首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Formation of peroxynitrite from NO and O-(*2) is considered an important trigger for cellular tyrosine nitration under pathophysiological conditions. However, this view has been questioned by a recent report indicating that NO and O-(*2) generated simultaneously from (Z)-1-(N-[3-aminopropyl]-N-[4-(3-aminopropylammonio)butyl]-amino) diazen-1-ium-1,2-diolate] (SPER/NO) and hypoxanthine/xanthine oxidase, respectively, exhibit much lower nitrating efficiency than authentic peroxynitrite (Pfeiffer, S. and Mayer, B. (1998) J. Biol. Chem. 273, 27280-27285). The present study extends those earlier findings to several alternative NO/O-(*2)-generating systems and provides evidence that the apparent lack of tyrosine nitration by NO/O-(*2) is due to a pronounced decrease of nitration efficiency at low steady-state concentrations of authentic peroxynitrite. The decrease in the yields of 3-nitrotyrosine was accompanied by an increase in the recovery of dityrosine, showing that dimerization of tyrosine radicals outcompetes the nitration reaction at low peroxynitrite concentrations. The observed inverse dependence on peroxynitrite concentration of dityrosine formation and tyrosine nitration is predicted by a kinetic model assuming that radical formation by peroxynitrous acid homolysis results in the generation of tyrosyl radicals that either dimerize to yield dityrosine or combine with (*)NO(2) radical to form 3-nitrotyrosine. The present results demonstrate that very high fluxes (>2 microM/s) of NO/O-(*2) are required to render peroxynitrite an efficient trigger of tyrosine nitration and that dityrosine is a major product of tyrosine modification caused by low steady-state concentrations of peroxynitrite.  相似文献   

2.
Kochman A  Kośka C  Metodiewa D 《Amino acids》2002,23(1-3):95-101
This overview summarizes recent findings on the role of tyrosyl radical (TyrO(*)) in the multitudinous neurochemical systems of brain, and theorizes on the putative role of TyrO(*) in neurological disorders [Parkinson's disease (PD), Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS)]. TyrO(*) and tyrosine per se can interact with reactive oxygen species (ROS) and reactive nitrogen species (RNS) via radical mechanisms and chain propagating reactions. The concentration of TyrO(*), ROS and RNS can increase dramatically under conditions of generalized stress: oxidative, nitrative or reductive as well, and this can induce damage directly (by lipid peroxidation) or indirectly (by proteins oxidation and/or nitration), potentially causing apoptotic neuronal cell death or autoschizis.Evidence of lesion-induced neuronal oxidative stress includes the presence of protein peroxides (TyrOOH), DT (o,o'-dityrosine) and 3-NT (3-nitrotyrosine). Mechanistic details of protein- and enzymatic oxidation/nitration in vivo remain unresolved, although recent in vitro data strongly implicate free radical pathways via TyrO(*). Nitration/denitration processes can be pathological, but they also may play: 1). a signal transduction role, because nitration of tyrosine residues through TyrO(*) formation can modulate, as well the phosphorylation (tyrosine kinases activity) and/or tyrosine hydroxylation (tyrosine hydroxylase inactivation), leading to consequent dopamine synthesis failure and increased degradation of target proteins, respectively; 2). a role of "blocker" for radical-radical reactions (scavenging of NO(*), NO(*)(2) and CO(3)(*-) by TyrO(*)); 3). a role of limiting factors for peroxynitrite formation, by lowering O(2)(*-) formation, which is strongly linked to the pathogenesis of neural diseases.It is still not known if tyrosine oxidation/nitration via TyrO(*) formation is 1). a footprint of generalized stress and neuronal disorders, or 2). an important part of O(2)(*-) and NO(*) metabolism, or 3). merely a part of integral processes for maintaining of neuronal homeostasis. The full answer to these questions should be of top research priority, as the problem of increased free radical formation in brain and/or imbalance of the ratios ROS/RNS/TyrO(*) may be all important in defining whether oxidative stress is the critical determinant of tissue and neural cell injury that leads to pathological end-points.  相似文献   

