首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
施氮和冬种绿肥对土壤活性有机碳及碳库管理指数的影响   总被引:3,自引:3,他引:0  
为探讨冬季绿肥改良土壤的生态效应及确定合适比例的氮肥与绿肥翻压量,在“冬季绿肥 双季稻”复种型农作制度基础上,设置4×4双因素试验,研究不同紫云英翻压量和施氮水平对土壤活性有机碳库各组分及碳库管理指数的影响.结果表明: 单施绿肥能够显著促进土壤总有机碳和活性有机碳的累积.与对照相比,单施绿肥处理土壤总有机碳含量和活性有机碳含量分别平均增加22.2%、26.7%,但单施氮肥处理的土壤有机碳含量下降了0.6%~3.4%.与不施肥相比,单施绿肥和绿肥氮肥配施处理的土壤碳库管理指数分别平均增加了24.55和15.17,而单施氮肥处理减少了2.59.单施绿肥、绿肥氮肥配施和单施氮肥处理的土壤平均微生物生物量碳分别比对照高54.0%、95.2%和14.3%.活性有机碳含量与碳库管理指数存在极显著(P<0.01)的相关性,与可溶性有机碳、微生物生物量碳也存在显著的相关性(P<0.05).水稻产量与活性有机碳含量和碳库管理指数均存在极显著的相关性,且相关系数明显大于总有机碳.可见在当地土壤肥力条件下,施有机肥或有机无机肥适当配施能提高土壤有机碳含量和土壤碳库管理指数,有利于改善土壤质量,提高土壤肥力.  相似文献   

2.
To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (C a, C s) and decay rates (k a, k s) of active and slow C pools which we compared with total particulate organic matter (POM) and occluded-POM (OPOM). The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays. Net SOC loss was greater (2.6 g kg−1; 8.6%) from the IAsoil than the MDsoil (0.9 g kg−1, 6.3%); fractions and coefficients suggest losses were principally from IAsoil’s resistant pool. Cropping history did not alter SOC pool size or decay rates in IAsoil where rotation-based differences in OPOM-C were small. In MDsoil, use of diversified rotations and manure increased k a by 32% and k s by 46% compared to Conv; differences mirrored in POM- and OPOM-C contents. Residue addition prompted greater increases in C a (340% vs 230%) and C s (38% vs 21%) and decreases in k a (58% vs 9%) in IAsoil than MDsoil. Reduced losses of SOC from residue-amended MDsoil were associated with increased OPOM-C. Nitrogen addition dampened CO2-C release. Clay type and C saturation dominated the IAsoil’s response to external inputs and made labile and stable fractions more vulnerable to decay. Trends in OPOM suggest aggregate protection influences C turnover in the low active MDsoil. Clay charge and OPOM-C contents were better predictors of soil C dynamics than clay or POM-C contents.  相似文献   

3.
不同土地利用方式对潮棕壤有机碳含量的影响   总被引:7,自引:1,他引:7  
对潮棕壤不同土地利用方式下0~100 cm土体中土壤有机碳含量的剖面分布、有机碳储量及C/N进行了研究.结果表明:不同土地利用方式下土壤有机碳含量的剖面分布差异明显,林地、割草地、荒地及裸地各土层有机碳含量高于农田生态系统;不同土地利用方式下的土壤有机碳与全氮呈极显著的正相关;土壤C/N随剖面土层深度的增加呈下降趋势,林地土壤的C/N相对较高,割草地、荒地和裸地次之,农田生态系统的土壤C/N较低.在0~100cm深度土壤,荒地每年截获的土壤有机碳分别比农田不施肥、农田循环猪圈肥处理、农田化肥NPK处理、农田化肥NPK 循环猪圈肥处理高4.52、4.25、4.46和3.58 t.hm-2.说明荒地在增加土壤有机碳储量方面有很大潜力.  相似文献   

