首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The AAA ATPase p97/VCP is involved in many cellular events including ubiquitin-dependent processes and membrane fusion. In the latter, the p97 adaptor protein p47 is of central importance. In order to provide insight into the molecular basis of p97 adaptor binding, we have determined the crystal structure of p97 ND1 domains complexed with p47 C-terminal domain at 2.9 A resolution. The structure reveals that the p47 ubiquitin regulatory X domain (UBX) domain interacts with the p97 N domain via a loop (S3/S4) that is highly conserved in UBX domains, but is absent in ubiquitin, which inserts into a hydrophobic pocket between the two p97 N subdomains. Deletion of this loop and point mutations in the loop significantly reduce p97 binding. This hydrophobic binding site is distinct from the predicted adaptor-binding site for the p97/VCP homologue N-ethylmaleimide sensitive factor (NSF). Together, our data suggest that UBX domains may act as general p97/VCP/CDC48 binding modules and that adaptor binding for NSF and p97 might involve different binding sites. We also propose a classification for ubiquitin-like domains containing or lacking a longer S3/S4 loop.  相似文献   

2.
p97/VCP is a member of the AAA ATPase family and has roles in both membrane fusion and ubiquitin dependent protein degradation. Here, we present a 3.6A crystal structure of murine p97 in which D2 domain has been modelled as poly-alanine and the remaining approximately 100 residues are absent. The resulting structure illustrates a head-to-tail packing arrangement of the two p97 AAA domains in a natural hexameric state with D1 ADP bound and D2 nucleotide free. The head-to-tail packing arrangement observed in this structure is in contrast to our previously predicted tail-to-tail packing model. The linker between the D1 and D2 domains is partially disordered, suggesting a flexible nature. Normal mode analysis of the crystal structure suggests anti-correlated motions and distinct conformational states of the two AAA domains.  相似文献   

3.
Rothballer A  Tzvetkov N  Zwickl P 《FEBS letters》2007,581(6):1197-1201
A comparison of the protein sequences of various two-domain AAA+ ATPases revealed a striking difference in the residues lining the central pore of the D1 domain. The protein unfoldases of the bacterial Clp family and the archaeal VAT protein have at least one aromatic residue in the central D1 pore. In contrast, none of the members of the eukaryotic p97/VCP protein family has an aromatic residue in the D1 pore. The protein unfolding activity of VAT and other AAA+ ATPases is critically dependent on the presence of aromatic residues in this central pore. Unfoldase activity has not been demonstrated for the p97/VCP family in vitro. Thus, we exchanged the two aliphatic residues leucine and alanine of the D1 pore for aromatic tyrosine residues in full length p97 and in p97DeltaN, a truncated form of p97 lacking the N domain. We found that the mutant p97DeltaN variants with a single tyrosine or with two tyrosine residues in the central pore of D1 unfold the Clp family and VAT model substrate YFP-ssrA, whereas full length p97 with aromatic pore residues and wild-type p97 or p97DeltaN do not. Thus, p97 can exert unfoldase activity in vitro, provided that a single tyrosine residue is introduced into the D1 pore and that the N domain is deleted.  相似文献   

4.
The 97-kDa valosin-containing protein (p97-VCP) belongs to the AAA (ATPases associated with various cellular activities) family and acts as a molecular chaperone in diverse cellular events, including ubiquitinproteasome-mediated degradation. We previously showed that VCP contains a substrate-binding domain, N, and two conserved ATPase domains, D1 and D2, of which D2 is responsible for the major enzyme activity. VCP has a barrel-like structure containing two stacked homo-hexameric rings made of the D1 and D2 domains, and this structure is essential for its biological functions. During ATPase cycles, VCP undergoes conformational changes that presumably apply tensions to the bound substrate, leading to the disassembly of protein complexes or unfolding of the substrate. How ATPase activity is coupled with the conformational changes in VCP complex and the D1 and D2 rings is not clear. In this report, we took biochemical approaches to study the structure of VCP in different nucleotide conditions to depict the conformational changes in the ATPase cycles. In contrast to many AAA chaperones that require ATP/ADP to form oligomers, both wild type VCP and ATP-binding site mutants can form hexamers without the addition of nucleotide. This nucleotide-independent hexamerization requires an intact D1 and the down-stream linker sequence of VCP. Tryptophan fluorescence and trypsin digestion analyses showed that ATP/ADP binding induces dramatic conformational changes in VCP. These changes do not require the presence of an intact ATP-binding site in D1 and is thus mainly attributed to the D2 domain. We propose a model whereby D1, although undergoing minor conformational changes, remains as a relatively trypsin-resistant hexameric ring throughout the ATPase cycle, whereas D2 only does so when it binds to ATP or ADP. After ADP is released at the end of the ATP hydrolysis, D2 ring is destabilized and adopts a relatively flexible and open structure.  相似文献   

