首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Riboswitches are RNA sensors that have been shown to modulate the expression of downstream genes by altering their structure upon metabolite binding. Riboswitches are unique among cellular regulators in that metabolite detection is strictly performed using RNA interactions with the sensed metabolite and in which no regulatory protein is needed to mediate the interaction. However, recent studies have shed light on riboswitch control mechanisms relying on protein regulators to harness metabolite binding for the mediation of gene expression, thereby increasing the range of cellular factors involved in riboswitch regulation. The interaction between riboswitches and proteins adds another level of evolutionary pressure as riboswitches must maintain key residues for metabolite detection, structural switching and protein binding sites. Here, we review regulatory mechanisms involving Escherichia coli riboswitches that have recently been shown to rely on regulatory proteins. We also discuss the implication of such protein-based riboswitch regulatory mechanisms for genetic regulation.  相似文献   

2.
Liu X  Reig B  Nasrallah IM  Stover PJ 《Biochemistry》2000,39(38):11523-11531
The 5' untranslated region (UTR) of the human cytoplasmic serine hydroxymethyltransferase (cSHMT) message is alternatively spliced, creating a full-length 5' UTR (LUTR) encoded within exons 1-3 and a shorter UTR (SUTR) that results from excision of exon 2. The role of the 5' UTRs in cSHMT expression was investigated by fusing the cSHMT 5' UTRs to the 5' end of the luciferase gene. Human cSHMT protein at 10 microM inhibits in vitro translation of cSHMT 5' UTR-luciferase fusion mRNA templates by more than 90%, but does not inhibit translation of the luciferase message lacking the UTR. Translation inhibition is independent of amino acid and folate substrate binding to the cSHMT enzyme. The cSHMT SUTR-luciferase mRNA binds to the cSHMT.glycine.5-formyltetrahydrofolate ternary complex with an apparent K(d) of 10 microM. Gel mobility shift assays demonstrate that the human cSHMT protein binds to the cSHMT LUTR-luciferase fusion mRNA in the presence and absence of glycine and 5-formyltetrahydrofolate pentaglutamate. The fusion cSHMT SUTR-luciferase message at 65 microM inhibits the cSHMT-catalyzed cleavage of allothreonine as a partial mixed type inhibitor, reducing both k(cat) and K(m) by 40 and 75%, respectively, while tRNA has no effect on cSHMT catalysis. These studies indicate that the cSHMT protein can bind mRNA, and displays increased affinity for the 5' untranslated region of its mRNA.  相似文献   

3.
4.
5.
6.
Microalgae have the potential to be a valuable biotechnological platform for the production of recombinant proteins. However, because of the complex regulatory network that tightly controls chloroplast gene expression, heterologous protein accumulation in a wild-type, photosynthetic-competent algal chloroplast remains low. High levels of heterologous protein accumulation have been achieved using the psbA promoter/5' untranslated region (UTR), but only in a psbA-deficient genetic background, because of psbA/D1-dependent auto-attenuation. Here, we examine the effect of fusing the strong 16S rRNA promoter to the 5' UTR of the psbA and atpA genes on transgene expression in the chloroplast of Chlamydomonas reinhardtii. We show that fusion of the 16S promoter had little impact on protein accumulation from the psbA 5' UTR in a psbA-deficient genetic background. Furthermore, the 16S/psbA promoter/UTR fusion was silenced in the presence of wild-type levels of D1 protein, confirming that the psbA 5' UTR is the primary target for D1-dependent auto-repression. However, fusion of the 16S promoter to the atpA 5' UTR significantly boosts mRNA levels and supports high levels of heterologous protein accumulation in photosynthetic-competent cells. The 16S/atpA promoter/UTR drove LUXCT protein accumulation to levels close to that of psbA in a psbA- background, and drove expression of a human therapeutic protein to levels only twofold lower than the psbA 5' UTR. The 16S/atpA promoter/UTR combination should have utility for heterologous protein production when expression from a photosynthetic-competent microalgal strain is required.  相似文献   

