首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glucagon is a 29-amino acid polypeptide released from pancreatic islet alpha-cells that acts to maintain euglycemia by stimulating hepatic glycogenolysis and gluconeogenesis. Despite its importance, there remains controversy about the mechanisms responsible for glucagon clearance in the body. In the current study, enzymatic metabolism of glucagon was assessed using sensitive mass spectrometric techniques to identify the molecular products. Incubation of glucagon with purified porcine dipeptidyl peptidase IV (DP IV) yielded sequential production of glucagon(3-29) and glucagon(5-29). In human serum, degradation to glucagon(3-29) was rapidly followed by N-terminal cyclization of glucagon, preventing further DP IV-mediated hydrolysis. Bioassay of glucagon, following incubation with purified DP IV or normal rat serum demonstrated a significant loss of hyperglycemic activity, while a similar incubation in DP IV-deficient rat serum did not show any loss of glucagon bioactivity. Degradation, monitored by mass spectrometry and bioassay, was blocked by the specific DP IV inhibitor, isoleucyl thiazolidine. These results identify DP IV as a primary enzyme involved in the degradation and inactivation of glucagon. These findings have important implications for the determination of glucagon levels in human plasma.  相似文献   

2.
CD26/Dipeptidyl Peptidase IV (DPPIV) is a 110-kDa glycoprotein that is expressed on numerous cell types and has multiple biological functions. A key facet of CD26/DPPIV biology is its enzymatic activity and its physical and functional interaction with other molecules. The substrates of CD26/DPPIV are proline-containing peptides and include growth factors, chemokines, neuropeptides, and vasoactive peptides. DPPIV plays an important role in immune regulation, signal transduction, and apoptosis. Furthermore, CD26 appears to play an important role in tumor progression. In the present review, we summarize key aspects of CD26/DPPIV involvement in tumor biology and its potential role in cancer development and behavior.  相似文献   

3.
We previously described a developmentally regulated, Mr 115,000 (reduced) and 110,000/128,000 (nonreduced) mouse T cell-activating molecule (THAM) also expressed on a variety of epithelial cell surfaces, and associated with neutral exoaminopeptidase activity. In the present study, we show that THAM is the mouse counterpart of the human T cell-activating ectoenzyme CD26 (dipeptidyl peptidase IV, DPP IV) and that highly purified THAM lacks neutral exoaminopeptidase activity. This conclusion is based on the following: 1) the N-terminal segments of the THAM Mr 110,000 and 128,000 components shared the same amino acid sequence with the rat DPP IV. These N-termini comprised a short intracytoplasmic tail of six residues followed by a downstream hydrophobic transmembrane segment. 2) THAM-specific mAb H194-112-Affi-Gel immunoadsorbent was capable of removing DPP IV enzymatic activity from mouse thymoma cell detergent extracts. 3) H194-112 reactivity pattern on developing thymocytes was found to parallel that previously reported for membrane-bound DPP IV enzymatic activity. The extent of THAM N-glycosylation, as measured by N-glycanase treatment of H194-112 immunoprecipitates, was found to be similar to that of human and rat DPP IV (i.e., approximately 20 kDa). Cross-linking experiments indicated that THAM was expressed at the cell surface as a dimer of approximately 220 kDa. Its two subunits were found to be structurally related but not identical as shown by their different Mr under nonreducing conditions and by their slightly distinct peptide profiles after proteolytic cleavage. We conclude from these data that DPP IV, in addition to its extracellular matrix receptor and ectoenzymatic functions, is a T cell-activating structure in both human and mouse species.  相似文献   

4.
Proteolytic enzymes contribute to the regulation of cellular functions such as cell proliferation and death, cytokine production, and matrix remodeling. Dipeptidyl peptidase IV (DP IV) catalyzes the cleavage of several cytokines and thereby contributes to the regulation of cytokine production and the proliferation of immune cells. Here we show for the first time that cell surface-bound DP IV catalyzes the cleavage of specific substrates that are associated with the cellular surface of neighboring cells. Rhodamine 110 (R110), a highly fluorescent xanthene dye, was used to synthesize dipeptidyl peptidase IV (DP IV/CD26) substrates Gly(Ala)-Pro-R110-R, thus facilitating a stable binding of the fluorescent moiety on the cell surface. The fixation resulted from the interaction with the reactive anchor rhodamine and allowed the quantification of cellular DP IV activity on single cells. The reactivity, length, and hydrophobicity of rhodamine was characterized as the decisive factor that facilitated the determination of cellular DP IV activity. Using fluorescence microscopy, it was possible to differentiate between different DP IV activities. The hydrolysis of cell-bound substrates Xaa-Pro-R110-R by DP IV of neighboring cells and by soluble DP IV was shown using flow cytometry. These data demonstrate that ectopeptidases such as DP IV may be involved in communication between blood cells via proteolysis of cell-associated substrates.  相似文献   

