首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 824 毫秒
1.
FliG, FliM, and FliN are three proteins of Salmonella typhimurium that affect the rotation and switching of direction of the flagellar motor. An analysis of mutant alleles of FliM has been described recently (H. Sockett, S. Yamaguchi, M. Kihara, V. M. Irikura, and R. M. Macnab, J. Bacteriol. 174:793-806, 1992). We have now analyzed a large number of mutations in the fliG and fliN genes that are responsible for four different types of defects: failure to assembly flagella (nonflagellate phenotype), failure to rotate flagella (paralyzed phenotype), and failure to display normal chemotaxis as a result of an abnormally high bias to clockwise (CW) or counterclockwise (CCW) rotation (CW-bias and CCW-bias phenotypes, respectively). The null phenotype for fliG, caused by nonsense or frameshift mutations, was nonflagellate. However, a considerable part of the FliG amino acid sequence was not needed for flagellation, with several substantial in-frame deletions preventing motor rotation but not flagellar assembly. Missense mutations in fliG causing paralysis or abnormal switching occurred at a number of positions, almost all within the middle one-third of the gene. CW-bias and CCW-bias mutations tended to segregate into separate subclusters. The null phenotype of fliN is uncertain, since frameshift and nonsense mutations gave in some cases the nonflagellate phenotype and in other cases the paralyzed phenotype; in none of these cases was the phenotype a consequence of polar effects on downstream flagellar genes. Few positions in FliN were found to affect switching: only one gave rise to the CW mutant bias and only four gave rise to the CCW mutant bias. The different properties of the FliM, FliG, and FliN proteins with respect to the processes of assembly, rotation, and switching are discussed.  相似文献   

2.
The flagellar switch proteins of Salmonella, FliG, FliM and FliN, participate in the switching of motor rotation, torque generation and flagellar assembly/export. FliN has been implicated in the flagellar export process. To address this possibility, we constructed 10-amino-acid scanning deletions and larger truncations over the C-terminal domain of FliN. Except for the last deletion variant, all other variants were unable to complement a fliN null strain or to restore the export of flagellar proteins. Most of the deletions showed strong negative dominance effects on wild-type cells. FliN was found to associate with FliH, a flagellar export component that regulates the ATPase activity of FliI. The binding of FliM to FliN does not interfere with this FliN-FliH interaction. Furthermore, a five-protein complex consisting of FliG, His-tagged FliM, FliN, FliH and FliI was purified by nickel-affinity chromatography. FliJ, a putative general chaperone, is bound to FliM even in the absence of FliH. The importance of the C ring as a possible docking site for export substrates, chaperones and FliI through FliH for their efficient delivery to membrane components of the export apparatus is discussed.  相似文献   

3.
Domain Analysis of the FliM Protein of Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
The FliM protein of Escherichia coli is required for the assembly and function of flagella. Genetic analyses and binding studies have shown that FliM interacts with several other flagellar proteins, including FliN, FliG, phosphorylated CheY, other copies of FliM, and possibly MotA and FliF. Here, we examine the effects of a set of linker insertions and partial deletions in FliM on its binding to FliN, FliG, CheY, and phospho-CheY and on its functions in flagellar assembly and rotation. The results suggest that FliM is organized into multiple domains. A C-terminal domain of about 90 residues binds to FliN in coprecipitation experiments, is most stable when coexpressed with FliN, and has some sequence similarity to FliN. This C-terminal domain is joined to the rest of FliM by a segment (residues 237 to 247) that is poorly conserved, tolerates linker insertion, and may be an interdomain linker. Binding to FliG occurs through multiple segments of FliM, some in the C-terminal domain and others in an N-terminal domain of 144 residues. Binding of FliM to CheY and phospho-CheY was complex. In coprecipitation experiments using purified FliM, the protein bound weakly to unphosphorylated CheY and more strongly to phospho-CheY, in agreement with previous reports. By contrast, in experiments using FliM in fresh cell lysates, the protein bound to unphosphorylated CheY about as well as to phospho-CheY. Determinants for binding CheY occur both near the N terminus of FliM, which appears most important for binding to the phosphorylated protein, and in the C-terminal domain, which binds more strongly to unphosphorylated CheY. Several different deletions and linker insertions in FliM enhanced its binding to phospho-CheY in coprecipitation experiments with protein from cell lysates. This suggests that determinants for binding phospho-CheY may be partly masked in the FliM protein as it exists in the cytoplasm. A model is proposed for the arrangement and function of FliM domains in the flagellar motor.  相似文献   

