首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Summary Monoclonal antibodies specifically recognizing cardiac and extraocular muscle myosin heavy chains of the quail (Coturnix coturnix japonica) were used to determine the patterns of expression of these isoforms in clonal cultures of embryonic quail myoblasts. Myoblasts prepared from 9 day embryonic pectoralis are virtually homogeneous in their ability to form clones expressing both cardiac and extraocular isoforms. The majority of myoblasts obtained from day 5 embryos also formed clones which co-express the cardiac and extraocular isoforms, but a small percentage of the clones expressed only cardiac isoforms.  相似文献   

2.
We report here the isolation and characterization of cDNA and genomic sequences corresponding to a rat embryonic myosin heavy chain (MHC) protein. This gene, which is present as a single copy in the rat genome, comprises about 25 kilobase pairs of DNA and contains approximately 80% intronic sequences. The embryonic MHC gene belongs to a highly conserved multigene family, and exhibits a high degree of nucleotide and amino acid sequence conservation with other sarcomeric MHC genes from nematode to man. S1 nuclease mapping experiments using cDNA and genomic probes show that this MHC gene is transiently expressed during skeletal muscle development. Its mRNA is detected in fetal skeletal muscle during early development and persists up to 2 weeks after birth with the overlapping expression of neonatal and adult skeletal MHC mRNAs. However, this MHC is not expressed in the adult skeletal muscle with the exception of extraocular muscle fibers. The transient expression during muscle development of the isoform produced by this gene and its sequential replacement by other MHCs raises interesting questions about the mechanism controlling MHC isozyme transitions and the physiological significance of the individual MHCs in muscle fibers.  相似文献   

3.
The expression of fast myosin heavy chain (MHC) isoforms was examined in developing bicep brachii, lateral gastrocnemius, and posterior latissimus dorsi (PLD) muscles of inbred normal White Leghorn chickens (Line 03) and genetically related inbred dystrophic White Leghorn chickens (Line 433). Utilizing a highly characterized monoclonal antibody library we employed ELISA, Western blot, immunocytochemical, and MHC epitope mapping techniques to determine which MHCs were present in the fibers of these muscles at different stages of development. The developmental pattern of MHC expression in the normal bicep brachii was uniform with all fibers initially accumulating embryonic MHC similar to that of the pectoralis muscle. At hatching the neonatal isoform was expressed in all fibers; however, unlike in the pectoralis muscle the embryonic MHC isoform did not disappear. With increasing age the neonatal MHC was repressed leaving the embryonic MHC as the only detectable isoform present in the adult bicep brachii muscle. While initially expressing embryonic MHC in ovo, the post-hatch normal gastrocnemius expressed both embryonic and neonatal MHCs. However, unlike the bicep brachii muscle, this pattern of expression continued in the adult muscle. The adult normal gastrocnemius stained heterogeneously with anti-embryonic and anti-neonatal antibodies indicating that mature fibers could contain either isoform or both. Neither the bicep brachii muscle nor the lateral gastrocnemius muscle reacted with the adult specific antibody at any stage of development. In the developing posterior latissimus dorsi muscle (PLD), embryonic, neonatal, and adult isoforms sequentially appeared; however, expression of the embryonic isoform continued throughout development. In the adult PLD, both embryonic and adult MHCs were expressed, with most fibers expressing both isoforms. In dystrophic neonates and adults virtually all fibers of the bicep brachii, gastrocnemius, and PLD muscles were identical and contained embryonic and neonatal MHCs. These results corroborate previous observations that there are alternative programs of fast MHC expression to that found in the pectoralis muscle of the chicken (M.T. Crow and F.E. Stockdale, 1986, Dev. Biol. 118, 333-342), and that diversification into fibers containing specific MHCs fails to occur in the fast muscle fibers of the dystrophic chicken. These results are consistent with the hypothesis that avian muscular dystrophy is a developmental disorder that is associated with alterations in isoform switching during muscle maturation.  相似文献   