4.
Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.  相似文献   

5.
With the goal of improving N fertilizer management to maximize soil organic carbon (SOC) storage and minimize N losses in high-intensity cropping system, a 6-years greenhouse vegetable experiment was conducted from 2004 to 2010 in Shouguang, northern China. Treatment tested the effects of organic manure and N fertilizer on SOC, total N (TN) pool and annual apparent N losses. The results demonstrated that SOC and TN concentrations in the 0-10cm soil layer decreased significantly without organic manure and mineral N applications, primarily because of the decomposition of stable C. Increasing C inputs through wheat straw and chicken manure incorporation couldn''t increase SOC pools over the 4 year duration of the experiment. In contrast to the organic manure treatment, the SOC and TN pools were not increased with the combination of organic manure and N fertilizer. However, the soil labile carbon fractions increased significantly when both chicken manure and N fertilizer were applied together. Additionally, lower optimized N fertilizer inputs did not decrease SOC and TN accumulation compared with conventional N applications. Despite the annual apparent N losses for the optimized N treatment were significantly lower than that for the conventional N treatment, the unchanged SOC over the past 6 years might limit N storage in the soil and more surplus N were lost to the environment. Consequently, optimized N fertilizer inputs according to root-zone N management did not influence the accumulation of SOC and TN in soil; but beneficial in reducing apparent N losses. N fertilizer management in a greenhouse cropping system should not only identify how to reduce N fertilizer input but should also be more attentive to improving soil fertility with better management of organic manure.  相似文献   

6.
It is unclear how changing atmospheric composition will influence the plant–soil interactions that determine soil organic matter (SOM) levels in fertile agricultural soils. Positive effects of CO2 fertilization on plant productivity and residue returns should increase SOM stocks unless mineralization or biomass removal rates increase in proportion to offset gains. Our objectives were to quantify changes in SOM stocks and labile fractions in prime farmland supporting a conventionally managed corn–soybean system and the seasonal dynamics of labile C and N in soybean in plots exposed to elevated [CO2] (550 ppm) under free-air concentration enrichment (FACE) conditions. Changes in SOM stocks including reduced C/N ratios and labile N stocks suggest that SOM declined slightly and became more decomposed in all plots after 3 years. Plant available N (>273 mg N kg−1) and other nutrients (Bray P, 22–50 ppm; extractable K, 157–237 ppm; Ca, 2,378–2,730 ppm; Mg, 245–317 ppm) were in the high to medium range. Exposure to elevated [CO2] failed to increase particulate organic matter C (POM-C) and increased POM-N concentrations slightly in the surface depth despite known increases (≈30%) in root biomass. This, and elevated CO2 efflux rates indicate accelerated decay rates in fumigated plots (2001: elevated [CO2]: 10.5 ± 1.2 μmol CO2 m−2 s−1 vs. ambient: 8.9 ± 1.0 μmol CO2 m−2 s−1). There were no treatment-based differences in the within-season dynamics of SOM. Soil POM-C and POM-N contents were slightly greater in the surface depth of elevated than ambient plots. Most studies attribute limited ability of fumigated soils to accumulate SOM to N limitation and/or limited plant response to CO2 fertilization. In this study, SOM turnover appears to be accelerated under elevated [CO2] even though soil moisture and nutrients are non-limiting and plant productivity is consistently increased. Accelerated SOM turnover rates may have long-term implications for soil’s productive potential and calls for deeper investigation into C and N dynamics in highly-productive row crop systems.  相似文献   