4.
The flagellar motor/switch complex, consisting of the three proteins FliG, FliM, and FliN, plays a central role in bacterial motility and chemotaxis. We have analyzed FliG, using 10-amino-acid deletions throughout the protein and testing the deletion clones for their motility and dominance properties and for interaction of the deletion proteins with the MS ring protein FliF. Only the N-terminal 46 amino acids of FliG (segments 1 to 4) were important for binding to FliF; consistent with this, an N-terminal fragment consisting of residues 1 to 108 bound FliF strongly, whereas a C-terminal fragment consisting of residues 109 to 331 did not bind FliF at all. Deletions in the region from residues 37 to 96 (segments 4 to 9), 297 to 306 (segment 30), and 317 to 326 (segment 32) permitted swarming, though not at wild-type levels; all other deletions caused paralyzed or, more commonly, nonflagellate phenotype. Except for those near the N terminus, deletions had a dominant negative effect on wild-type cells.  相似文献   

5.
The cytoplasmic portion of the bacterial flagellum is thought to consist of at least two structural components: a switch complex and an export apparatus. These components seem to assemble around the MS ring complex, which is the first flagellar basal body substructure and is located in the cytoplasmic membrane. In order to elucidate the process of assembly of cytoplasmic substructures, the membrane localization of each component of the switch complex (FliG, FliM, and FliN) in various nonflagellated mutants was examined by immunoblotting. It was found that all these switch proteins require the MS ring protein FliF to associate with the cell membrane. FliG does not require FliM and FliN for this association, but FliM and FliN associate cooperatively with the membrane only through FliG. Furthermore, all three switch proteins were detected in membranes isolated from fliE, fliH, fliI, fliJ, fliO, fliP, fliQ, fliR, flhA, flhB, and flgJ mutants, indicating that the switch complex assembles on the MS ring complex without any other flagellar proteins involved in the early stage of flagellar assembly. The relationship between the switch complex and the export apparatus is discussed.  相似文献   

6.
Rotation and switching of the bacterial flagellum depends on a large rotor-mounted protein assembly composed of the proteins FliG, FliM and FliN, with FliG most directly involved in rotation. The crystal structure of a complex between the central domains of FliG and FliM, in conjunction with several biochemical and molecular-genetic experiments, reveals the arrangement of the FliG and FliM proteins in the rotor. A stoichiometric mismatch between FliG (26 subunits) and FliM (34 subunits) is explained in terms of two distinct positions for FliM: one where it binds the FliG central domain and another where it binds the FliG C-terminal domain. This architecture provides a structural framework for addressing the mechanisms of motor rotation and direction switching and for unifying the large body of data on motor performance. Recently proposed alternative models of rotor assembly, based on a subunit contact observed in crystals, are not supported by experiment.  相似文献   

7.
FliN is a major constituent of the C ring in the flagellar basal body of many bacteria. It is present in >100 copies per flagellum and together with FliM and FliG forms the switch complex that functions in flagellar assembly, rotation, and clockwise-counterclockwise switching. FliN is essential for flagellar assembly and switching, but its precise functions are unknown. The C-terminal part of the protein is best conserved and most important for function; a crystal structure of this C-terminal domain of FliN from Thermotoga maritima revealed a saddle-shaped dimer formed mainly from beta strands (P. N. Brown, M. A. A. Mathews, L. A. Joss, C. P. Hill, and D. F. Blair, J. Bacteriol. 187:2890-2902, 2005). Equilibrium sedimentation studies showed that FliN can form stable tetramers and that a FliM1FliN4 complex is also stable. Here, we have examined the organization of FliN subunits by using targeted cross-linking. Cys residues were introduced at various positions in FliN, singly or in pairs, and disulfide cross-linking was induced by oxidation. Efficient cross-linking was observed for certain positions near the ends of the dimer and for some positions in the structurally uncharacterized N-terminal domain. Certain combinations of two Cys replacements gave a high yield of cross-linked tetramer. The results support a model in which FliN is organized in doughnut-shaped tetramers, stabilized in part by contacts involving the N-terminal domain. Electron microscopic reconstructions show a bulge at the bottom of the C-ring whose size and shape are a close match for the hypothesized FliN tetramer.  相似文献   