4.
Colloidal gold-conjugated monoclonal antibodies were prepared to stage-specific fast myosin heavy chain (MHC) isoforms of developing chicken pectoralis major (PM). Native thick filaments from different stages of development were reacted with these antibodies and examined in the electron microscope to determine their myosin isoform composition. Filaments prepared from 12-d embryo, 10-d chick, and 1-yr chicken muscle specifically reacted with the embryonic (EB165), neonatal (2E9), and adult (AB8) antimyosin gold-conjugated monoclonal antibodies, respectively. The myosin isoform composition was more complex in thick filaments from stages of pectoral muscle where more than one isoform was simultaneously expressed. In 19-d embryo muscle where both embryonic and neonatal isoforms were present, three classes of filaments were found. One class of filaments reacted only with the embryonic antibody, a second class reacted only with the neonatal-specific antibody, and a third class of filaments were decorated by both antibodies. Similar results were obtained with filaments prepared from 44-d chicken PM where the neonatal and adult fast MHCs were expressed. These observations demonstrate that two myosin isoforms can exist in an individual thick filament in vivo. Immunoelectron microscopy was also used to determine the specific distribution of different fast MHC isoforms within individual filaments from different stages of development. The anti-embryonic and anti-adult antibodies uniformly decorated both homogeneous and heterogeneous thick filaments. The neonatal specific antibody uniformly decorated homogeneous filaments; however, it preferentially decorated the center of heterogeneous filaments. These observations suggest that neonatal MHC may play a specific role in fibrillogenesis.  相似文献   

5.
The expression of myosin heavy chain (MHC) and C-protein isoforms has been examined immunocytochemically in regenerating skeletal muscles of adult chickens. Two, five, and eight days after focal freeze injury to the anterior latissimus dorsi (ALD) and posterior latissimus dorsi (PLD) muscles, cryostat sections of injured and control tissues were reacted with a series of monoclonal antibodies previously shown to specifically bind MHC or C-protein isoforms in adult or embryonic muscles. We observed that during the course of regeneration in each of these muscles there was a reproducible sequence of antigenic changes consistent with differential isoform expression for these two proteins. These isoform switches appear to be tissue specific; i.e., the isoforms of MHC and C-protein which are expressed during the regeneration of a "slow" muscle (ALD) differ from those which are synthesized in a regenerating "fast" muscle (PLD). Evidence has been obtained for the transient expression of a "fast-type" MHC and C-protein during ALD regeneration. Furthermore, during early stages of PLD regeneration this muscle contains MHCs which antigenically resemble those found in the pectoralis muscle at embryonic and early posthatch stages of development. Both regenerating muscles express an isoform of C-protein which appears immunochemically identical to that normally expressed in embryonic and adult cardiac muscle. These results support the concept that isoform transitions in regenerating skeletal muscles qualitatively resemble those found in developing muscles but differences may exist in temporal and tissue-specific patterns of gene expression.  相似文献   

6.
At least three slow myosin heavy chain (MHC) isoforms were expressed in skeletal muscles of the developing chicken hindlimb, and differential expression of these slow MHC isoforms produced distinct fiber types from the outset of skeletal muscle myogenesis. Immunohistochemistry with isoform-specific monoclonal antibodies demonstrated differences in MHC content among the fibers of the dorsal and ventral premuscle masses and distinctions among fibers before splitting of the premuscle masses into individual muscles (Hamburger and Hamilton Stage 25). Immunoblot analyses by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of myosin extracted from the hindlimb demonstrated the presence throughout development of different mobility classes of MHCs with epitopes associated with slow MHC isoforms. Immunopeptide mapping showed that one of the MHCs expressed in the embryonic limb was the same slow MHC isoform, slow MHC1 (SMHC1), that is expressed in adult slow muscles. SMHC1 was expressed in the dorsal and ventral premuscle masses, embryonic, fetal, and some neonatal and adult hindlimb muscles. In the embryo and fetus SMHC1 was expressed in future fast, as well as future slow muscles, whereas in the adult only the slow muscles retained expression of SMHC1. Those embryonic muscles destined in the adult to contain slow fibers or mixed fast/slow fibers not only expressed SMHC1, but also an additional slow MHC not previously described, designated as slow MHC3 (SMHC3). Slow MHC3 was shown by immunopeptide mapping to contain a slow MHC epitope (reactive with mAb S58) and to be structurally similar to a MHC expressed in the atria of the adult chicken heart. SMHC3 was designated as a slow MHC isoform because (i) it was expressed only in those muscles destined to be of the slow type in the adult, (ii) it was expressed only in primary fibers of muscles that subsequently are of the slow type, and (iii) it had an epitope demonstrated to be present on other slow, but not fast, isoforms of avian MHC. This study demonstrates that a difference in phenotype between fibers is established very early in the chicken embryo and is based on the fiber type-specific expression of three slow MHC isoforms.  相似文献   

