 and HCT-116 were treated with compounds 1 and 2, increased production of apoptotic bodies was observed. Furthermore, compounds 1 and 2 in HCT-116 cells activated intrinsic and extrinsic apoptosis pathways by upregulating DR-5 and Bax, downregulating Bcl-2, activating caspase-9, and cleaving poly-ADP-ribose polymerase (PARP). We also observed the activation of ERK1/2 MAPK by both compounds in the HCT-116 cells. Together, compounds 1 and 2 might induce intrinsic and extrinsic apoptosis pathways through the activation of the ERK1/2 MAPK pathway in HCT-116 colon cancer cells. Structure-activity relationship analysis indicated that a carboxyl group at position-28 is potentially responsible for the cytotoxic effects.  相似文献   

13.
The new chiral derivatizing agent (CDA), alpha-cyano-alpha-fluoro(2-naphthyl)-acetic acid (2-CFNA) 1 was prepared in optically pure form by chiral HPLC separation of racemic 2-CFNA methyl ester (2-CFNA Me ester) (+/-)-2. The ester was obtained by fluorination of methyl alpha-cyano(2-naphthyl)acetate with FClO3. 2-CFNA 1 has proven to be a significantly superior CDA for determination of enantiomeric excess (ee) of a primary alcohol when compared to alpha-methoxy-alpha-trifluoromethylphenylacetic acid (MTPA, Mosher's agent) and alpha-cyano-alpha-fluoro(p-tolyl)acetic acid (CFTA). The ee of (-)-3-acetoxy-2-fluoro-2-(hexadecyloxymethyl)propan-1-ol (-)-9, a fluorinated analog of anticancer active ether lipids, was determined using (+)-2-CFNA (+)-1.  相似文献   

14.
( + )-α-Kainic acid (1) was synthesized by starting from a building block, N-Boc-3-acetoxyallylglycine ethyl ester (2). The key intermediate, a methyl 4-[(tert-butoxycarbonyl)prenylamino]-5-hydroxy-2-pentenoate derivative (9), was prepared from 2 in eight synthetic steps. After converting 10 into a methyl ester (11), intramolecular ene-carbocyclization of 11 gave a pyrrolidine derivative (12), which was converted to 1 in a moderate yield.  相似文献   

15.
The stereoselective hydrolysis of racemic 2-substituted propionates, catalyzed by carboxyl esterase, provides a cost-competitive route to produce the optically pure, anti-inflammatory drug Naproxen. In the present work, we describe the application of the multicompartment electrolyzer reactor (ME) for the stereoselective hydrolysis of a racemic Naproxen ester, (R,S)-ethoxyethyl-[2-(6-methoxy-2-naphtyl)]propionate, catalyzed by a carboxyl esterase.The enzyme was trapped in a reactor chamber, delimited by two isoelectric membranes encompassing the pI value of the enzyme, together with the neutral substrate. After 90 min, a conversion of 45% was obtained with an enantiomeric excess of 84%. The reaction product, (S)-(+)-Naproxen, was electrophoretically removed in continuous from the reaction chamber and collected in a contiguous, more acidic chamber, separated from the enzyme and from the unreacted substrate. Moreover, at the end of the reaction, it was possible to recover the enzyme from the reactor and use it again.  相似文献   

16.
Enzymatic resolution of (S)-(+)-naproxen in a continuous reactor   总被引:5,自引:0,他引:5  
An enzymatic method for the continuous production of (S)-(+)-2-(6-methoxy-2-naphthyl) propionic acid (Naproxen) has been developed. The process consists of a stereoselective hydrolysis of the racemic Naproxen ethoxyethyl ester catalyzed by Candida cylindracea lipase. The reaction has been carried out in a continuous-flow closed-loop column bioreactor packed with Amberlite XAD-7, a slightly polor resin on which the lipase has been immobilized by adsorption. Various immobilization conditions as well as the properties of the immobilized lipase have been studied. The performance and the productivity of the bioreactor were evaluated as a function of the critical reaction parameters such as temperature, substrate concentration, and product inhibition. By using a 500-mL column bioreactor, 1.8 kg of optically pure (S)-(+)-Naproxen were produced after 1200 h of continuous operation with a slight loss of the enzymatic activity.  相似文献   

17.
Dilatation of the cervix with prostaglandin analogues prior to vaginal termination of pregnancy was attempted in 125 nulliparous women in the first trimester of pregnancy. The patients were divided into five groups (25 in each group) and given a single extra-amniotic dose of one of the following prostaglandin analogues 14-16 hours prior to the evacuation of the uterus by vacuum aspiration. (Group A) 15 (S) 15 methyl PGE2 (free acid); (Group B) 15 (S) 15 methyl PGE2 methyl ester; (Group C) 15 (S) 15 methyl PGF2alpha (free acid); (Group D) 15 (S) 15 methyl PGF2alpha methyl ester and(Group E) a mixture of 15 (S) 15 methyl PGE2methyl ester and 15 (S) 15 methyl PGF2alpha methyl ester. Evacuation of the uterus without mechanical dilatation of the cervix was possible in 111 (90%) of the patients. In an additional 10 patients (8%) there was some degree of cervical dilatation and further mechanical dilatation could be performed easily. With the combination of 15 (S) 15 methyl PGE2 methyl ester and 15 (S) 15 methyl PGF2alpha methyl ester the incidence of gastrointestinal side effects and pyrexia were considerably reduced.  相似文献   