7.
8.
9.
Bioinformatics searches of eubacterial genomes have yielded many riboswitch candidates where the identity of the ligand is not immediately obvious on examination of associated genes. One of these motifs is found exclusively in the family Streptococcaceae within the 5' untranslated regions (UTRs) of genes encoding the hypothetical membrane protein classified as COG4708 or DUF988. While the function of this protein class is unproven, a riboswitch binding the queuosine biosynthetic intermediate pre-queuosine(1) (preQ(1)) has been identified in the 5' UTR of homologous genes in many Firmicute species of bacteria outside of Streptococcaceae. Here we show that a representative of the COG4708 RNA motif from Streptococcus pneumoniae R6 also binds preQ(1). Furthermore, representatives of this RNA have structural and molecular recognition characteristics that are distinct from those of the previously described preQ(1) riboswitch class. PreQ(1) is the second metabolite for which two or more distinct classes of natural aptamers exist, indicating that natural aptamers utilizing different structures to bind the same metabolite may be more common than is currently known. Additionally, the association of preQ(1) binding RNAs with most genes encoding proteins classified as COG4708 strongly suggests that these proteins function as transporters for preQ(1) or another queuosine biosynthetic intermediate.  相似文献   

10.
Prosystemin is the 200-amino-acid prohormone of the 18-amino-acid polypeptide called systemin, a systemic mobile signal that activates the synthesis of defense genes in solanaceous plants in response to herbivore attacks. The unusual primary structural features of the tomato prosystemin cDNA and protein provided an extraordinary challenge in devising an expression system to obtain the full-length protein. Prosystemin expression inhibited the growth of a eukaryotic and several prokaryotic hosts used. Prosystemin was initially synthesized as a truncated protein of 185 amino acids in length using a T7 RNA polymerase expression system in E. coli strain BL21[DE3]. The truncation was found to be due to two factors: (1) the intramolecular associations of the 5' coding region of the prosystemin sequence with the expression vector's ribosome binding site and (2) the presence of a translation start site just prior to the amino acid methionine at position 15. Mutations that permitted the synthesis of the full-length prosystemin protein were introduced into the amino-terminal 5' coding region of the prosystemin cDNA. A 199-amino-acid recombinant prosystemin lacking the N-terminal methionine was purified from lysates and confirmed by N-terminal amino acid sequence and immunoblot analysis.  相似文献   

11.
12.
13.
14.
15.
The sodium-dependent neutral amino acid transporter type 2 (ASCT2) was recently identified as a cell surface receptor for endogenously inherited retroviruses of cats, baboons, and humans as well as for horizontally transmitted type-D simian retroviruses. By functional cloning, we obtained 10 full-length 2.9-kilobase pair (kbp) cDNAs and two smaller identical 2.1-kbp cDNAs that conferred susceptibility to these viruses. Compared with the 2.9-kbp cDNA, the 2.1-kbp cDNA contains exonic deletions in its 3' noncoding region and a 627-bp 5' truncation that eliminates sequences encoding the amino-terminal portion of the full-length ASCT2 protein. Although expression of the truncated mRNA caused enhanced amino acid transport and viral receptor activities, the AUG codon nearest to its 5' end is flanked by nucleotides that are incompatible with translational initiation and the next in-frame AUG codon is far downstream toward the end of the protein coding sequence. Interestingly, the 5' region of the truncated ASCT2 mRNA contains a closely linked series of CUG(Leu) and GUG(Val) codons in optimal consensus contexts for translational initiation. By deletion and site-directed mutagenesis, cell-free translation, and analyses of epitope-tagged ASCT2 proteins synthesized intracellularly, we determined that the truncated mRNA encodes multiple ASCT2 isoforms with distinct amino termini that are translationally initiated by a leaky scanning mechanism at these CUG and GUG codons. Although the full-length ASCT2 mRNA contains a 5'-situated AUG initiation codon, a significant degree of leaky scanning also occurred in its translation. ASCT2 isoforms with relatively short truncations were active in both amino acid transport and viral reception, whereas an isoform with a 79-amino acid truncation that lacked the first transmembrane sequence was active only in viral reception. We conclude that ASCT2 isoforms with truncated amino termini are synthesized in mammalian cells by a leaky scanning mechanism that employs multiple alternative CUG and GUG initiation codons.  相似文献   

16.
Characterization of a human gene encoding nucleosomal binding protein NSBP1   总被引:3,自引:0,他引:3  
King LM  Francomano CA 《Genomics》2001,71(2):163-173
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号