3.
Tyrosine nitration is a posttranslational modification observed in many pathologic states that can be associated with peroxynitrite (ONOO(-)) formation. However, in vitro, peroxynitrite-dependent tyrosine nitration is inhibited when its precursors, superoxide (O(2)*(-)) and nitric oxide ((*)NO), are formed at ratios (O(2)*(-)/(*)NO) different from one, severely questioning the use of 3-nitrotyrosine as a biomarker of peroxynitrite-mediated oxidations. We herein hypothesize that in biological systems the presence of superoxide dismutase (SOD) and the facile transmembrane diffusion of (*)NO preclude accumulation of O(2)*(-) and (*)NO radicals under flux ratios different from one, preventing the secondary reactions that result in the inhibition of 3-nitrotyrosine formation. Using an array of reactions and kinetic constants, computer-assisted simulations were performed in order to assess the flux of 3-nitrotyrosine formation (J(NO(2(-))Y)) during exposure to simultaneous fluxes of superoxide (J(O(2)*(-))) and nitric oxide (J((*)NO)), varying the radical flux ratios (J(O(2)*(-))/ J((*)NO)), in the presence of carbon dioxide. With a basic set of reactions, J(NO(2(-))Y) as a function of radical flux ratios rendered a bell-shape profile, in complete agreement with previous reports. However, when superoxide dismutation by SOD and (*)NO decay due to diffusion out of the compartment were incorporated in the model, a quite different profile of J(NO(2(-))Y) as a function of the radical flux ratio was obtained: despite the fact that nitration yields were much lower, the bell-shape profile was lost and the extent of tyrosine nitration was responsive to increases in either O(2)*(-) or (*)NO, in agreement with in vivo observations. Thus, the model presented herein serves to reconcile the in vitro and in vivo evidence on the role of peroxynitrite in promoting tyrosine nitration.  相似文献   

4.
Fontana M  Blarzino C  Pecci L 《Amino acids》2012,42(5):1857-1865
The results of the present investigation show the susceptibility of tyrosine to undergo visible light-induced photomodification to 3-nitrotyrosine in the presence of nitrite and riboflavin, as sensitizer. By changing H2O by D2O, it could be established that singlet oxygen has a minor role in the reaction. The finding that nitration of tyrosine still occurred to a large extent under anaerobic conditions indicates that the process proceeds mainly through a type I mechanism, which involves the direct interaction of the excited state of riboflavin with tyrosine and nitrite to give tyrosyl radical and nitrogen dioxide radical, respectively. The tyrosyl radicals can either dimerize to yield 3,3′-dityrosine or combine with nitrogen dioxide radical to form 3-nitrotyrosine. The formation of 3-nitrotyrosine was found to increase with the concentration of nitrite added and was accompanied by a decrease in the recovery of 3,3′-dityrosine, suggesting that tyrosine nitration competes with dimerization reaction. The riboflavin photosensitizing reaction in the presence of nitrite was also able to induce nitration of tyrosine residues in proteins as revealed by the spectral changes at 430 nm, a characteristic absorbance of 3-nitrotyrosine, and by immunoreactivity using 3-nitrotyrosine antibodies. Since riboflavin and nitrite are both present endogenously in living organism, it is suggested that this pathway of tyrosine nitration may potentially occur in tissues and organs exposed to sunlight such as skin and eye.  相似文献   

5.
Peroxynitrite, formed in a rapid reaction of nitric oxide (NO) and superoxide anion radical (O(2)), is thought to mediate protein tyrosine nitration in various inflammatory and infectious diseases. However, a recent in vitro study indicated that peroxynitrite exhibits poor nitrating efficiency at biologically relevant steady-state concentrations (Pfeiffer, S., Schmidt, K., and Mayer, B. (2000) J. Biol. Chem. 275, 6346-6352). To investigate the molecular mechanism of protein tyrosine nitration in intact cells, murine RAW 264.7 macrophages were activated with immunological stimuli, causing inducible NO synthase expression (interferon-gamma in combination with either lipopolysaccharide or zymosan A), followed by the determination of protein-bound 3-nitrotyrosine levels and release of potential triggers of nitration (NO, O(2)*, H(2)O(2), peroxynitrite, and nitrite). Levels of 3-nitrotyrosine started to increase at 16-18 h and exhibited a maximum at 20-24 h post-stimulation. Formation of O(2) was maximal at 1-5 h and decreased to base line 5 h after stimulation. Release of NO peaked at approximately 6 and approximately 9 h after stimulation with interferon-gamma/lipopolysaccharide and interferon-gamma/zymosan A, respectively, followed by a rapid decline to base line within the next 4 h. NO formation resulted in accumulation of nitrite, which leveled off at about 50 microm 15 h post-stimulation. Significant release of peroxynitrite was detectable only upon treatment of cytokine-activated cells with phorbol 12-myristate-13-acetate, which led to a 2.2-fold increase in dihydrorhodamine oxidation without significantly increasing the levels of 3-nitrotyrosine. Tyrosine nitration was inhibited by azide and catalase and mimicked by incubation of unstimulated cells with nitrite. Together with the striking discrepancy in the time course of NO/O(2) release versus 3-nitrotyrosine formation, these results suggest that protein tyrosine nitration in activated macrophages is caused by a nitrite-dependent peroxidase reaction rather than peroxynitrite.  相似文献   