18.
In order to create a heme environment that permits biomimicry of heme-containing peroxidases, a number of new hemin–peptide complexes—hemin-2(18)-glycyl-l-histidine methyl ester (HGH), hemin-2(18)-glycyl-glycyl-l-histidine methyl ester (HGGH), and hemin-2,18-bis(glycyl-glycyl-l-histidine methyl ester) (H2GGH)—have been prepared by condensation of glycyl-l-histidine methyl ester or glycyl-glycyl-l-histidine methyl ester with the propionic side chains of hemin. Characterization by means of UV/vis- and 1H NMR spectroscopy as well as cyclic- and differential pulse voltammetry indicates the formation of five-coordinate complexes in the case of HGH and HGGH, with histidine as an axial ligand. In the case of H2GGH, a six-coordinate complex with both imidazoles coordinated to the iron center appears to be formed. However, 1H NMR of H2GGH reveals the existence of an equilibrium between low-spin six-coordinate and high-spin five-coordinate species in solution. The catalytic activity of the hemin–peptide complexes towards several organic substrates, such as p-cresol, l-tyrosine methyl ester, and ABTS, has been investigated. It was found that not only the five-coordinate HGH and HGGH complexes, but also the six-coordinate H2GGH, catalyze the oxidation of substrates by H2O2. The longer and less strained peptide arm provides the HGGH complex with a slightly higher catalytic efficiency, as compared with HGH, due to formation of more stable intermediate complexes.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0532-5.Abbreviations ABTS 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) - DCC dicyclohexylcarbodiimide - HGH hemin-2(18)-glycyl-l-histidine methyl ester - HGGH hemin-2(18)-glycyl-glycyl-l-histidine methyl ester - H2GGH hemin-2,18-bis(glycyl-glycyl-l-histidine methyl ester) - HOBt N-hydroxybenzotriazole  相似文献   

19.
This study evaluated the effects of progressive nitric oxide (NO) inhibition in the regulation of systemic and regional hemodynamics and renal function in anesthetized dogs. The N(G)-nitro-L-arginine methyl ester group (n = 9) received progressive doses of 0.1, 1, 10, and 50 microg. kg(-1). min(-1). Renal (RBF), mesenteric (MBF), iliac (IBF) blood flows, mean arterial pressure (MAP), pulmonary pressures, cardiac output (CO), and systemic and pulmonary vascular resistances were measured. During N(G)-nitro-L-arginine methyl ester infusion, MAP and systemic vascular resistances increased in a dose-dependent manner. Mean pulmonary pressure and pulmonary vascular resistances increased in both the N(G)-nitro-L-arginine methyl ester and the control group, but the increase was more marked in the N(G)-nitro-L-arginine methyl ester group during the last two infusion periods. CO decreased progressively, before any significant change in blood pressure was noticeable in the N(G)-nitro-L-arginine methyl ester group. IBF decreased significantly from the first N(G)-nitro-L-arginine methyl ester dose, whereas RBF and MBF only decreased significantly during the highest N(G)-nitro-L-arginine methyl ester dose. Urinary volume and sodium excretion only increased significantly in the time control group during the two last time periods. The pulmonary vasculature was more sensitive than the systemic vasculature, whereas skeletal muscle and renal vasculatures showed a greater sensitivity to the inhibition of NO production than the mesenteric vasculature. NO synthesis inhibition induces a progressive antidiuretic and antinatriuretic effect, which is partially offset by the increase in blood pressure.  相似文献   

20.
Glycosylation of the readily accessible benzyl 2-acetamido-6-O-benzyl-2-deoxy-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha- D- glucopyranoside with 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl chloride (2), using the silver triflate method in the absence of a base, afforded 65-70% of the fully protected [beta-D-GlcNPhth-(1----4)-MurNAc] methyl ester derivative 4, the structure of which was ascertained on the basis of 500-MHz 1H-n.m.r. data. 2,2'-Dideoxy-2,2'-diphthalimido-beta,beta-trehalose hexa-acetate was a by-product. Removal of the Phth group from 4, followed by acetylation, yielded 90% of the acetylated 1,6-di-O-benzyl derivative 5, which, on saponification and catalytic hydrogenation, afforded 2-acetamido-4-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1- carboxyethyl]-2-deoxy-D-glucopyranose. Similarly, 5 was converted into the acetylated methyl ester derivative, which, on selective removal of the methyl ester group, gave benzyl 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-6-O-benzyl-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside. An alternative route for the preparation of 2 is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号