7.
Monoclonal antibodies (mAbs), electrophoresis, immunoblotting, and immunohistochemistry were used to determine the molecular properties of cardiac myosin heavy chain (MHC) isoforms and the regions of the developing chicken heart in which they were expressed. Adult atria expressed three electrophoretically distinct MHCs that reacted specifically with mAbs F18, F59, or S58. During embryonic Days 2-4, when the atrial and ventricular chambers are forming, MHCs that reacted with mAbs F18, F59, or S58 were expressed in both the atria and ventricles. The atria continued to express MHCs that reacted with mAbs F18, F59, or S58 at all stages of development and in the adult. In the ventricles, expression of the MHCs reacting with these mAbs was found to be developmentally regulated. By embryonic Day 16, MHC(s) reacting with mAb F18 had disappeared from the developing ventricles, whereas MHCs reacting with S58 and F59 continued to be expressed throughout the ventricles. As development continued, MHC(s) reacting with S58 in the ventricle became restricted to expression in only the ventricular conducting system. MHC(s) reacting with F59 were expressed in both the ventricular myocytes and the ventricular conducting system throughout development and in the adult. Thus, in contrast to the embryonic chicken heart where at least three MHC isoforms were expressed in both the atria and ventricles, we found in the adult chicken heart that-at a minimum-three MHC isoforms were expressed in the atria, two MHC isoforms were expressed in the ventricular conducting system, and one MHC isoform in the ventricular myocardium. MHC isoform expression in the developing avian heart appears to be more complex than previously recognized.  相似文献   

8.
Previous results have shown that the adult human masseter muscle contains myosin isoforms that are specific to early stages of development in trunk and limb muscles, i.e. embryonic and fetal (neonatal) myosin heavy chains (MHC) and embryonic myosin light chain (MLC1emb). We wanted to know if this specific pattern is the result of a late maturation or of a distinct evolution during development. We show here that the embryonic and the fetal MHC and the MLC1emb are expressed throughout perinatal and postnatal masseter development. Our results also demonstrate that MLC1emb accumulation increases considerably during the postnatal period. In addition, both the slow MLCs and the slow isoform of tropomyosin are expressed later in the masseter than quadriceps and the fast skeletal muscle isoform MLC3 is not detected during fetal and early postnatal development in the masseter whereas it is expressed throughout fetal development in the quadriceps. Our results thus confirm previous histochemical data and demonstrate that the masseter muscle displays a pattern of myosin and tropomyosin isoform transitions different to that previously described in trunk and limb muscles. This suggests that control of masseter muscle development involves mechanisms distinct from other body muscles, possibly as a result of either its craniofacial innervation or of a possibly different embryonic origin.  相似文献   

9.
J Kucera  J M Walro 《Histochemistry》1989,92(4):291-299
The expression of four myosin heavy chain (MHC) isoforms, avian slow-tonic (ATO) or neonatal-twitch (ANT) and mammalian slow-twitch (MST) or fast-twitch (MFT) in intrafusal fibers was examined by immunocytochemistry of spindles in the tenuissimus muscle of adult cats. The predominant MHCs expressed by nuclear bag fibers were ATO and MST, whereas the MHCs prevalent in nuclear chain fibers were ANT and MFT. The expression of these isoforms of MHC was not uniform along the length of intrafusal fibers. In general, both bag and chain fibers expressed avian MHC in the intracapsular region and mammalian MHC in the extracapsular region. The nonuniform expression of MHCs observed along the length of bag and chain fibers implies that different genes are activated in myonuclei located in the intracapsular and extracapsular regions of the same muscle fiber. Regional differences in gene activation might result from a greater effect of afferents on myonuclei located near the equator of intrafusal fibers then on myonuclei outside the spindle capsule.  相似文献   