6.
Peroxynitrite has been receiving increasing attention as the pathogenic mediator of nitric oxide cytotoxicity. In most cases, the contribution of peroxynitrite to diseases has been inferred from detection of 3-nitrotyrosine in injured tissues. However, presently it is known that other nitric oxide-derived species can also promote protein nitration. Mechanistic details of protein nitration remain under discussion even in the case of peroxynitrite, although recent literature data strongly suggest a free radical mechanism. Here, we confirm the free radical mechanism of tyrosine modification by peroxynitrite in the presence and in the absence of the bicarbonate-carbon dioxide pair by analyzing the stable tyrosine products and the formation of the tyrosyl radical at pH 5.4 and 7.4. Stable products, 3-nitrotyrosine, 3-hydroxytyrosine, and 3, 3-dityrosine, were identified by high performance liquid chromatography and UV spectroscopy. The tyrosyl radical was detected by continuous-flow and spin-trapping electron paramagnetic resonance (EPR). 3-Hydroxytyrosine was detected at pH 5.4 and its yield decreased in the presence of the bicarbonate-carbon dioxide pair. In contrast, the yields of the tyrosyl radical increased in the presence of the bicarbonate-carbon dioxide pair and correlated with the yields of 3-nitrotyrosine under all tested experimental conditions. Taken together, the results demonstrate that the promoting effects of carbon dioxide on peroxynitrite-mediated tyrosine nitration is due to the selective reactivity of the carbonate radical anion as compared with that of the hydroxyl radical. Colocalization of 3-hydroxytyrosine and 3-nitrotyrosine residues in proteins may be useful to discriminate between peroxynitrite and other nitrating species.  相似文献   

7.
Myoglobin-catalyzed tyrosine nitration: no need for peroxynitrite.   总被引:1,自引:0,他引:1  
The nitration of tyrosine residues in protein to yield 3-nitrotyrosine derivatives has been suggested to represent a specific footprint for peroxynitrite formation in vivo. However, recent studies suggest that certain hemoproteins such as peroxidases catalyze the H(2)O(2)-dependent nitration of tyrosine to yield 3-nitrotyrosine in a peroxynitrite-independent reaction. Because 3-nitrotyrosine has been shown to be present in the postischemic myocardium, we wished to assess the ability of myoglobin to catalyze the nitration of tyrosine in vitro. We found that myoglobin catalyzed the oxidation of nitrite and promoted the nitration of tyrosine. Both nitrite oxidation and tyrosine nitration were H(2)O(2)-dependent and required the formation of ferryl (Fe(+4)) myoglobin. In addition, nitrite oxidation and tyrosine nitration were pH-dependent with a pH optimum of approximately 6.0. Taken together, these data suggest that the acidic pH and low oxygen tension produced during myocardial ischemia will facilitate myoglobin-catalyzed, peroxyntrite-independent formation of 3-nitrotyrosine.  相似文献   