5.
Abnormal protein accumulation and cell death with cytoplasmic vacuoles are hallmarks of several neurodegenerative disorders. We previously identified p97/valosin-containing protein (VCP), an AAA ATPase with two conserved ATPase domains (D1 and D2), as an interacting partner of the Machado-Joseph disease (MJD) protein with expanded polyglutamines that causes Machado-Joseph disease. To reveal its pathophysiological roles in neuronal cells, we focused on its ATPase activity. We constructed and characterized PC12 cells expressing wild-type p97/VCP and p97(K524A), a D2 domain mutant. The expression level, localization, and complex formation of both proteins were indistinguishable, but the ATPase activity of p97(K524A) was much lower than that of the wild type. p97(K524A) induced cytoplasmic vacuoles that stained with an endoplasmic reticulum (ER) marker, and accumulation of polyubiquitinated proteins in the nuclear and membrane but not cytoplasmic fractions was observed, together with the elevation of ER stress markers. These results show that p97/VCP is essential for degrading membrane-associated ubiquitinated proteins and that profound deficits in its ATPase activity severely affect ER quality control, leading to abnormal ER expansion and cell death. Excessive accumulation of misfolded proteins may inactivate p97/VCP in several neurodegenerative disorders, eventually leading to the neurodegenerations.  相似文献   

6.
The Thermoplasma VCP-like ATPase from Thermoplasma acidophilum (VAT) ATPase is a member of the two-domain AAA ATPases and homologous to the mammalian p97/VCP and NSF proteins. We show here that the VAT ATPase complex unfolds green fluorescent protein (GFP) labeled with the ssrA-degradation tag. Increasing the Mg2+ concentration derepresses the ATPase activity and concomitantly stimulates the unfolding activity of VAT. Similarly, the VATDeltaN complex, a mutant of VAT deleted for the N domain, displays up to 24-fold enhanced ATP hydrolysis and 250-fold enhanced GFP unfolding activity when compared with wild-type VAT. To determine the individual contribution of the two AAA domains to ATP hydrolysis and GFP unfolding we performed extensive site-directed mutagenesis of the Walker A, Walker B, sensor-1, and pore residues in both AAA domains. Analysis of the VAT mutant proteins, where ATP hydrolysis was confined to a single AAA domain, revealed that the first domain (D1) is sufficient to exert GFP unfolding indistinguishable from wild-type VAT, while the second AAA domain (D2), although active, is significantly less efficient than wild-type VAT. A single conserved aromatic residue in the D1 section of the pore was found to be essential for GFP unfolding. In contrast, two neighboring residues in the D2 section of the pore had to be exchanged simultaneously, to achieve a drastic inhibition of GFP unfolding.  相似文献   

7.
The 97-kDa valosin-containing protein (p97 or VCP) is a type-II AAA ( ATPases associated with a variety of activities) ATPases, which are characterized by possessing two conserved ATPase domains. VCP forms a stable homo-hexameric structure, and this two-tier ring-shaped complex acts as a molecular chaperone that mediates many seemingly unrelated cellular activities. The involvement of VCP in the ubiquitin-proteasome degradation pathway and the identification of VCP cofactors provided us important clues to the understanding of how this molecular chaperone works. In this review, we summarize the reported biological functions of VCP and explore the molecular mechanisms underlying the diverse cellular functions. We discuss the structural and biochemical studies, and elucidate how this sophisticated enzymatic machine converts chemical energy into the mechanical forces required for the chaperone activity.  相似文献   