7.
In the highlands of Western Kenya, we investigated the reversibility of soil productivity decline with increasing length of continuous maize cultivation over 100 years (corresponding to decreasing soil organic carbon (SOC) and nutrient contents) using organic matter additions of differing quality and stability as a function of soil texture and inorganic nitrogen (N) additions. The ability of additions of labile organic matter (green and animal manure) to improve productivity primarily by enhanced nutrient availability was contrasted with the ability of stable organic matter (biochar and sawdust) to improve productivity by enhancing SOC. Maize productivity declined by 66% during the first 35 years of continuous cropping after forest clearing. Productivity remained at a low level of 3.0 t grain ha-1 across the chronosequence stretching up to 105 years of continuous cultivation despite full N–phosphorus (P)–potassium (K) fertilization (120–100–100 kg ha−1). Application of organic resources reversed the productivity decline by increasing yields by 57–167%, whereby responses to nutrient-rich green manure were 110% greater than those from nutrient-poor sawdust. Productivity at the most degraded sites (80–105 years since forest clearing) increased in response to green manure to a greater extent than the yields at the least degraded sites (5 years since forest clearing), both with full N–P–K fertilization. Biochar additions at the most degraded sites doubled maize yield (equaling responses to green manure additions in some instances) that were not fully explained by nutrient availability, suggesting improvement of factors other than plant nutrition. There was no detectable influence of texture (soils with either 11–14 or 45–49% clay) when low quality organic matter was applied (sawdust, biochar), whereas productivity was 8, 15, and 39% greater (P < 0.05) on sandier than heavier textured soils with high quality organic matter (green and animal manure) or only inorganic nutrient additions, respectively. Across the entire degradation range, organic matter additions decreased the need for additional inorganic fertilizer N irrespective of the quality of the organic matter. For low quality organic resources (biochar and sawdust), crop yields were increasingly responsive to inorganic N fertilization with increasing soil degradation. On the other hand, fertilizer N additions did not improve soil productivity when high quality organic inputs were applied. Even with the tested full N–P–K fertilization, adding organic matter to soil was required for restoring soil productivity and most effective in the most degraded sites through both nutrient delivery (with green manure) and improvement of SOC (with biochar).  相似文献   

8.
研究大气CO2浓度升高对不同层次土壤有机碳(SOC)稳定性的影响对深入理解高浓度CO2下SOC转化具有重要意义.以FACE(Free Air Carbon-dioxide Enrichment)平台长期定位试验水稻土为研究对象,通过SOC物理分级及矿化培养试验,研究大气CO2浓度升高对稻田SOC含量、颗粒有机质(POM)含量、SOC矿化强度和酶活性变化的影响,探讨CO2浓度升高对不同层次稻田SOC稳定性的影响.结果表明:大气CO2浓度升高对表层SOC含量无显著影响,但使表层土壤POM-C显著增加了93.7%,同时使表层土壤蔗糖酶和多酚氧化酶活性分别提高了61.1%和83.7%,从而降低了表层SOC稳定性;大气CO2浓度升高对深层SOC含量及其稳定性均无显著影响.研究结果将有助于评估土壤固定和储备碳的能力,为今后温室效应下农田管理提供科学依据.  相似文献   

9.
草原土壤有机碳含量的控制因素   总被引:3,自引:0,他引:3  
基于374个高寒草原和温带草原土壤样品的测试结果,运用多元逐步回归分析模型定量评估了土壤环境因子对土壤有机碳(SOC)含量的影响.结果表明:高寒草原土壤有机碳含量(20.18 kg C/m2)高于温带草原(9.23 kg C/m2).土壤理化生物学因子对高寒草原和温带草原SOC含量(10 cm)变化的贡献分别是87.84%和75.00%.其中,土壤总氮含量和根系对高寒草原SOC含量变化的贡献均大于对温带草原SOC含量变化的相应贡献.土壤水分是温带草原SOC含量变化的主要限制性因素,其对SOC含量变化的贡献达33.27%.高寒草原土壤C/N比显著高于温带草原土壤的相应值,揭示了青藏高原高寒草原较高的SOC含量是由于较低的土壤微生物活性所导致.  相似文献   

10.
The impact of animal manure application on soil organic carbon (SOC) stock changes is of interest for both agronomic and environmental purposes. There is a specific need to quantify SOC change for use in national greenhouse gas (GHG) emission inventories. We quantified the response of SOC stocks to manure application from a large worldwide pool of individual studies and determined the impact of explanatory factors such as climate, soil properties, land use and manure characteristics. Our study is based on a meta‐analysis of 42 research articles totaling 49 sites and 130 observations in the world. A dominant effect of cumulative manure‐C input on SOC response was observed as this factor explained at least 53% of the variability in SOC stock differences compared to mineral fertilized or unfertilized reference treatments. However, the effects of other determining factors were not evident from our data set. From the linear regression relating cumulative C inputs and SOC stock difference, a global manure‐C retention coefficient of 12% ± 4 (95% Confidence Interval, CI) could be estimated for an average study duration of 18 years. Following an approach comparable to the Intergovernmental Panel on Climate Change, we estimated a relative SOC change factor of 1.26 ± 0.14 (95% CI) which was also related to cumulative manure‐C input. Our results offer some scope for the refinement of manure retention coefficients used in crop management guidelines and for the improvement of SOC change factors for national GHG inventories by taking into account manure‐C input. Finally, this study emphasizes the need to further document the long‐term impact of manure characteristics such as animal species, especially pig and poultry, and manure management systems, in particular liquid vs. solid storage.  相似文献   