8.
Nitration of protein tyrosine residues to 3-nitrotyrosine (NO2Tyr) serves as both a marker and mediator of pathogenic reactions of nitric oxide (*NO), with peroxynitrite (ONOO-) and leukocyte peroxidase-derived nitrogen dioxide (*NO2) being proximal mediators of nitration reactions in vivo. Cytochrome c is a respiratory and apoptotic signaling heme protein localized exofacially on the inner mitochondrial membrane. We report herein a novel function for cytochrome c as a catalyst for nitrite (NO2-) and hydrogen peroxide (H2O2)-mediated nitration reactions. Cytochrome c catalyzes both self- and adjacent-molecule (hydroxyphenylacetic acid, Mn-superoxide dismutase) nitration via heme-dependent mechanisms involving tyrosyl radical and *NO2 production, as for phagocyte peroxidases. Although low molecular weight phenolic nitration yields were similar for cytochrome c and the proteolytic fragment of cytochrome c microperoxidase-11 (MPx-11), greater extents of protein nitration occurred when MPx-11 served as catalyst. Partial proteolysis of cytochrome c increased both the peroxidase and nitrating activities of cytochrome c. Extensive tyrosine nitration of Mn-superoxide dismutase occurred when exposed to either cytochrome c or MPx-11 in the presence of H2O2 and NO2-, with no apparent decrease in catalytic activity. These results reveal a post-translational tyrosine modification mechanism that is mediated by an abundant hemoprotein present in both mitochondrial and cytosolic compartments. The data also infer that the distribution of specific proteins capable of serving as potent catalysts of nitration can lend both spatial and molecular specificity to biomolecule nitration reactions.  相似文献   

9.
Tissues are exposed to exogenous and endogenous nitrogen dioxide (()NO(2)), which is the terminal agent in protein tyrosine nitration. Besides iron chelation, the hydroxamic acid (HA) desferrioxamine (DFO) shows multiple functionalities including nitration inhibition. To investigate mechanisms whereby DFO affects 3-nitrotyrosine (3-NT) formation, we utilized gas-phase ()NO(2) exposures, to limit introduction of other reactive species, and a lung surface model wherein red cell membranes (RCM) were immobilized under a defined aqueous film. When RCM were exposed to ()NO(2) covered by +/- DFO: (i) DFO inhibited 3-NT formation more effectively than other HA and non-HA chelators; (ii) 3-NT inhibition occurred at very low[DFO] for prolonged times; and (iii) 3-NT formation was iron independent but inhibition required DFO present. DFO poorly reacted with ()NO(2) compared to ascorbate, assessed via ()NO(2) reactive absorption and aqueous-phase oxidation rates, yet limited 3-NT formation at far lower concentrations. DFO also inhibited nitration under aqueous bulk-phase conditions, and inhibited 3-NT generated by active myeloperoxidase "bound" to RCM. Per the above and kinetic analyses suggesting preferential DFO versus ()NO(2) reaction within membranes, we conclude that DFO inhibits 3-NT formation predominantly by facile repair of the tyrosyl radical intermediate, which prevents ()NO(2) addition, and thus nitration, and potentially influences biochemical functionalities.  相似文献   

10.
The effect of oxygen on the radiolysis of tyrosine in aqueous solutions was investigated by using gamma and pulsed electron irradiation. Steady-state radiolysis was reexamined and extended to include the effect of pH and determination of hydrogen peroxide. The loss of tyrosine, G(-Tyr), during irradiation and yields of 3,4-dihydroxyphenylalanine, G(DOPA), and hydrogen peroxide, G(H2O2), are determined in the pH range from 1 to 9. In the whole pH range used G(-Tyr) equals G(DOPA), and a higher G(H2O2) than expected was observed. In slightly acid and neutral media, both G(-Tyr) and G(DOPA) equal the yield of hydroxyl radicals, GOH, formed in the radiolysis of water, while the excess of hydrogen peroxide equals 1/2 GOH. Hence it was concluded that all tyrosine OH-adducts react with oxygen yielding peroxy radicals. In acid and alkaline media all measured yields decrease. This is caused by formation of tyrosine phenoxyl radicals (TyrO), which react with superoxide anion (O2-) and hydroperoxy (HO2) radicals regenerating tyrosine. By using pulse radiolysis K(TyrO + O2) less than or equal to 2 X 10(5) mol-1 dm3 s-1 and k(TyrO + O2-) = (1.7 +/- 0.2) X 10(9) mol-1 dm3 s-1 were determined. On the basis of the results, a reaction mechanism is proposed.  相似文献   