8.
Bacterial flagella contain a rotor-mounted protein complex termed the switch complex that functions in flagellar assembly, rotation, and clockwise/counterclockwise direction control. In Escherichia coli and Salmonella, the switch complex contains the proteins FliG, FliM, and FliN and corresponds structurally with the C-ring in the flagellar basal body. Certain features of subunit organization in the switch complex have been deduced previously, but details of subunit organization in the lower part of the C-ring and the molecular movements responsible for motor switching remain unclear. In this study, we use cross-linking, binding, and mutational experiments to examine subunit organization in the bottom of the C-ring and to probe movements that occur upon switching. The results show that FliN tetramers alternate with FliM C-terminal domains to form the bottom of the C-ring in an arrangement that closely reproduces the major features observed in electron microscopic reconstructions. When motors were switched to clockwise rotation by a repellent stimulus, cross-link yields were altered in a pattern indicating relative movement of FliN and FliMC. These results are discussed in the framework of a structurally grounded hypothesis for the switching mechanism.  相似文献   

9.
In the course of an analysis of the three genes encoding the flagellar motor switch, we isolated a paralyzed mutant whose defect proved to be a 4-bp deletion of the ribosome binding sequence of the fliN switch gene (V. M. Irikura, M. Kihara, S. Yamaguchi, H. Sockett, and R. M. Macnab, J. Bacteriol. 175:802-810,1993). This sequence lies just before the 3' end of the coding sequence of the upstream fliM switch gene, in the same operon. This mutant readily gave rise to pseudorevertants which, though much less motile than the wild type, did exhibit significant swarming. One such pseudorevertant was found to contain a compensating frameshift such that the fliM and fliN genes were placed in frame, coding for an essentially complete FliM-FliN protein fusion. Minicell analysis demonstrated that, as expected, the parental mutant synthesized an essentially full-length FliM protein but no detectable FliN. The pseudorevertant, in contrast, synthesized a protein with the predicted size for the FliM-FliN fusion protein and no detectable FliM or FliN. Immunoblotting of minicells with antibodies against FliM and FliN confirmed the identities of these various proteins. Immunoblotting of book-basal-body complexes from the wild-type strain gave a strong signal for the three switch proteins FliG, FliM, and FliN. Complexes from the FliM-FliN fusion mutant gave a strong signal for FliG but no signal for either FIiM or FliN; a moderately strong signal for the FliM-FliN fusion protein was seen with the anti-FliM antibody, and a weaker signal was seen with the anti-FliN antibody. The cytoplasmic C ring of the structure, which is seen consistently in electron microscopy of wild-type complexes and which is known to contain the FliM and FliN proteins, was much more labile in the FliM-FliN fusion mutant, giving a fragmented and variable appearance or being completely absent. Complementation data indicated that wild-type FliM had a mild dominant negative effect over the fusion protein, that wild-type FliN and the fusion protein work much better than the fusion protein alone, and that wild-type FliM and FliN together have no major positive or negative effect on the function of the fusion protein. We interpret these data to mean that the FliM-FliN fusion protein incorporates into structure but less stably than do the FliM and FliN proteins separately, that wild-type FliM tends to displace the fusion protein, and that wild-type FliN can supplement the FliN domain of the fusion protein without displacing the FliM domain. The data support, but do not prove, a model in which FliM and FliN in the wild-type switch complex are stationary with respect to each other.  相似文献   