8.
The AAA+ATPase p97/VCP, helped by adaptor proteins, exerts its essential role in cellular events such as endoplasmic reticulum-associated protein degradation or the reassembly of Golgi, ER and the nuclear envelope after mitosis. Here, we report the three-dimensional cryo-electron microscopy structures at approximately 20 Angstroms resolution in two nucleotide states of the endogenous hexameric p97 in complex with a recombinant p47 trimer, one of the major p97 adaptor proteins involved in membrane fusion. Depending on the nucleotide state, we observe the p47 trimer to be in two distinct arrangements on top of the p97 hexamer. By combining the EM data with NMR and other biophysical measurements, we propose a model of ATP-dependent p97(N) domain motions that lead to a rearrangement of p47 domains, which could result in the disassembly of target protein complexes.  相似文献   

9.
We have previously shown that the Werner syndrome helicase, WRNp, a member of the RecQ helicase family, forms a tight molecular complex with the p97/Valosin containing protein (VCP), a member of the AAA (ATPases associated with diverse cellular activities) family of proteins. This interaction is disrupted by chemical agents that confer DNA damage, suggesting that VCP plays an important role in the signal-dependent release of WRNp from its nucleolar sequestration site. Here, we characterized the structural requirements for interactions between WRNp and VCP and for the nuclear localization of VCP. We discovered that VCP directly binds to the RQC (RecQ conserved) domain of WRNp, which is a highly conserved motif common to the RecQ helicase family. This interaction is ATP-dependent, suggesting that VCP plays a mechanistic role in releasing WRNp from the nucleolus. Immunohistochemical analysis of various VCP domains and mutated proteins expressed in vitro demonstrated that VCP may contain several hierarchical cellular localization motifs within its domain structure.  相似文献   

10.
The AAA (ATPases associated with a variety of cellular activities) family of proteins bind, hydrolyze, and release ATP to effect conformational changes, assembly, or disassembly upon their binding partners and substrate molecules. One of the members of this family, the hexameric p97/valosin-containing protein p97/VCP, is essential for the dislocation of misfolded membrane proteins from the endoplasmic reticulum. Here, we observe large motions and dynamic changes of p97/VCP as it proceeds through the ATP hydrolysis cycle. The analysis is based on crystal structures of four representative ATP hydrolysis states: APO, AMP-PNP, hydrolysis transition state ADP x AlF3, and ADP bound. Two of the structures presented herein, ADP and AMP-PNP bound, are new structures, and the ADP x AlF3 structure was re-refined to higher resolution. The largest motions occur at two stages during the hydrolysis cycle: after, but not upon, nucleotide binding and then following nucleotide release. The motions occur primarily in the D2 domain, the D1 alpha-helical domain, and the N-terminal domain, relative to the relatively stationary and invariant D1alpha/beta domain. In addition to the motions, we observed a transition from a rigid state to a flexible state upon loss of the gamma-phosphate group, and a further increase in flexibility within the D2 domains upon nucleotide release. The domains within each protomer of the hexameric p97/VCP deviate from strict 6-fold symmetry, with the more flexible ADP state exhibiting greater asymmetry compared to the relatively rigid ADP x AlF3 state, suggesting a mechanism of action in which hydrolysis and conformational changes move about the hexamer in a processive fashion.  相似文献   

11.
A class of inherited neurodegenerative diseases including Huntington's disease is caused by polyglutamine (polyQ) expansion in the responsible proteins. Pathology is typically associated with polyQ expansions of greater than 40 residues, and the longer the length of the expansion, the earlier the onset of disease. It has been reported that p97/VCP/Cdc48p, a member of AAA family of proteins, can bind to longer polyQ tracts. In Caenorhabditis elegans, two p97/VCP/Cdc48p homologues, C41C4.8 and C06A1.1, have been identified. Our results indicate that these p97/VCP/Cdc48p homologues have essential but redundant functions in C. elegans. To provide a model system for investigating the molecular basis of pathogenesis, we have expressed polyQ expansions fused to green fluorescent protein in the body wall muscle cells of C. elegans. When the repeats are longer than 40, discrete cytoplasmic aggregates are formed and these appear at an early stage of embryogenesis. The formation of aggregates was partially suppressed by co-expression of either C41C4.8 or C06A1.1. These results suggest that these p97/VCP/Cdc48p homologues, AAA chaperones, may play a protective role in polyQ aggregation.  相似文献   

12.