5.
The cellular dipeptidyl peptidase IV (DPIV, E.C.3.4.14.5, CD26) is a type II membrane peptidase with various physio-logical functions. Our main knowledge on DPIV comes from studies of soluble DPIV which plays a role in regulation of glucose homeostasis by inactivation of the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic poly-peptide. It has been reported that membrane-bound DPIV plays a crucial role in the immune system and in other tissues and cells, but the knowledge on the action of cellular DPIV and its regulation is limited. In this study, we show particularly for immune cells that DPIV and not DP8 or DP9 is the most potent member of the DPIV family in regulating cellular immune functions. Moreover, we provide evidence that soluble and cellular DPIV differ in functions and hand-ling of substrates and inhibitors owing to the different accessibility of peptide substrates to the two access paths of DPIV. The different functions are based on the favored access path of the central pore of cellular DPIV and a special central pore binding site which assists substrate access to the active site of the enzyme. The newly discovered central pore binding site mediates an autosterical regulation of cellular DPIV and is its most crucial target site to regulate cellular functions such as growth and cytokine production. Neuropeptide Y (NPY) processing by cellular DPIV was found to be inhibited by ligands which interact with the central pore binding site. This finding suggests a crucial role of the immunosuppressive cytokine NPY in the function of DPIV in growth regulation.  相似文献   

6.
CD26 (Ta1, dipeptidyl peptidase IV) is a Mr 105,000 protein expressed at high levels on activated T lymphocytes and is a potential marker of memory T cells. Reciprocal immunodepletion and solid phase double determinant binding studies showed that mAb AC7 and the CD26-specific mAb anti-Ta1 reacted with spatially distinct sites on the same molecule. The proteinase dipeptidyl peptidase IV (DPP IV) was immunoprecipitated with mAb AC7 and its enzymatic activity directly assayed using an enzyme overlay membrane system. High levels of DPP IV activity were detected on the T cell tumor line CCRF-HSB-2 and on PBMC stimulated by a variety of methods. By itself, soluble mAb AC7 was not mitogenic for T cells but enhanced T cell proliferation that resulted from treatment with phorbol myristic acetate (PMA) in the presence of accessory cells. T cell proliferation was also induced by co-immobilized mAb AC7 and mAb OKT3 (anti-CD3). Cultures of T cells growing in the presence of IL-2 responded with accelerated growth when exposed to a combination of immobilized mAb AC7 and soluble mAb OKT3, a result not seen with freshly isolated T cells.  相似文献   

7.
Chemokines mediate the recruitment of leukocytes to the sites of inflammation. N-terminal truncation of chemokines by the protease dipeptidyl peptidase IV (DPPIV) potentially restricts their activity during inflammatory processes such as allergic reactions, but direct evidence in vivo is very rare. After demonstrating that N-terminal truncation of the chemokine CCL11/eotaxin by DPPIV results in a loss of CCR3-mediated intracellular calcium mobilization and CCR3 internalization in human eosinophils, we focused on the in vivo role of CCL11 and provide direct evidence for specific kinetic and rate-determining effects by DPPIV-like enzymatic activity on CCL11-mediated responses of eosinophils. Namely, it is demonstrated that i.v. administration of CCL11 in wild-type F344 rats leads to mobilization of eosinophils into the blood, peaking at 30 min. This mobilization is significantly increased in DPPIV-deficient F344 rats. Intradermal administration of CCL11 is followed by a dose-dependent recruitment of eosinophils into the skin and is significantly more effective in DPPIV-deficient F344 mutants as well as after pharmacological inhibition of DPPIV. Interestingly, CCL11 application leads to an up-regulation of DPPIV, which is not associated with negative feedback inhibition via DPPIV-cleaved CCL11((3-74)). These findings demonstrate regulatory effects of DPPIV for the recruitment of eosinophils. Furthermore, they illustrate that inhibitors of DPPIV have the potential to interfere with chemokine-mediated effects in vivo including but not limited to allergy.  相似文献   

8.
In the present report, we demonstrated that modulation of CD26 from T cell surface induced by antiCD26 (1F7) led to enhanced phosphorylation of CD3 zeta tyrosine residues and increased CD4 associated p56lck tyrosine kinase activity. We further showed that CD26 was comodulated on the T cell surface with CD45, a known membrane-linked protein tyrosine phosphatase and that anti-CD26 was capable of precipitating CD45 from T cell lysates. These findings strongly suggest that CD26 may be closely associated with the CD45 protein tyrosine phosphatase on T cell surface and further support the notion that the interaction of CD26 with CD45 results in enhanced tyrosine kinase activity, zeta chain phosphorylation, and T cell activation.  相似文献   