10.
The bacterial flagellar motor can rotate either clockwise (CW) or counterclockwise (CCW). Three flagellar proteins, FliG, FliM, and FliN, are required for rapid switching between the CW and CCW directions. Switching is achieved by a conformational change in FliG induced by the binding of a chemotaxis signaling protein, phospho-CheY, to FliM and FliN. FliG consists of three domains, FliG(N), FliG(M), and FliG(C), and forms a ring on the cytoplasmic face of the MS ring of the flagellar basal body. Crystal structures have been reported for the FliG(MC) domains of Thermotoga maritima, which consist of the FliG(M) and FliG(C) domains and a helix E that connects these two domains, and full-length FliG of Aquifex aeolicus. However, the basis for the switching mechanism is based only on previously obtained genetic data and is hence rather indirect. We characterized a CW-biased mutant (fliG(ΔPAA)) of Salmonella enterica by direct observation of rotation of a single motor at high temporal and spatial resolution. We also determined the crystal structure of the FliG(MC) domains of an equivalent deletion mutant variant of T. maritima (fliG(ΔPEV)). The FliG(ΔPAA) motor produced torque at wild-type levels under a wide range of external load conditions. The wild-type motors rotated exclusively in the CCW direction under our experimental conditions, whereas the mutant motors rotated only in the CW direction. This result suggests that wild-type FliG is more stable in the CCW state than in the CW state, whereas FliG(ΔPAA) is more stable in the CW state than in the CCW state. The structure of the TM-FliG(MC)(ΔPEV) revealed that extremely CW-biased rotation was caused by a conformational change in helix E. Although the arrangement of FliG(C) relative to FliG(M) in a single molecule was different among the three crystals, a conserved FliG(M)-FliG(C) unit was observed in all three of them. We suggest that the conserved FliG(M)-FliG(C) unit is the basic functional element in the rotor ring and that the PAA deletion induces a conformational change in a hinge-loop between FliG(M) and helix E to achieve the CW state of the FliG ring. We also propose a novel model for the arrangement of FliG subunits within the motor. The model is in agreement with the previous mutational and cross-linking experiments and explains the cooperative switching mechanism of the flagellar motor.  相似文献   

11.
Brown PN  Hill CP  Blair DF 《The EMBO journal》2002,21(13):3225-3234
The FliG protein is essential for assembly, rotation and clockwise/counter-clockwise (CW/CCW) switching of the bacterial flagellum. About 25 copies of FliG are present in a large rotor-mounted assembly termed the 'switch complex', which also contains the proteins FliM and FliN. Mutational studies have identified the segments of FliG most crucial for flagellar assembly, rotation and switching. The structure of the C-terminal domain, which functions specifically in rotation, was reported previously. Here, we describe the crystal structure of a larger fragment of the FliG protein from Thermotoga maritima, which encompasses the middle and C-terminal parts of the protein (termed FliG-MC). The FliG-MC molecule consists of two compact globular domains, linked by an alpha-helix and an extended segment that contains a well-conserved Gly-Gly motif. Mutational studies indicate that FliM binds to both of the globular domains, and given the flexibility of the linking segment, FliM is likely to determine the relative orientation of the domains in the flagellum. We propose a model for the organization of FliG-MC molecules in the flagellum, and suggest that CW/CCW switching might occur by movement of the C-terminal domain relative to other parts of FliG, under the control of FliM.  相似文献   

12.
The switch complex at the base of the bacterial flagellum is essential for flagellar assembly, rotation, and switching. In Escherichia coli and Salmonella, the complex contains about 26 copies of FliG, 34 copies of FliM, and more then 100 copies of FliN, together forming the basal body C ring. FliG is involved most directly in motor rotation and is located in the upper (membrane-proximal) part of the C ring. A crystal structure of the middle and C-terminal parts of FliG shows two globular domains connected by an alpha-helix and a short extended segment. The middle domain of FliG has a conserved surface patch formed by the residues EHPQ(125-128) and R(160) (the EHPQR motif), and the C-terminal domain has a conserved surface hydrophobic patch. To examine the functional importance of these and other surface features of FliG, we made mutations in residues distributed over the protein surface and measured the effects on flagellar assembly and function. Mutations preventing flagellar assembly occurred mainly in the vicinity of the EHPQR motif and the hydrophobic patch. Mutations causing aberrant clockwise or counterclockwise motor bias occurred in these same regions and in the waist between the upper and lower parts of the C-terminal domain. Pull-down assays with glutathione S-transferase-FliM showed that FliG interacts with FliM through both the EHPQR motif and the hydrophobic patch. We propose a model for the organization of FliG and FliM subunits that accounts for the FliG-FliM interactions identified here and for the different copy numbers of FliG and FliM in the flagellum.  相似文献   