Background

Retrodifferentiation and regained proliferative capacity of growth-arrested human leukemic cells after monocyte-like differentiation requires proteolytic activities together with distinct regulatory factors. The AAA ATPase valosin-containing protein (VCP/p97) contributes to protein degradation and cell cycle regulation, respectively, and it was of interest to study a possible role of VCP/p97 during this myelomonocytic differentiation and retrodifferentiation.

Results

Separation of autonomously proliferating human U937 myeloid leukemia cells by centrifugal elutriation demonstrated unaltered VCP/p97 expression levels throughout distinct phases of the cell cycle. However, phorbol ester-induced G0/G1 cell cycle arrest in differentiating human U937 leukemia cells was associated with a significantly increased protein and mRNA amount of this AAA ATPase. These elevated VCP/p97 levels progressively decreased again when growth-arrested U937 cells entered a retrodifferentiation program and returned to the tumorigenic phenotype. Whereas VCP/p97 was observed predominantly in the cytosol of U937 tumor and retrodifferentiated cells, a significant nuclear accumulation appeared during differentiation and G0/G1 growth arrest. Analysis of subcellular compartments by immunoprecipitations and 2D Western blots substantiated these findings and revealed furthermore a tyrosine-specific phosphorylation of VCP/p97 in the cytosolic but not in the nuclear fractions. These altered tyrosine phosphorylation levels, according to distinct subcellular distributions, indicated a possible functional involvement of VCP/p97 in the leukemic differentiation process. Indeed, a down-modulation of VCP/p97 protein by siRNA revealed a reduced expression of differentiation-associated genes in subsequent DNA microarray analysis. Moreover, DNA-binding and proliferation-associated genes, which are down-regulated during differentiation of the leukemic cells, demonstrated elevated levels in the VCP/p97 siRNA transfectants.

Conclusion

The findings demonstrated that monocytic differentiation and G0/G1 growth arrest in human U937 leukemia cells was accompanied by an increase in VCP/p97 expression and a distinct subcellular distribution to be reverted during retrodifferentiation. Together with a down-modulation of VCP/p97 by siRNA, these results suggested an association of this AAA ATPase in the differentiation/retrodifferentiation program.  相似文献   

13.
The AAA-ATPase p97/VCP facilitates protein dislocation during endoplasmic reticulum-associated degradation (ERAD). To understand how p97/VCP accomplishes dislocation, a series of point mutants was made to disrupt distinguishing structural features of its central pore. Mutants were evaluated in vitro for ATPase activity in the presence and absence of synaptotagmin I (SytI) and in vivo for ability to process the ERAD substrate TCRalpha. Synaptotagmin induces a 4-fold increase in the ATPase activity of wild-type p97/VCP (p97/VCP(wt)), but not in mutants that showed an ERAD impairment. Mass spectrometry of crosslinked synaptotagmin . p97/VCP revealed interactions near Trp551 and Phe552. Additionally, His317, Arg586, and Arg599 were found to be essential for substrate interaction and ERAD. Except His317, which serves as an interaction nexus, these residues all lie on prominent loops within the D2 pore. These data support a model of substrate dislocation facilitated by interactions with p97/VCP's D2 pore.  相似文献   