9.
The T cell activation antigen CD26 has been recently identified as the cell surface ectopeptidase dipeptidyl peptidase IV (DPP-IV). DPP-IV is found on many cell types, including lymphocytes, epithelial cells, and certain endothelial cells. The MRC OX61 monoclonal antibody (MAb) which specifically recognises rat DPP-IV was used to examine the expression of CD26/DPP-IV on rat lymphocytes. The molecular nature of the antigen was examined by immunoprecipitation from thymocytes, splenocytes, and hepatocytes. Analysis by one- and two-dimensional gel electrophoresis indicated that the native form of CD26 includes a 220-kDa homodimer. On tissue sections MRC OX61 MAb stained nearly all thymocytes and in the spleen and lymph nodes predominantly stained the T cell areas. However, in immunofluorescence experiments OX61 stained 80 to 87% of lymph node cells and 78 to 85% of spleen cells. Furthermore, two-colour immunofluorescence analysis of the CD4+, CD8+, and Ig+ lymphocyte subsets indicated that only 2 to 5% of each of these subsets lacked OX61 staining. Spleen cells and thymocytes of both CD4+ and CD8+ subsets stained much more intensely with OX61 after these cells were stimulated with phytohemagglutinin. These findings indicate that rat CD26 antigen expression is not confined to the T cell population as has been suggested, but also occurs on B cells, and is increased on T cells following their activation.  相似文献   

10.
11.
12.
The multifunctional type II transmembrane glycoprotein, dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5), is expressed by almost all mammalian cells and is identical to the adenosine deaminase binding protein CD26 on lymphocytes. The extracellular part of rat DPPIV can be divided into three domains the middle part of which harbors 10 of the 12 highly conserved cysteine residues. The cysteine-rich domain is responsible for DPPIV-binding to collagen I and to extracellular ADA. The participation of distinct cysteines in disulfide bridges is not yet known. Titration experiments have shown the presence of six free cysteines and three disulfide bridges in native rat DPPIV. To investigate the role of distinct cysteines in the structure-function relationships of rat DPPIV we constructed 12 different cysteine point mutations (C299, C326, C383, C455, C650 mutated to G; C337, C395, C445, C448, C473, C552, C763 mutated to S). Intracellular translocation to the cell surface of stable transfected Chinese hamster ovary cells was examined with antibodies against different epitopes of DPPIV. Surface expression of mutants C326G, C445S and C448S is inhibited totally; mutants C337S, C455G, C473S and C552S show weak expression only. In parallel, the half-life of these mutants is reduced to < 10% compared with wild-type enzyme. We were able to show that the specific peptidase activity of the mutant protein depends on cell-surface expression, dimerization and the existence of a 150-kDa form demonstrable by nondenaturing SDS/PAGE. We conclude that cysteine residues 326, 337, 445, 448, 455, 473 and 552 in rat DPPIV are essential for the correct folding and intracellular trafficking of this glycoprotein, and therefore for its normal biological properties.  相似文献   

13.
CD26 or dipeptidyl peptidase IV (DPP-IV) is a cell surface protease involved in T cell activation. Monoclonal antibodies (mAbs) directed against the CD26 molecule are able to stimulate CD26-expressing T cells. Although many different CD26-specific mAbs exist which are able to provide a triggering signal in T cells, little is known about their specific epitopes on the CD26 molecule. Whereas some mAbs were shown to compete with each other and to inhibit the association of adenosine deaminase (ADA) and human immunodeficiency virus 1 (HIV-1)-derived Tat protein with CD26, other CD26-specific mAbs obviously bind to distinct regions on DPP-IV. In the present study we have generated truncated versions of the human CD26 molecule and expressed them in COS-1 cells to study the binding pattern of a panel of 14 CD26-specific mAbs in confocal microscopy and, thus, correlated the CD26-specific mAbs epitopes with the binding region of ADA. We show that the majority of anti-CD26 mAbs is directed against the glycosylation-rich region of the molecule whereas the ADA-binding site could be located in the cysteine-rich region of DPP-IV. In contrast to binding experiments with purified ADA, which revealed a specific association with CD26 on CD26-positive Jurkat cells, HIV-derived Tat protein did not interact specifically with CD26 on transfected Jurkat cells, nor could Tat binding be competed by anti-CD26-specific mAbs.  相似文献   