11.
We have shown previously that peroxynitrite-induced nitration of a hydrophobic tyrosyl probe is greater than that of tyrosine in the aqueous phase (Zhang, H., Joseph, J., Feix, J., Hogg, N., and Kalyanaraman, B. (2001) Biochemistry 40, 7675-7686). In this study, we have tested the hypothesis that the extent of tyrosine nitration depends on the intramembrane location of tyrosyl probes and on the nitrating species. To this end, we have synthesized membrane spanning 23-mer containing a single tyrosyl residue at positions 4, 8, and 12. The location of the tyrosine residues in the phospholipid membrane was determined by fluorescence and electron spin resonance techniques. Nitration was initiated by slow infusion of peroxynitrite, co-generated superoxide and nitric oxide ((.)NO), or a myeloperoxidase/hydrogen peroxide/nitrite anion (MPO/H(2)O(2)/NO(2)(-)) system. Results indicate that with slow infusion of peroxynitrite, nitration of transmembrane tyrosyl peptides was much higher (10-fold or more) than tyrosine nitration in aqueous phase. Peroxynitrite-dependent nitration of tyrosyl-containing peptides increased with increasing depth of the tyrosyl residue in the bilayer. In contrast, MPO/H(2)O(2)/ NO(2)(-)-induced tyrosyl nitration decreased with increasing depth of tyrosyl residues in the membrane. Transmembrane nitrations of tyrosyl-containing peptides induced by both peroxynitrite and MPO/H(2)O(2)/NO(2)(-) were totally inhibited by (.)NO that was slowly released from spermine NONOate. Nitration of peptides in both systems was concentration-dependently inhibited by unsaturated fatty acid. Concomitantly, an increase in lipid oxidation was detected. A mechanism involving (.)NO(2) radical is proposed for peroxynitrite and MPO/H(2)O(2)/NO(2)(-)-dependent transmembrane nitration reactions.  相似文献   

12.
In a series of heme and non-heme proteins the nitration of tyrosine residues was assessed by complete pronase digestion and subsequent HPLC-based separation of 3-nitrotyrosine. Bolus addition of peroxynitrite caused comparable nitration levels in all tested proteins. Nitration mainly depended on the total amount of tyrosine residues as well as on surface exposition. In contrast, when superoxide and nitrogen monoxide (NO) were generated at equal rates to yield low steady-state concentrations of peroxynitrite, metal catalysis seemed to play a dominant role in determining the sensitivity and selectivity of peroxynitrite-mediated tyrosine nitration in proteins. Especially, the heme-thiolate containing proteins cytochrome P450(BM-3) (wild type and F87Y variant) and prostacyclin synthase were nitrated with high efficacy. Nitration by co-generated NO/O(2)(-) was inhibited in the presence of superoxide dismutase. The NO source alone only yielded background nitration levels. Upon changing the NO/O(2)(-) ratio to an excess of NO, a decrease in nitration in agreement with trapping of peroxynitrite and derived radicals by NO was observed. These results clearly identify peroxynitrite as the nitrating species even at low steady-state concentrations and demonstrate that metal catalysis plays an important role in nitration of protein-bound tyrosine.  相似文献   

13.
Kinetics of the reaction of peroxynitrite with ferric cytochrome c in the absence and presence of bicarbonate was studied. It was found that the heme iron in ferric cytochrome c does not react directly with peroxynitrite. The rates of the absorbance changes in the Soret region of cytochrome c spectrum caused by peroxynitrite or peroxynitrite/bicarbonate were the same as the rate of spontaneous isomerization of peroxynitrite or as the rate of the reaction of peroxynitrite with bicarbonate, respectively. This means that intermediate products of peroxynitrite decomposition, (.)OH/(.)NO(2) or, in the presence of bicarbonate, CO(3)(-)(.)/(.)NO(2), are the species responsible for the absorbance changes in the Soret band of cytochrome c. Modifications of the heme center of cytochrome c by radiolytically produced radicals, (.)OH, (.)NO(2) or CO(3)(-)(.), were also studied. The absorbance changes in the Soret band caused by radiolytically produced (.)OH or CO(3)(-)(.) were much more significant that those observed after peroxynitrite treatment, compared under similar concentrations of radicals. (.)NO(2) produced radiolytically did not interact with the heme center of cytochrome c. Cytochrome c exhibited an increased peroxidase-like activity after reaction with peroxynitrite as well as with radiolytically produced (.)OH, (.)NO(2) or CO(3)(-)(.) radicals. This means that modification of protein structure: oxidation of amino acids and/or tyrosine nitration, facilitates reaction of H(2)O(2) with the heme iron of cytochrome c, followed by reaction with the second substrate.  相似文献   