10.
Summary The expression of four myosin heavy chain (MHC) isoforms, avian slow-tonic (ATO) or neonatal-twitch (ANT) and mammalian slow-twitch (MST) or fast-twitch (MFT) in intrafusal fibers was examined by immunocytochemistry of spindles in the tenuissimus muscle of adult eats. The predominant MHCs expressed by nuclear bag fibers were ATO and MST, whereas the MHCs prevalent in nuclear chain fibers were ANT and MFT. The expression of these isoforms of MHC was not uniform along the length of intrafusal fibers. In general, both bag and chain fibers expressed avian MHC in the intracapsular region and mammalian MHC in the extracapsular region. The nonuniform expression of MHCs observed along the length of bag and chain fibers implies that different genes are activated in myonuclei located in the intracapsular and extracapsular regions of the same muscle fiber. Regional differences in gene activation might result from a greater effect of afferents on myonuclei located near the equator of intrafusal fibers then on myonuclei outside the spindle capsule.  相似文献   

11.
J Kucera  J M Walro 《Histochemistry》1990,93(6):567-580
The expression of several isoforms of myosin heavy chain (MHC) by intrafusal and extrafusal fibers of the rat soleus muscle at different stages of development was compared by immunocytochemistry. The first intrafusal myotube to form, the bag2 fiber, expressed a slow-twitch MHC isoform identical to that expressed by the primary extrafusal myotubes. The second intrafusal myotube to form, the bag1 fiber, expressed a fast-twitch MHC similar to that initially expressed by the secondary extrafusal myotubes. At subsequent stages of development, the equatorial and juxtaequatorial regions of bag2 and bag1 intrafusal myofibers began to express a slow-tonic myosin isoform not expressed by extrafusal fibers, and ceased to express some of the MHC isoforms present initially. Myotubes which eventually matured into chain fibers expressed initially both the slow-twitch and fast-twitch MHC isoforms similar to some secondary extrafusal myotubes. In contrast, adult chain fibers expressed the fast-twitch MHC isoform only. Hence intrafusal myotubes initially expressed no unique MHCs, but rather expressed MHCs similar to those expressed by extrafusal myotubes at the same chronological stage of muscle development. These observations suggest that both intrafusal and extrafusal fibers develop from common pools of bipotential myotubes. Differences in MHC expression observed between intrafusal and extrafusal fibers of rat muscle might then result from a morphogenetic effect of afferent innervation on intrafusal myotubes.  相似文献   

12.
The emergence of avian satellite cells during development has been studied using markers that distinguish adult from fetal cells. Previous studies by us have shown that myogenic cultures from fetal (Embryonic Day 10) and adult 12-16 weeks) chicken pectoralis muscle (PM) each regulate expression of the embryonic isoform of fast myosin heavy chain (MHC) differently. In fetal cultures, embryonic MHC is coexpressed with a ventricular MHC in both myocytes (differentiated myoblasts) and myotubes. In contrast, myocytes and newly formed myotubes in adult cultures express ventricular but not embryonic MHC. In the current study, the appearance of myocytes and myotubes which express ventricular but not embryonic MHC was used to determine when adult myoblasts first emerge during avian development. By examining patterns of MHC expression in mass and clonal cultures prepared from embryonic and posthatch chicken skeletal muscle using double-label immunofluorescence with isoform-specific monoclonal antibodies, we show that a significant number of myocytes and myotubes which stain for ventricular but not embryonic MHC are first seen in cultures derived from PM during fetal development (Embryonic Day 18) and comprise the majority, if not all, of the myoblasts present at hatching and beyond. These results suggest that adult type myoblasts become dominant in late embryogenesis. We also show that satellite cell cultures derived from adult slow muscle give results similar to those of cultures derived from adult fast muscle. Cultures derived from Embryonic Day 10 hindlimb form myocytes and myotubes that coexpress ventricular and embryonic MHCs in a manner similar to cells of the Embryonic Day 10 PM. Thus, adult and fetal expression patterns of ventricular and embryonic MHCs are correlated with developmental age but not muscle fiber type.  相似文献   