14.
Dipeptidyl peptidase IV (DPP-IV/CD26) is a multifunctional type II transmembrane serine peptidase. This enzyme contributes to the regulation of various physiological processes, including blood sugar homeostasis, by cleaving peptide hormones, chemokines and neuropeptides. We have determined the 2.5 A structure of the extracellular region of DPP-IV in complex with the inhibitor valine-pyrrolidide. The catalytic site is located in a large cavity formed between the alpha/beta-hydrolase domain and an eight-bladed beta-propeller domain. Both domains participate in inhibitor binding. The structure indicates how substrate specificity is achieved and reveals a new and unexpected opening to the active site.  相似文献   

15.
Cellular dipeptidyl peptidase IV (DP IV, CD26) and amino-peptidase N (APN, CD13) play regulatory roles in T cell activation and represent potential targets for treatment of inflammatory disorders. We have developed a novel therapeutic strategy, 'peptidase-targeted Immunoregulation' (PETIR?), which simultaneously targets both cellular DP IV and APN via selective binding sites different from the active sites with a single inhibitor. To prove the therapeutic concept of PETIR? in autoimmunity of the central nervous system (CNS), we evaluated the effect of a single substance, PETIR-001, in an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) in SJL/J mice. Administration of PETIR-001 significantly delayed and decreased clinical signs of active EAE, when given in a therapeutic manner intraperitoneally from day 15 to day 24 after induction of EAE. Both the acute phase and the first relapse of EAE were markedly inhibited. Importantly, a similar therapeutic benefit was obtained after oral administration of PETIR-001 from day 12 to day 21 after disease induction. Our results demonstrate that PETIR-001 exhibits a therapeutic effect on EAE in SJL/J mice. Thus, PETIR? represents a novel and efficient therapeutic approach for immunotherapy of CNS inflammation.  相似文献   

16.
CD26 is a T cell costimulatory molecule with dipeptidyl peptidase IV enzyme activity in its extracellular region. We have previously reported that the addition of soluble CD26 (sCD26) resulted in enhanced proliferation of peripheral blood T lymphocytes induced by the recall Ag, tetanus toxoid (TT). However, the mechanism involved in this immune enhancement has not yet been elucidated. In this paper, we demonstrate that the enhancing effect of sCD26 on TT-induced T cell proliferation occurred in the early stages of immune response. The cells directly affected by exogenously added sCD26 are the CD14-positive monocytes in the peripheral blood. Mannose-6 phosphate interfered with the uptake of sCD26 into monocytes, suggesting that mannose-6 phosphate/insulin-like growth factor II receptor plays a role in the transportation of sCD26 into monocytes. When sCD26 was added after Ag presentation had taken place, enhancement in TT-induced T cell proliferation was not observed. In addition, enhancement of TT-mediated T cell proliferation by sCD26 does not result from trimming of the MHC-bound peptide on the surface of monocytes. Importantly, we also showed that exogenously added sCD26 up-regulated the expression of the costimulatory molecule CD86 on monocytes through its dipeptidyl peptidase IV activity, and that this increased expression of CD86 was observed at both protein and mRNA level. Therefore, our findings suggest that sCD26 enhances T cell immune response to recall Ag via its direct effect on APCs.  相似文献   

17.
Dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5) is a serine type protease with an important modulatory activity on a number of chemokines, neuropeptides and peptide hormones. It is also known as CD26 or adenosine deaminase (ADA; EC 3.5.4.4) binding protein. DPPIV has been demonstrated on the plasmamembranes of T cells and activated natural killer or B cells as well as on a number of endothelial and differentiated epithelial cells. A soluble form of CD26/DPPIV has been described in serum. Over the past few years, several related enzymes with similar dipeptidyl peptidase activity have been discovered, raising questions on the molecular origin(s) of serum dipeptidyl peptidase activity. Among them attractin, the human orthologue of the mouse mahogany protein, was postulated to be responsible for the majority of the DPPIV-like activity in serum. Using ADA-affinity chromatography, it is shown here that 95% of the serum dipeptidyl peptidase activity is associated with a protein with ADA-binding properties. The natural protein was purified in milligram quantities, allowing molecular characterization (N-terminal sequence, glycosylation type, CD-spectrum, pH and thermal stability) and comparison with CD26/DPPIV from other sources. The purified serum enzyme was confirmed as CD26.  相似文献   