14.
Eosinophil recruitment and enhanced production of NO are characteristic features of asthma. However, neither the ability of eosinophils to generate NO-derived oxidants nor their role in nitration of targets during asthma is established. Using gas chromatography-mass spectrometry we demonstrate a 10-fold increase in 3-nitrotyrosine (NO(2)Y) content, a global marker of protein modification by reactive nitrogen species, in proteins recovered from bronchoalveolar lavage of severe asthmatic patients (480 +/- 198 micromol/mol tyrosine; n = 11) compared with nonasthmatic subjects (52.5 +/- 40.7 micromol/mol tyrosine; n = 12). Parallel gas chromatography-mass spectrometry analyses of bronchoalveolar lavage proteins for 3-bromotyrosine (BrY) and 3-chlorotyrosine (ClY), selective markers of eosinophil peroxidase (EPO)- and myeloperoxidase-catalyzed oxidation, respectively, demonstrated a dramatic preferential formation of BrY in asthmatic (1093 +/- 457 micromol BrY/mol tyrosine; 161 +/- 88 micromol ClY/mol tyrosine; n = 11 each) compared with nonasthmatic subjects (13 +/- 14.5 micromol BrY/mol tyrosine; 65 +/- 69 micromol ClY/mol tyrosine; n = 12 each). Bronchial tissue from individuals who died of asthma demonstrated the most intense anti-NO(2)Y immunostaining in epitopes that colocalized with eosinophils. Although eosinophils from normal subjects failed to generate detectable levels of NO, NO(2-), NO(3-), or NO(2)Y, tyrosine nitration was promoted by eosinophils activated either in the presence of physiological levels of NO(2-) or an exogenous NO source. At low, but not high (e.g., >2 microM/min), rates of NO flux, EPO inhibitors and catalase markedly attenuated aromatic nitration. These results identify eosinophils as a major source of oxidants during asthma. They also demonstrate that eosinophils use distinct mechanisms for generating NO-derived oxidants and identify EPO as an enzymatic source of nitrating intermediates in eosinophils.  相似文献   

15.
Nitrogen dioxide is a product of peroxynitrite homolysis and peroxidase-catalyzed oxidation of nitrite. It is of great importance in protein tyrosine nitration because most nitration pathways end with the addition of *NO2 to a one-electron-oxidized tyrosine. The rate constant of this radical addition reaction is high with free tyrosine-derived radicals. However, little is known of tyrosine radicals in proteins. In this paper, we have used *NO2 generated by gamma radiolysis to study the nitration of the R2 subunit of ribonucleotide reductase, which contains a long-lived tyrosyl radical on Tyr122. Most of the nitration occurred on Tyr122, but nonradical tyrosines were also modified. In addition, peptidic bonds close to nitrated Tyr122 could be broken. Nitration at Tyr122 was not observed with a radical-free metR2 protein. The estimated rate constant of the Tyr122 radical reaction with *NO2 was of 3 x 10(4) M(-1) s(-1), thus several orders of magnitude lower than that of a radical on free tyrosine. Nitration rate of other tyrosine residues in R2 was even lower, with an estimated value of 900 M(-1) s(-1). This study shows that protein environment can significantly reduce the reactivity of a tyrosyl radical. In ribonucleotide reductase, the catalytically active radical residue is very efficiently protected against nitrogen oxide attack and subsequent nitration.  相似文献   