11.
Variations in crop grain and soil N isotope composition (δ15N) in relation to liquid hog manure (δ15N of total N was +5.1‰), solid cattle manure (+7.9‰) and chemical fertilizer (+0.7‰ for urea and −1.9‰ for ammonium phosphate) applications, and control (no fertilizer application) were examined through a 4-year crop rotation under field conditions. Canola (Brassica napus), hull-less barley (Hordeum vulgare), wheat (Triticum aestivum), and canola were grown sequentially from 2000 (year 1) to 2003 (year 4). From year 2, hog manure or chemical fertilizers, but not cattle manure, treatments increased grain N concentrations over the control. Grain δ15N (+0.3 to +2.5‰) of crops applied with chemical fertilizers was lower than those in the other treatments, reflecting the effects of the N source with a lower δ15N, while the manure treatments tended to increase grain δ15N. The higher grain δ15N of crops applied with hog manure (+5.6 to +8.4‰) than those applied with cattle manure (+2.2 to +4.1‰) reflected the higher N availability of liquid hog manure (up to 70% as NH 4 + ) than solid cattle manure (99% organic N) and higher potentials for ammonia volatilization loss in hog manure rather than differences in manure δ15N signatures. Soil total- and extractable-N concentrations and δ15N tended to vary with the application of N sources with different N isotope composition and availability. Our study expanded the application of the δ15N technique for detecting N source (organic vs chemical) effects on N isotopic composition to field conditions and across a 4-year rotation, and revealed that N availability played a greater role than the δ15N signature of N sources in determining crop δ15N under the studied conditions. Section Editor: H. Lambers  相似文献   

12.
Cates  Anna M.  Ruark  Matthew D. 《Plant and Soil》2017,415(1-2):521-533
Background

Soil aggregate and particulate organic matter (POM) C and N provide valuable insight into C cycling and storage, and are sensitive to management, but effect of these pools on corn yield is unknown.

Methods

Corn yield, N uptake, and aggregate and POM C and N at 0–5, 5–25 and 25–50 cm were measured and correlated in continuous corn (Zea mays L.) (CC), strip-till corn/soybean [Glycine max (L.) Merr.] (CS), and organically managed corn/soybean/wheat (Triticum aestivum L.) with green manure (CSW).

Results

The POM differed only at 0–5 cm, where greater POM mass was found in CS than CC and CSW. Lower POM-C and POM-N was found in CSW than CC and CS. Overall, CSW had fewer macroaggregates (>250 μm) and associated C and N than CC and CS, but free silt and clay (<53 μm) and microaggregates (53–250 μm) were enriched in C and N in CSW. Yield and macroaggregate-occluded C and N were negatively correlated. Yield and 5–25 cm free silt and clay C were positively correlated.

Conclusions

While organic matter in aggregate-occluded fractions is beneficial for soil C storage, it was correlated with lower grain yields, highlighting a potential tradeoff between yield and long-term C sequestration.