14.
Dolan PJ  Jin YN  Hwang W  Johnson GV 《FEBS letters》2011,585(21):3424-3429
VCP/p97 is a multifunctional AAA+-ATPase involved in vesicle fusion, proteasomal degradation, and autophagy. Reported dysfunctions of these processes in Alzheimer disease (AD), along with the linkage of VCP/p97 to inclusion body myopathy with Paget's disease and frontotemporal dementia (IBMPFD) led us to examine the possible linkage of VCP to the AD-relevant protein, tau. VCP levels were reduced in AD brains, but not in the cerebral cortex of an AD mouse model, suggesting that VCP reduction occurs upstream of tau pathology. Genetic reduction of VCP in a primary neuronal model led to increases in the levels of tau phosphorylated at Ser(262/356), indicating that VCP may be involved in regulating post-translational processing of tau in AD, demonstrating a possible functional linkage between tau and VCP.  相似文献   

15.
Endoplasmic reticulum-associated protein degradation (ERAD) removes improperly-folded proteins from the ER membrane into the cytosol where they undergo proteasomal degradation. Valosin-containing protein (VCP)/p97 mediates in the extraction of ERAD substrates from the ER. BRSK2 (also known as SAD-A), a serine/threonine kinase of the AMP-activated protein kinase family affected VCP/p97 activity in ERAD. In addition, BRSK2 interacted with VCP/p97 via three of the four functional domains of VCP/p97. Immunofluorescence demonstrated that BRSK2 and VCP/p97 were co-localized and also that knockdown of endogenous BRSK2 induced increased levels of CD3δ, a substrate in ERAD for VCP/p97. Thus, BRSK2 might affect the activity of VCP/p97 in ERAD.  相似文献   

16.
Improperly folded proteins in the endoplasmic reticulum (ER) are eliminated via ER-associated degradation, a process that dislocates misfolded proteins from the ER membrane into the cytosol, where they undergo proteasomal degradation. Dislocation requires a subclass of ubiquitin ligases that includes gp78 in addition to the AAA ATPase p97/VCP and its cofactor, the Ufd1-Npl4 dimer. We have previously reported that gp78 interacts directly with p97/VCP. Here, we identify a novel p97/VCP-interacting motif (VIM) within gp78 that mediates this interaction. We demonstrate that the VIM of gp78 recruits p97/VCP to the ER, but has no effect on Ufd1 localization. We also show that gp78 VIM interacts with the ND1 domain of p97/VCP that was shown previously to be the binding site for Ufd1. To evaluate the role of Ufd1 in gp78-p97/VCP-mediated degradation of CD3delta, a known substrate of gp78, RNA interference was used to silence the expression of Ufd1 and p97/VCP. Inhibition of p97/VCP, but not Ufd1, stabilized CD3delta in cells that overexpress gp78. However, both p97/VCP and Ufd1 appear to be required for CD3delta degradation in cells expressing physiological levels of gp78. These results raise the possibility that Ufd1 and gp78 may bind p97/VCP in a mutually exclusive manner and suggest that gp78 might act in a Ufd1-independent degradation pathway for misfolded ER proteins, which operates in parallel with the previously established p97/VCP-Ufd1-Npl4-mediated mechanism.  相似文献   

17.
Valosin-containing protein (VCP)/p97 is an AAA family ATPase that has been implicated in the removal of misfolded proteins from the endoplasmic reticulum and in membrane fusion. p97 forms a homohexamer whose protomers consist of an N-terminal (N) domain responsible for binding to effector proteins, followed by two AAA ATPase domains, D1 and D2. Small-angle X-ray scattering (SAXS) measurements of p97 in the presence of AMP-PNP (ATP state), ADP-AlF(x) (hydrolysis transition state), ADP, or no nucleotide reveal major changes in the positions of the N domains with respect to the hexameric ring during the ATP hydrolysis cycle. Nucleotide binding and hydrolysis experiments indicate that D2 inhibits nucleotide exchange by D1. The data suggest that the conversion of the chemical energy of ATP hydrolysis into mechanical work on substrates involves transmission of conformational changes generated by D2 through D1 to move N.  相似文献   