16.
Methylene blue photosensitized oxidation of tyrosine in the presence of nitrite produces 3-nitrotyrosine, with maximum yield at pH 6. The formation of 3-nitrotyrosine requires oxygen and increases using deuterium oxide as solvent, suggesting the involvement of singlet oxygen in the reaction. The detection of dityrosine as an additional reaction product suggests that the first step in the interaction of tyrosine with singlet oxygen generates tyrosyl radicals which can dimerize to form dityrosine or react with a nitrite-derived species to produce 3-nitrotyrosine. Although the chemical identity of the nitrating species has not been established, the possible generation of nitrogen dioxide (*NO(2)) by indirect oxidation of nitrite by intermediately produced tyrosyl radical, via electron transfer, is proposed. One important implication of the results of this study is that the oxidation of tyrosine by singlet oxygen in the presence of nitrite may represent an alternative or additional pathway of 3-nitrotyrosine formation of potential importance in oxidative injures such as during inflammatory processes.  相似文献   

17.
Enhanced absorption is observed in the (15)N NMR spectra of (15)NO(-)(3) during decomposition of peroxynitrite and the peroxynitrite-CO(2) adduct at pH 5.25, indicating the formation of (15)NO(-)(3) in radical pairs [(15)NO(*)(2), HO(*)] and [(15)NO(*)(2), CO(*-)(3)]. During the reaction of peroxynitrite and the peroxynitrite-CO(2) adduct with L-tyrosine, the (15)N NMR signal of the nitration product 3-nitrotyrosine exhibits emission showing a radical pathway of its formation. The nuclear polarization is built up in radical pairs [(15)NO(*)(2), tyr(*)] generated by free radical encounters of nitrogen dioxide and tyrosinyl radicals. The (15)N NMR signal of (15)NO(-)(2) formed during reaction of peroxynitrite with L-tyrosine appears in emission. It is concluded that tyrosinyl radicals are generated by reaction of nitrogen dioxide with L-tyrosine. In contrast to this, (15)NO(-)(2) does not show (15)N chemically induced dynamic nuclear polarization (CIDNP) during reaction of the peroxynitrite-CO(2) adduct with L-tyrosine, indicating a different reaction mechanism, which is assumed to be a hydrogen transfer between CO(*-)(3) and L-tyrosine. Emission is also observed in the (15)N NMR signals of 2-nitro-4-fluorophenol, 3-nitro-4-hydroxyphenylacetic acid, 2-nitrophenol, and 4-nitrophenol during reaction of 4-fluorophenol, 4-hydroxyphenylacetic acid, and phenol with peroxynitrite and the peroxynitrite-CO(2) adduct. 3-Nitro-4-hydroxyphenylacetic acid is also observed in emission during reaction of phenylacetic acid with peroxynitrite, but is not formed with the peroxynitrite-CO(2) adduct. The magnitude of the (15)N CIDNP effect during reaction of peroxynitrite with 4-fluorophenol and of the peroxynitrite-CO(2) adduct with 4-fluorophenol and phenol is determined. It excludes the occurrence of nonradical reactions. Only weak emission signals are observed during the reaction of peroxynitrite with phenol in (15)NO(-)(2), 2-nitrophenol, and 4-nitrophenol. 2-Nitrophenol is only formed in traces, and 4-nitrophenol is only formed in higher yields. The latter might be generated in part via a nonradical pathway.  相似文献   

18.
Peroxynitrite is a strong oxidant involved in cell injury. In tissues, most of peroxynitrite reacts preferentially with CO(2) or hemoproteins, and these reactions affect its fate and toxicity. CO(2) promotes tyrosine nitration but reduces the lifetime of peroxynitrite, preventing, at least in part, membrane crossing. The role of hemoproteins is not easily predictable, because the heme intercepts peroxynitrite, but its oxidation to ferryl species and tyrosyl radical(s) may catalyze tyrosine nitration. The modifications induced by peroxynitrite/CO(2) on oxyhemoglobin were determined by mass spectrometry, and we found that alphaTyr42, betaTyr130, and, to a lesser extent, alphaTyr24 were nitrated. The suggested nitration mechanism is tyrosyl radical formation by long-range electron transfer to ferrylhemoglobin followed by a reaction with (*)NO(2). Dityrosine (alpha24-alpha42) and disulfides (beta93-beta93 and alpha104-alpha104) were also detected, but these cross-linkings were largely due to modifications occurring under the denaturing conditions employed for mass spectrometry. Moreover, immunoelectrophoretic techniques showed that the 3-nitrotyrosine content of oxyhemoglobin sharply increased only in molar excess of peroxynitrite, thus suggesting that this hemoprotein is not a catalyst of nitration. The noncatalytic role may be due to the formation of the nitrating species (*)NO(2) mainly in molar excess of peroxynitrite. In agreement with this hypothesis, oxyhemoglobin strongly inhibited tyrosine nitration of a target dipeptide (Ala-Tyr) and of membrane proteins from ghosts resealed with oxyhemoglobin. Erythrocytes were poor inhibitors of Ala-Tyr nitration on account of the membrane barrier. However, at the physiologic hematocrit, Ala-Tyr nitration was reduced by 65%. This "sink" function was facilitated by the huge amount of band 3 anion exchanger on the cell membrane. We conclude that in blood oxyhemoglobin is a peroxynitrite scavenger of physiologic relevance.  相似文献   