  相似文献   

13.
Global maize production alters an enormous soil organic C (SOC) stock, ultimately affecting greenhouse gas concentrations and the capacity of agroecosystems to buffer climate variability. Inorganic N fertilizer is perhaps the most important factor affecting SOC within maize‐based systems due to its effects on crop residue production and SOC mineralization. Using a continuous maize cropping system with a 13 year N fertilizer gradient (0–269 kg N ha?1 yr?1) that created a large range in crop residue inputs (3.60–9.94 Mg dry matter ha?1 yr?1), we provide the first agronomic assessment of long‐term N fertilizer effects on SOC with direct reference to N rates that are empirically determined to be insufficient, optimum, and excessive. Across the N fertilizer gradient, SOC in physico‐chemically protected pools was not affected by N fertilizer rate or residue inputs. However, unprotected particulate organic matter (POM) fractions increased with residue inputs. Although N fertilizer was negatively linearly correlated with POM C/N ratios, the slope of this relationship decreased from the least decomposed POM pools (coarse POM) to the most decomposed POM pools (fine intra‐aggregate POM). Moreover, C/N ratios of protected pools did not vary across N rates, suggesting little effect of N fertilizer on soil organic matter (SOM) after decomposition of POM. Comparing a N rate within 4% of agronomic optimum (208 kg N ha?1 yr?1) and an excessive N rate (269 kg N ha?1 yr?1), there were no differences between SOC amount, SOM C/N ratios, or microbial biomass and composition. These data suggest that excessive N fertilizer had little effect on SOM and they complement agronomic assessments of environmental N losses, that demonstrate N2O and NO3 emissions exponentially increase when agronomic optimum N is surpassed.  相似文献   

14.
Black soils in Northeast China are characteristic of high soil organic carbon (SOC) density and were strongly influenced by human activities. Therefore, any change in SOC pool of these soils would not only impact the regional and global carbon cycle, but also affect the release and immobilization of nutrients. In this study, we reviewed the research progress on SOC storage, budget, variation, and fertility under different scenarios. The results showed that the organic carbon storage of black soils was 646.2 TgC and the most potential sequestration was 2887.8 g m−2. According to the SOC budget, the net carbon emission of black soils was 1.3 TgC year−1 under present soil management system. The simulation of CENTURY model showed that future climate change and elevated CO2 concentration, especially the increase of precipitation, would increase SOC content. Furthermore, fertilization and cropping sequence obviously influenced SOC content, composition, and allocation among different soil particles. Long-term input of organic materials such as manure and straw renewed original SOC, improved soil structure and increased SOC accumulation. Besides, soil erosion preferred to transport soil particles with low density and fine size, decreased recalcitrant SOC fractions at erosion sites and increased activities of soil microorganism at deposition sites. After natural grasslands were converted into croplands, obvious variation of soil chemical nutrients, physical structure, and microbial activities had taken place in surface and subsurface soils, and represented a degrading trend to a certain degree. Our studies suggested that adopting optimal management such as conservation tillage in black soil region is an important approach to sequester atmospheric CO2 and to slow greenhouse effects.  相似文献   

15.
孙文义  郭胜利 《生态学报》2010,30(10):2611-2620
研究深层土壤有机碳、氮(Soilorganic C,SOC,Totalsoil N,TSN)量对摸清陆地生态系统深层碳氮固定潜力,寻找碳汇丢失之谜和应对全球气候变暖具有重要意义。以黄土区子午岭林场3种典型人工林(油松、刺槐、小叶杨)和3种天然次生林(辽东栎、白桦、鼠李)为对象,在设立的18个样方内,分层测定了0-100cm土层SOC、TSN和DOC(Dissolved organic C,DOC)量变化,监测了样方内地表长年凋落物积累量及其碳氮组成。1m土层内SOC、TSN和DOC含量天然次生林显著高于人工林。与人工林相比,天然次生林表层(0-20cm)SOC、TSN储量分别高42%、22%,但20-100cm土层SOC、TSN储量相对量最大。人工林下,20-100cm土层SOC储量为33.6thm-2,占1m土层的55%;TSN储量为3.9thm-2,占1m土层的57%;天然次生林下,20-100cm土层SOC、TSN储量分别为55.3thm-2、6.0thm-2,占1m土层储量分别为59%和63%。其中,40-60cm天然次生林比人工林碳氮储量分别高了82%、65%;其次为20-40cm,天然次生林比人工林碳氮储量分别高了73%、65%。不同植被恢复条件下,SOC与DOC、TSN、Olsen-P都表现出较强的相关性。研究表明,植被恢复有利于土壤碳氮的积累,不仅表层土壤,深层土壤也具有较强的碳氮固定能力;天然次生林土壤碳氮固定能力和长年地表凋落物量都高于人工林。  相似文献   