13.
Recently, the switch-motor complex of bacterial flagella was found to be associated with a number of non-flagellar proteins, which, in spite of not being known as belonging to the chemotaxis system, affect the function of the flagella. The observation that one of these proteins, fumarate reductase, is essentially involved in electron transport under anaerobic conditions raised the question of whether other energy-linked enzymes are associated with the switch-motor complex as well. Here, we identified two additional such enzymes in Escherichia coli. Employing fluorescence resonance energy transfer in vivo and pull-down assays invitro, we provided evidence for the interaction of F(0)F(1) ATP synthase via its β subunit with the flagellar switch protein FliG and for the interaction of NADH-ubiquinone oxidoreductase with FliG, FliM, and possibly FliN. Furthermore, we measured higher rates of ATP synthesis, ATP hydrolysis, and electron transport from NADH to oxygen in membrane areas adjacent to the flagellar motor than in other membrane areas. All these observations suggest the association of energy complexes with the flagellar switch-motor complex. Finding that deletion of the β subunit in vivo affected the direction of flagellar rotation and switching frequency further implied that the interaction of F(0)F(1) ATP synthase with FliG is important for the function of the switch of bacterial flagella.  相似文献   

14.
TheSalmonella typhimuriumFliN protein has been proposed to form a mutually interacting complex with FliG and FliM, the switch complex, that is required for flagellar morphogenesis and function. We have used affinity chromatography for purification of extended flagellar basal bodies sufficient for quantitative analysis of their protein composition. The belled, extended structure is predominantly comprised of the switch complex proteins; with FliN present in the most copies (111±13). This explains why single, missensefliN,fliGorfliMmutations, found in many non-motile strains, can alter the belled morphology. Cell lysates from these strains contained the wild-type complement of FliG, FliM and FliN; but the basal bodies lacked the outer, cytoplasmic(C)-ring of the bell and were separated by sedimentation from FliM and FliN. The amount of FliG present in basal bodies from wild-type and one such mutant, FliN100LP, was comparable. These data show that: (1) the mutations define a FliG and FliMFliN multiple contact interface important for motility. (2) FliG is responsible for the increased size of the membrane-embedded MS-ring complex of belled relative to acid-treated basal bodies. (3) FliN, together with FliM, account for most of the C-ring. As a major component of the C-ring, FliN is distinct from the other proteins implicated in axial flagellar protein export. Inner, cytoplasmic rod basal substructure, seen by negative-stain and quick- freeze replica electron microscopy, may gate such export. Lack of connectivity between the cytoplasmic rod and ring substructures places contacts between FliG and FliMFliN at the periphery of the basal body, proximal to the flagellar intramembrane ring particles. This topology is consistent with models where torque results from interaction of circumferential arrays of the switch complex proteins with the ring particles.  相似文献   

15.
Among the many proteins needed for the assembly and function of bacterial flagella, only five have been suggested to be involved in torque generation. These are MotA, MotB, FliG, FliM and FliN. In this study, we have probed binding interactions among these proteins, by using protein fusions to glutathioneS-transferase or to oligo-histidine, in conjunction with co-isolation assays. The results show that FliG, FliM and FliN all bind to each other, and that each also self-associates. MotA and MotB also bind to each other, and MotA interacts, but only weakly, with FliG and FliM. Taken together with previous genetic, physiological and ultrastructural studies, these results provide strong support for the view that FliG, FliM and FliN function together in a complex on the rotor of the flagellar motor, whereas MotA and MotB form a distinct complex that functions as the stator. Torque generation in the flagellar motor is thus likely to involve interactions between these two protein complexes.  相似文献   

16.
The high-resolution structures of nearly all the proteins that comprise the bacterial flagellar motor switch complex have been solved; yet a clear picture of the switching mechanism has not emerged. Here, we used NMR to characterize the interaction modes and solution properties of a number of these proteins, including several soluble fragments of the flagellar motor proteins FliM and FliG, and the response-regulator CheY. We find that activated CheY, the switch signal, binds to a previously unidentified region of FliM, adjacent to the FliM-FliM interface. We also find that activated CheY and FliG bind with mutual exclusivity to this site on FliM, because their respective binding surfaces partially overlap. These data support a model of CheY-driven motor switching wherein the binding of activated CheY to FliM displaces the carboxy-terminal domain of FliG (FliGC) from FliM, modulating the FliGC-MotA interaction, and causing the motor to switch rotational sense as required for chemotaxis.  相似文献   

