首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proteins recognizing DNA damaged by the chemical carcinogen N-acetoxy-acetylaminofluorene (AAAF) were analyzed in nuclear extracts from rat tissues, using a 36 bp oligonucleotide as a substrate and electrophoretic mobility shift and Southwestern blot assays. One major damage-recognizing protein was detected, whose amount was estimated as at least 10(5) copies per cell. Levels of this protein were similar in extracts from brain, kidney and liver, but much lower in extracts from testis. The affinity of the detected protein for DNA damaged by AAAF was about 70-fold higher than for undamaged DNA. DNA damaged by cis-diamminedichloroplatinum (cis-DDP), benzo(a)pyrene diolepoxide (BPDE) or UV-radiation also bound this protein with an increased affinity, the former more strongly and the latter two more weakly as compared to AAAF-damaged DNA. The detected AAAF/DDP-damaged-DNA-binding (AAAF/DDP-DDB) protein had a molecular mass of about 25 kDa and was distinct from histone H1 or HMGB proteins, which are known to have a high affinity for cis-DDP-damaged DNA. The level of this damage-recognizing protein was not affected in rats treated with the carcinogen 2-acetylaminofluorene. The activity of an AAAF/DDP-DDB protein could also be detected in extracts from mouse liver cells but not from the Hep2G human hepatocellular carcinoma.  相似文献   

2.
3.
4.
5.
Mycoplasmas are the smallest known microorganisms, with drastically reduced genome sizes. One of the essential biochemical pathways lost in mycoplasmas is methylation-mediated DNA repair (MMR), which is responsible for correction of base substitutions, insertions, and deletions in both bacteria and higher organisms. We found that the histone-like protein encoded by the himA/hup_2 gene of Mycoplasma gallisepticum (mgHU) recognizes typical MMR substrates, in contrast to homologues from other species. The recognition of substitution mismatches is sequence-dependent, with affinities decreasing in the following order: CC > CT = TT > AA = AC. Insertions or deletions of one nucleotide are also specifically recognized with the following sequence-dependent preference: A = T > C. One-nucleotide lesions involving guanine are bound only weakly, and this binding is indistinguishable from binding to intact DNA. Although mgHU is dissimilar to Escherichia coli HU, expression in a slow-growing hupAB E. coli strain restores wild-type growth. The results indicate that mgHU executes all essential functions of bacterial architectural proteins. The origin and the possible role of enhanced specificity for typical MMR substrates are discussed.  相似文献   

6.
7.
8.
9.
10.
C4b-binding protein (C4bp), a glycoprotein involved in regulating the classical pathway of the complement system, binds the activated form of C4b and accelerates the decay rate of the C4b, C2a complex. Recently, sequence analysis of the cDNA for proline-rich protein (PRP) demonstrated that PRP is identical with C4bp. We measured the concentration of C4bp in serum by single radial immunodiffusion in patients with various liver diseases. Concentration of C4bp was significantly lower in hepatic cirrhosis (P = 0.001) and higher in fatty liver (P = 0.0002) than the control values, after adjusting for age, sex, and concentration of total cholesterol, triglyceride, and C-reactive protein. Significant positive correlations were observed between the concentration of C4bp in serum and total protein, albumin, cholinesterase level, and lecithin-cholesterol acyltransferase activity. Immunohistochemical analysis of human liver with specific antiserum to human C4bp demonstrated reaction endproducts in the hepatocytes around the central veins. These observations provide evidence that C4bp is synthesized by hepatocytes.  相似文献   

11.
12.
We have isolated a monoclonal antibody against Escherichia coli single-stranded DNA binding protein (SSB) that recognizes the functional domain specified by the ssb-113 temperature-sensitive mutation, a domain which is distinct from the DNA-binding site. Although the ssb-113 and ssb-1 mutations result in many similar phenotypic defects, they differ significantly in others, indicating that they affect different functional domains of the protein. Whereas the SSB-1 mutant protein is clearly defective in tetramer formation and is also unable to bind single-stranded DNA at nonpermissive temperatures, no similar in vitro defects have yet been found in the SSB-113 mutant protein. In fact, the only reported in vitro effect of the ssb-113 mutation on the protein is a slight increase in its helix destabilizing ability. Competition radioimmunoassays using a monoclonal antibody demonstrated that SSB-113 mutant protein, containing a single amino acid substitution at position 176 (the penultimate residue), did not compete with SSB while SSB-1 protein (with a single change at position 55) did compete with SSB. This analysis was refined by studies with a proteolysis fragment and with peptides derived from both SSB and SSB-113. The results indicate that the antibody recognizes a determinant near the COOH-terminal end of the protein and that the SSB-113 mutation lies within or very close to this determinant.  相似文献   

13.
14.
15.
A DNA binding protein that recognizes oligo(dA).oligo(dT) tracts.   总被引:24,自引:4,他引:24       下载免费PDF全文
  相似文献   

16.
17.
18.
19.
The purification to homogeneity of p16, a protein with an electrophoretic mobility compatible with an apparent molecular mass of 16 kDa, from nuclei of ungerminated pea embryonic axes is described. A cDNA clone of its gene, which was designated psp54, was also isolated. The psp54 cDNA contains an open reading frame coding for a 54.4-kDa polypeptide (p54). p16 corresponds to the C-terminal third of p54, although the mechanisms by which the primary polypeptide could be processed are not yet known. The sequence of p54 is 60% identical with that of the precursor of a sucrose-binding soybean protein, and, to a lesser extent (31-34%), it shares homology with some storage proteins. p16 is also 30% homologous with Nhp2p, a yeast nuclear protein. The psp54 gene, present in a single copy in pea genome, starts being expressed during seed desiccation. Soon after rehydration in seed germination, p54 mRNA disappears and is no longer detectable in vegetative tissues, except in response to hydric stress (exposure to abscisic acid, osmolites or desiccation). p16 can be recovered from nuclei cross-linked to histone H3, when the disulfide bridges that occur in vivo are preserved. On the other hand, p16 shares some properties with dehydrins, which are thought to protect cellular structures against desiccation. We propose that the possible precursor polypeptide p54 belongs to the vicilin superfamily, members of which play a variety of roles. The function of p16 may be related to the protection of chromatin structure against desiccation during seed development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号