16.
易分解有机碳对不同恢复年限森林土壤激发效应的影响   总被引:1,自引:0,他引:1  
土壤有机碳库作为陆地生态系统最大的碳库,其微小的改变都将引起大气CO_2浓度的急剧改变。易分解有机碳的输入可以通过正/负激发效应加快/减缓土壤有机碳(SOC)的矿化,并最终影响土壤碳平衡。以长汀县不同恢复年限森林(裸地、5年、15年、30年马尾松林以及天然林)土壤为研究对象,通过室内培养向土壤中添加~(13)C标记葡萄糖研究易分解有机碳输入对不同恢复阶段森林土壤激发效应的影响。研究结果表明,易分解有机碳输入引起的土壤激发效应的方向和强度因不同恢复阶段而异。易分解有机碳输入的初期对各恢复阶段森林土壤均产生正的激发效应,然而随着时间的推移,15年、30年马尾松林以及天然林相继出现负的激发效应。从整个培养期(59 d)来看,易分解有机碳的输入促进了裸地与5年生马尾松林土壤有机碳的矿化,有机碳的矿化量分别提高了131%±27%与25%±5%;但是减缓了15年生马尾松林土壤有机碳的矿化,使其矿化量减少了10%±1%;然而,易分解有机碳输入对30年生马尾松林及天然林土壤有机碳的矿化则无明显影响。土壤累积激发碳量与葡萄糖添加前后土壤氮素的改变百分比呈显著正相关关系(R~2=0.44,P0.05),表明易分解有机碳输入诱导的土壤激发效应受土壤氮素可利用性的调控,土壤微生物需要通过分解原有土壤有机碳释放的氮素来满足自身的需求。  相似文献   

17.
Appropriate fertilizer application is an important management practice to improve soil fertility and quality in the red soil regions of China. In the present study, we examined the effects of five fertilization treatments [these were: no fertilizer (CK), rice straw return (SR), chemical fertilizer (NPK), organic manure (OM) and green manure (GM)] on soil pH, soil organic carbon (SOC), total nitrogen (TN), C/N ratio and available nutrients (AN, AP and AK) contents in the plowed layer (0–20 cm) of paddy soil from 1998 to 2009 in Jiangxi Province, southern China. Results showed that the soil pH was the lowest with an average of 5.33 units in CK and was significantly higher in NPK (5.89 units) and OM (5.63 units) treatments (P<0.05). The application of fertilizers have remarkably improved SOC and TN values compared with the CK, Specifically, the OM treatment resulted in the highest SOC and TN concentrations (72.5% and 51.2% higher than CK) and NPK treatment increased the SOC and TN contents by 22.0% and 17.8% compared with CK. The average amounts of C/N ratio ranged from 9.66 to 10.98 in different treatments, and reached the highest in OM treatment (P<0.05). During the experimental period, the average AN and AP contents were highest in OM treatment (about 1.6 and 29.6 times of that in the CK, respectively) and second highest in NPK treatment (about 1.2 and 20.3 times of that in the CK). Unlike AN and AP, the highest value of AK content was observed in NPK treatments with 38.10 mg·kg−1. Thus, these indicated that organic manure should be recommended to improve soil fertility in this region and K fertilizer should be simultaneously applied considering the soil K contents. Considering the long-term fertilizer efficiency, our results also suggest that annual straw returning application could improve soil fertility in this trial region.  相似文献   