19.
Eosinophil peroxidase (EPO) has been implicated in promoting oxidative tissue injury in conditions ranging from asthma and other allergic inflammatory disorders to cancer and parasitic/helminthic infections. Studies thus far on this unique peroxidase have primarily focused on its unusual substrate preference for bromide (Br(-)) and the pseudohalide thiocyanate (SCN(-)) forming potent hypohalous acids as cytotoxic oxidants. However, the ability of EPO to generate reactive nitrogen species has not yet been reported. We now demonstrate that EPO readily uses nitrite (NO(2)(-)), a major end-product of nitric oxide ((.)NO) metabolism, as substrate to generate a reactive intermediate that nitrates protein tyrosyl residues in high yield. EPO-catalyzed nitration of tyrosine occurred more readily than bromination at neutral pH, plasma levels of halides, and pathophysiologically relevant concentrations of NO(2)(-). Furthermore, EPO was significantly more effective than MPO at promoting tyrosine nitration in the presence of plasma levels of halides. Whereas recent studies suggest that MPO can also promote protein nitration through indirect oxidation of NO(2)(-) with HOCl, we found no evidence that EPO can indirectly mediate protein nitration by a similar reaction between HOBr and NO(2)(-). EPO-dependent nitration of tyrosine was modulated over a physiologically relevant range of SCN(-) concentrations and was accompanied by formation of tyrosyl radical addition products (e.g. o,o'-dityrosine, pulcherosine, trityrosine). The potential role of specific antioxidants and nucleophilic scavengers on yields of tyrosine nitration and bromination by EPO are examined. Thus, EPO may contribute to nitrotyrosine formation in inflammatory conditions characterized by recruitment and activation of eosinophils.  相似文献   

20.
Most of the mechanistic studies of tyrosine nitration have been performed in aqueous solution. However, many protein tyrosine residues shown to be nitrated in vitro and in vivo are associated to nonpolar compartments. In this work, we have used the stable hydrophobic tyrosine analogue N-t-BOC-L-tyrosine tert-butyl ester (BTBE) incorporated into phosphatidylcholine (PC) liposomes to study physicochemical and biochemical factors that control peroxynitrite-dependent tyrosine nitration in phospholipid bilayers. Peroxynitrite leads to maximum 3-nitro-BTBE yields (3%) at pH 7.4. In addition, small amounts of 3,3'-di-BTBE were formed at pH 7.4 (0.02%) which increased over alkaline pH; at pH 6, a hydroxylated derivative of BTBE was identified by HPLC-MS analysis. BTBE nitration yields were similar in dilauroyl- and dimyristoyl-PC and were also significant in the polyunsaturated fatty acid-containing egg PC. *OH and *NO2 scavengers inhibited BTBE nitration. In contrast to tyrosine in the aqueous phase, the presence of CO2 decreased BTBE nitration, indicating that CO3*- cannot permeate to the compartment where BTBE is located. On the other hand, micromolar concentrations of hemin and Mn-tccp strongly enhanced BTBE nitration. Electron spin resonance (ESR) detection of the BTBE phenoxyl radical and kinetic modeling of the pH profiles of BTBE nitration and dimerization were in full agreement with a free radical mechanism of oxidation initiated by ONOOH homolysis in the immediacy of or even inside the bilayer and with a diffusion coefficient of BTBE phenoxyl radical 100 times less than for the aqueous phase tyrosyl radical. BTBE was successfully applied as a hydrophobic probe to study nitration mechanisms and will serve to study factors controlling protein and lipid nitration in biomembranes and lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号