18.
Proteins are translocated into the endoplasmic reticulum (ER) of cells in an unfolded state, and acquire their native conformation in the ER lumen after signal peptide cleavage. ER-associated degradation (ERAD) of folding-incompetent protein chains is mediated by the protein complexes residing in the ER membrane. We study the architecture and function of one of these, the HRD complex assembled around the E3 ubiquitin ligase Hrd1. The recognition of ERAD substrates is linked to the maturation of their carbohydrate structures. The HRD complex-associated lectin Yos9 is involved in ERAD substrate recognition by binding carbohydrates through its mannose-6-phosphate receptor homology (MRH) domain. We have determined the crystal structure of a central domain of Yos9, adjacent to the MRH domain, which was previously annotated as interaction region with the HRD subunit Hrd3 (Hanna et al., 2012). We find that this domain does not support Hrd3 association which we map to the N-terminal half of Yos9 instead. In contrast, the domain has a function in Yos9 dimerization as seen in the crystal structure, in various solution experiments and as supported by mutagenesis of dimer interface residues. The dimerization of the ER-luminal Yos9, in conjunction with studies of the cytosolic domain of the HRD component Usa1 (Horn et al., 2009) and other biochemical data thus supports a model of a HRD complex that exists and functions as a dimer or a higher multimer. The delivery of ubiquitinated ERAD substrates to the proteasome is mediated by the cytosolic AAA ATPase Cdc48 (p97 in mammalian cells). The p97 (VCP) serves a wide variety of cellular functions in addition to its role in ERAD, including organelle membrane fusion, mitosis, DNA repair, and apoptosis. These different functions are linked to the binding of adaptor proteins to p97, many of which contain ubiquitin regulatory X (UBX) domains. One of these adaptors, ASPL (alveolar soft part sarcoma locus), uses a substantially extended UBX domain for binding to the N domain of p97 where a lariat-like, mostly α-helical extension wraps around one subunit of p97. By this binding ASPL triggers the dissociation of functional p97 hexamers leading to partial inactivation of the AAA ATPase. To the best of our knowledge, this is the first time that the structural basis for adaptor protein-induced inactivation by hexamer dissociation of p97 and, indeed, any AAA ATPase has been demonstrated. This observation has far reaching implications for AAA ATPase-regulated processes.  相似文献   

19.
p97 (also called VCP), a member of the AAA ATPase family, is involved in several cellular processes, including membrane fusion and extraction of proteins from the endoplasmic reticulum for cytoplasmic degradation. We have studied the conformational changes that p97 undergoes during the ATPase cycle by cryo-EM and single-particle analysis. Three-dimensional maps show that the two AAA domains, D1 and D2, as well as the N-domains, experience conformational changes during ATP binding, ATP hydrolysis, P(i) release and ADP release. The N-domain is flexible in most nucleotide states except after ATP hydrolysis. The rings formed by D1 and D2 rotate with respect to each other, and the size of their axial openings fluctuates. Taken together, our results depict the movements that this and possibly other AAA ATPases can undergo during an ATPase cycle.  相似文献   

20.
Peroxisomes are responsible for several pathways in primary metabolism, including beta-oxidation and lipid biosynthesis. PEX1 and PEX6 are hexameric AAA-type ATPases, both of which are indispensable in targeting over 50 peroxisomal resident proteins from the cytosol to the peroxisomes. Although the tandem AAA-ATPase domains in the central region of PEX1 and PEX6 are highly similar, the N-terminal sequences are unique. To better understand the distinct molecular function of these two proteins, we analyzed the unique N-terminal domain (NTD) of PEX1. Extensive computational analysis revealed weak similarity (<10% identity) of PEX1 NTD to the N-terminal domains of other membrane-related type II AAA-ATPases, such as VCP (p97) and NSF. We have determined the crystal structure of mouse PEX1 NTD at 2.05-A resolution, which clearly demonstrated that the domain belongs to the double-psi-barrel fold family found in the other AAA-ATPases. The N-domains of both VCP and NSF are structural neighbors of PEX1 NTD with a 2.7- and 2.1-A root mean square deviation of backbone atoms, respectively. Our findings suggest that the supradomain architecture, which is composed of a single N-terminal domain followed by tandem AAA domains, is a common feature of organellar membrane-associating AAA-ATPases. We propose that PEX1 functions as a protein unfoldase in peroxisomal biogenesis, using its N-terminal putative adaptor-binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号