18.
Causal connections between dipeptidyl peptidase IV, also known as CD26 molecule (DPP IV/CD26) and inflammatory bowel disease (IBD) have been shown, but mechanisms of these interactions are unclear. Our hypothesis was that DPP IV/CD26 could affect the neuroimmune response during inflammatory events. Therefore, we aimed to evaluate its possible role and the relevance of the gut-brain axis in a model of IBD in mice. Trinitrobenzenesulfonic acid-induced (TNBS) colitis was induced in CD26-deficient (CD26(-/-) ) and wild-type (C57BL/6) mice. Pathohistological and histomorphometrical measurements were done. Concentrations and protein expressions of DPP IV/CD26 substrates neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) were determined. Concentrations of IL-6 and IL-10 were evaluated. Investigations were conducted at systemic and local levels. Acute inflammation induced increased serum NPY concentrations in both mice strains, more enhanced in CD26(-/-) mice. Increased NPY concentrations were found in colon and brain of C57BL/6 mice, while in CD26(-/-) animals only in colon. VIP and IL-6 serum and tissue concentrations were increased in both mice strains in acute inflammation, more pronouncedly in CD26(-/-) mice. IL-10 concentrations, after a decrease in serum of both mice strains, increased promptly in CD26(-/-) mice. Decreased IL-10 concentration was found in brain of C57BL/6 mice, while it was increased in colon of CD26(-/-) mice in acute inflammation. DPP IV/CD26 deficiency affects the neuroimmune response at systemic and local levels during colitis development and resolution in mice. Inflammatory changes in the colon reflected on investigated parameters in the brain, suggesting an important role of the gut-brain axis in IBD pathogenesis.  相似文献   

19.
In this paper, the synthesis and structure-activity relationships (SAR) of two classes of electrophile-based dipeptidyl peptidase IV (DPP IV) inhibitors, the ketopyrrolidines and ketoazetidines, is discussed. The SAR of these series demonstrate that the 2-thiazole, 2-benzothiazole, and 2-pyridylketones are optimal S1' binding groups for potency against DPP IV. In addition, both cyclohexyl glycine (CHG) and octahydroindole carboxylate (OIC) serve as the most potent S2 binding groups within each series. Stereochemistry at the alpha-position of the central ring is relevant to potency within the ketopyrrolidines series, but not in the ketoazetidine series. Finally, the ketoazetidines display enhanced stability over the corresponding ketopyrrolidines, while maintaining their potency. In fact, certain stabilized ketoazetidines can maintain their in vitro potency and inhibit DPP IV in the plasma for up to 6h.  相似文献   

20.
BACKGROUND: The physiological inhibitory control of glucagon-like Peptide 1 (GLP-1) on gastric emptying and the contribution of this peptide in the regulation of food intake as a satiety factor suggest that impaired secretion and/or activity of GLP-1 may be involved in the pathogenesis of obesity. We investigated food-mediated GLP-1 secretion as well as plasma activity of dipeptidyl-peptidase IV (DPP-IV), the enzyme responsible for rapid inactivation of the circulating peptide, in morbidly obese patients, before and after weight loss resulting from biliopancreatic diversion. METHODS: Twenty-two morbidly obese non-diabetic patients (BMI = 47.5 +/- 1.8) and 9 age-matched healthy volunteers were studied. A mixed meal (700 kcal) was administered to all subjects and blood samples were collected at 0, 15, 30, 60, 120 min for the determination of circulating glucose, insulin, GLP-1 (7 - 36 amide) concentrations and plasma DPP-IV activity. The patients repeated the test meal after 50 % overweight reduction resulting from surgical treatment (BMI = 33.8 +/- 1.1). RESULTS: While nutrient ingestion significantly increased plasma GLP-1 levels in the control group (30', 60': p < 0.01), the test-meal failed to modify basal peptide values in the obese patients, and an overall reduction in circulating GLP-1 occurred during the observation period (p < 0.001). Plasma DPP-IV activity in the same patients resulted as being significantly higher than controls, both at fasting and in response to the meal (p < 0.05). With respect to preoperative values, an overall increase in circulating GLP-1 levels occurred in all patients following biliopancreatic diversion (p < 0.001). Plasma DPP-IV activity, on the other hand, continued to be abnormally increased, even after considerable weight loss (p < 0.05 vs. controls). CONCLUSIONS: First: In morbid obesity, the accelerated inactivation of circulating GLP-1 could at least partially account for plasma peptide levels lower than normal, the defective availability of such a satiety factor possibly contributing to eating behaviour abnormalities; Second: plasma DPP-IV hyperactivity in the obese did not seem to be affected by the overweight degree, the increase in postoperative GLP-1 levels mainly resulting from hyperstimulation of GLP-1 secretory cells due to surgical manipulation of gastrointestinal tract. If the abnormally accelerated degradation of GLP-1 in obesity is confirmed, selective DPP-IV inhibitors could actually represent an ideal approach to obesity management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号