18.
通过监测绿洲滴灌棉田不同秸秆管理和施肥方式下土壤有机碳库及碳库组分的变化,可揭示农田管理措施对棉田土壤有机碳库的调节机制,为干旱区提高农田土壤生产力以及农业固碳减排措施的制定提供科学依据.试验采用裂区设计,以秸秆还田(S)和秸秆不还田(NS)2种秸秆管理方式为主区,4种施肥处理为副区:包括不施肥(CK)、单施氮磷钾化肥(NPK)、单施有机肥(OM)和氮磷钾化肥与有机肥混施(NPK+OM).结果表明: 施肥和秸秆还田均显著增加了土壤有机碳库,提高了有机碳(CT)、易氧化有机碳(CL)、微生物生物量碳(CMB)、水溶性有机碳(CWS)、热水溶性有机碳(CHWS)的含量和有机碳累计矿化量(CTM)及碳库管理指数(CMI).秸秆还田较秸秆不还田土壤有机碳库提高了20.6%;处理NPK、OM、NPK+OM分别较CK提高了7.8%、29.5%、37.7%.不同施肥处理下CT、CL、CMB、CWS、CHWS均表现为NPK+OM>OM>NPK>CK.秸秆还田较秸秆不还田CTM提高了5.9%;NPK、OM、NPK+OM处理较CK分别提高了32.7%、59.5%、97.3%.对CMI与SOC及其组分间的相关性分析表明,CMI与CT、CMB、CL、CWS、CHWS、CTM、C库、固碳潜力均呈极显著相关关系,因此, CMI是评价绿洲棉田管理措施对土壤质量影响的重要指标.在干旱区建设高标准绿洲农田,发展棉花生产,采用秸秆还田和有机无机肥配施等农业技术措施,不仅能增加土壤有机碳及活性组分的含量,培肥地力,而且能促进土壤固碳,有利于农业资源高效利用和可持续发展.  相似文献   

19.
The effect of climate and cultivation on soil organic C and N   总被引:6,自引:0,他引:6  
Here, we investigate the response of soil organic carbon (SOC) and soil organic nitrogen (SON) to cultivation within two different climatic regimes by comparing large soil data sets from India and the Great Plains. Multiple regression models for both regions show that SOC and SON, as well as C/N ratios, increase with decreasing temperatures and increasing precipitation, trends also noted in soil data organized by Holdridge life zones. The calculated difference between natural and cultivated soils in India revealed that the greatest absolute SOC and SON losses occurred in regions of low temperatures and high precipitation, while the C/N ratio decreased during cultivation only with decreasing temperature. In India, the fractional loss of SOC relative to undisturbed soils increases with decreasing temperature whereas, in the Great Plains, it increases with increasing precipitation. Also, the fractional loss of SOC increased in India with increasing amounts of original C, whereas no relationship between fractional loss and original C was noted for the Great Plains. The differential response of each region to cultivation is hypothesized to be due to differences in both climate and management practices (crop cycles, fertilization). These findings suggest that estimates of soil C loss due to cultivation should be based on an array of factors, and that it is unlikely that a constant relative C loss occurs in any region.  相似文献   

20.
An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and mitigating global warming. The objectives of this study were to investigate the effects of long-term fertilization on SOC and SOC fractions for the whole soil profile (0–100 cm) in northwest China. The study was initiated in 1979 in Gansu, China and included six treatments: unfertilized control (CK), nitrogen fertilizer (N), nitrogen and phosphorus (P) fertilizers (NP), straw plus N and P fertilizers (NP+S), farmyard manure (FYM), and farmyard manure plus N and P fertilizers (NP+FYM). Results showed that SOC concentration in the 0–20 cm soil layer increased with time except in the CK and N treatments. Long-term fertilization significantly influenced SOC concentrations and storage to 60 cm depth. Below 60 cm, SOC concentrations and storages were statistically not significant between all treatments. The concentration of SOC at different depths in 0–60 cm soil profile was higher under NP+FYM follow by under NP+S, compared to under CK. The SOC storage in 0–60 cm in NP+FYM, NP+S, FYM and NP treatments were increased by 41.3%, 32.9%, 28.1% and 17.9%, respectively, as compared to the CK treatment. Organic manure plus inorganic fertilizer application also increased labile soil organic carbon pools in 0–60 cm depth. The average concentration of particulate organic carbon (POC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in organic manure plus inorganic fertilizer treatments (NP+S and NP+FYM) in 0–60 cm depth were increased by 64.9–91.9%, 42.5–56.9%, and 74.7–99.4%, respectively, over the CK treatment. The POC, MBC and DOC concentrations increased linearly with increasing SOC content. These results indicate that long-term additions of organic manure have the most beneficial effects in building carbon pools among the investigated types of fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号