17.
K Oosawa  T Ueno    S Aizawa 《Journal of bacteriology》1994,176(12):3683-3691
The flagellar switch proteins (FliG, FliM, and FliN) of Salmonella typhimurium were overproduced in Escherichia coli and partially purified in soluble form. They were mixed with purified MS ring complexes (which consist of subunits of FliF protein) to examine their interactions in vitro. The degree of interaction was estimated by ultracentrifugation, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. From the band density on the gel, we estimated that FliG bound to the MS ring complex at an approximately 1:1 molar ratio (FliG:FliF), whereas FliM did so only at a 1:5 molar ratio (FliM:FliF). FliN did not bind to the MS ring complex by itself or in the presence of the other switch proteins. A possible configuration of the switch proteins is discussed.  相似文献   

18.
Salmonella typhimurium FliG and FliM are two of three proteins known to be necessary for flagellar morphogenesis as well as energization and switching of flagellar rotation. We have determined FliG and FliM levels in cellular fractions and in extended flagellar basal bodies, using antibodies raised against the purified proteins. Both proteins were found predominantly in the detergent-solubilized particulate fraction containing flagellar structures. Basal flagellar fragments could be separated from partially constructed basal bodies by gel filtration chromatography. FliG and FliM were present in an approximately equimolar ration in all gel-filtered fractions. FliG and FliM copy numbers, estimated relative to that of the hook protein from the early fractions containing long, basal, flagellar fragments, were (means +/- standard errors) 41 +/- 10 and 37 +/- 13 per flagellum, respectively. Extended structures were present in the earliest identifiable basal bodies. Immunoelectron microscopy and immunoblot gel analysis suggested that the FliG and, to a less certain degree, the FliM contents of these structures were the same as those for the complete basal bodies. These facts are consistent with the postulate that FliG and FliM affect flagellar morphogenesis as part of the extended basal structure, formation of which is necessary for assembly of more-distal components of the flagellum. The determined stoichiometries will provide important constraints to modelling energization and switching of flagellar rotation.  相似文献   

19.
Rotation of the bacterial flagellar motor is powered by a transmembrane gradient of protons or, in some species, sodium ions. The molecular mechanism of coupling between ion flow and motor rotation is not understood. The proteins most closely involved in motor rotation are MotA, MotB, and FliG. MotA and MotB are transmembrane proteins that function in transmembrane proton conduction and that are believed to form the stator. FliG is a soluble protein located on the cytoplasmic face of the rotor. Two other proteins, FliM and FliN, are known to bind to FliG and have also been suggested to be involved to some extent in torque generation. Proton (or sodium)-binding sites in the motor are likely to be important to its function and might be formed from the side chains of acidic residues. To investigate the role of acidic residues in the function of the flagellar motor, we mutated each of the conserved acidic residues in the five proteins that have been suggested to be involved in torque generation and measured the effects on motility. None of the conserved acidic residues of MotA, FliG, FliM, or FliN proved essential for torque generation. An acidic residue at position 32 of MotB did prove essential. Of 15 different substitutions studied at this position, only the conservative-replacement D32E mutant retained any function. Previous studies, together with additional data presented here, indicate that the proteins involved in motor rotation do not contain any conserved basic residues that are critical for motor rotation per se. We propose that Asp 32 of MotB functions as a proton-binding site in the bacterial flagellar motor and that no other conserved, protonatable residues function in this capacity.  相似文献   

20.
The chemotaxis signal protein CheY of enteric bacteria shuttles between transmembrane methyl-accepting chemotaxis protein (MCP) receptor complexes and flagellar basal bodies [1]. The basal body C-rings, composed of the FliM, FliG and FliN proteins, form the rotor of the flagellar motor [2]. Phosphorylated CheY binds to isolated FliM [3] and may also interact with FliG [4], but its binding to basal bodies has not been measured. Using the chemorepellent acetate to phosphorylate and acetylate CheY [5], we have measured the covalent-modification-dependent binding of a green fluorescent protein-CheY fusion (GFP-CheY) to motor assemblies in bacteria lacking MCP complexes by evanescent wave microscopy [6]. At acetate concentrations that cause solely clockwise rotation, GFP-CheY molecules bound to native basal bodies or to overproduced rotor complexes with a stoichiometry comparable to the number of C-ring subunits. GFP-CheY did not bind to rotors lacking FIiM/FliN, showing that these subunits are essential for the association. This assay provides a new means of monitoring protein-protein interactions in signal transduction pathways in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号