13.
Nascent muscle fiber appearance in overloaded chicken slow-tonic muscle   总被引:4,自引:0,他引:4  
The application of a weight overload to the humerus of chickens induces a hypertrophy of anterior latissimus dorsi (ALD) muscle fibers. This growth is accompanied by a rapid and almost complete replacement of one slow-tonic myosin isoform, SM-1, by another slow-tonic isoform, SM-2. In addition, a population of small fibers appears mainly in extrafascicular spaces and, concurrently, three additional myosin bands are detected by gel electrophoresis. Five antibodies against myosin heavy chain (MHC) isoforms were selected as immunocytochemical probes to determine the cellular location and nature of these myosins. The antibodies react with ventricular, fast skeletal muscle and either SM-1 or SM-2, or both the slow-tonic MHCs. The antifast and antiventricular antibodies react with myosin present in the 10-day embryonic ALD muscle but do not react with myosin in posthatch ALD muscle. The small fibers in overloaded muscle contain a myosin isoform characteristically expressed during the embryonic stage of ALD muscle development and therefore are named nascent myofibers. Some of the nascent myofibers do not react with the antibody to both slow-tonic MHCs, indicating the lack of the normal adult slow-tonic myosins which are expressed in 10-day embryos. In order to explore the origin of the nascent fibers, an electron microscopic study was performed. Stereological analysis of the existing fibers shows a stimulation of numbers and sizes of satellite cells. In addition, the volume occupied by nonmuscle and undifferentiated cells increases dramatically. Myotube formation with incipient myofibrils is seen in extrafascicular spaces. These data suggest that new muscle fiber formation accompanies hypertrophy in overloaded chicken ALD muscle and the process may involve satellite cell migration.  相似文献   

14.
Summary The expression of several isoforms of myosin heavy chain (MHC) by intrafusal and extrafusal fibers of the rat soleus muscle at different stages of development was compared by immunocytochemistry. The first intrafusal myotube to form, the bag2 fiber, expressed a slow-twitch MHC isoform identical to that expressed by the primary extrafusal myotubes. The second intrafusal myotube to form, the bag1 fiber, expressed a fast-twitch MHC similar to that initially expressed by the secondary extrafusal myotubes. At subsequent stages of development, the equatorial and juxtaequatorial regions of bag2 and bag1 intrafusal myofibers began to express a slow-tonic myosin isoform not expressed by extrafusal fibers, and ceased to express some of the MHC isoforms present initially. Myotubes which eventually matured into chain fibers expressed initially both the slow-twitch and fast-twitch MHC isoforms similar to some secondary extrafusal myotubes. In contrast, adult chain fibers expressed the fast-twitch MHC isoform only. Hence intrafusal myotubes initially expressed no unique MHCs, but rather expressed MHCs similar to those expressed by extrafusal myotubes at the same chronological stage of muscle development. These observations suggest that both intrafusal and extrafusal fibers develop from common pools of bipotential myotubes. Differences in MHC expression observed between intrafusal and extrafusal fibers of rat muscle might then result from a morphogenetic effect of afferent innervation on intrafusal myotubes.  相似文献   

15.
Emergence of the mature myosin phenotype in the rat diaphragm muscle   总被引:4,自引:0,他引:4  
Immunohistochemical analysis of myosin heavy chain (MHC) isoform expression in perinatal and adult rat diaphragm muscles was performed with antibodies which permitted the identification of all known MHC isoforms found in typical rat muscles. Isoform switching, leading to the emergence of the adult phenotype, was more complex than had been previously described. As many as four isoforms could be coexpressed in a single myofiber. Elimination of developmental isoforms did not usually result in the myofiber immediately achieving its adult phenotype. Activation of genes for specific adult isoforms might be delayed to puberty. For example, two of the three fast MHCs, MHC2X and MHC2A appeared perinatally, while MHC2B did not appear until 30 days postnatal. By Day 60 this isoform was present in approximately 27% of the myofibers, but in most myofibers expression of this isoform was transient (i.e., at Day greater than or equal to 115, less than 4% of the myofibers expressed MHC2B). Fibers which contained MHC beta/slow during the late fetal and early neonatal period coexpressed MHCemb. A marked increase in the frequency of fibers containing MHC beta/slow occurred between 4 and 21 days postnatal. These slow fibers arose from a population of myofibers which expressed MHCemb and MHCneo during their development, and they accounted for the majority of slow fibers found in the adult diaphragm. The adult myosin phenotype of the diaphragm myofibers (as determined with immunocytochemistry, and 5% SDS-PAGE) was not achieved until the rat was greater than or equal to 115 days old.  相似文献   

16.
Early embryonic and late fetal mouse myogenic cells showed distinct patterns of perinatal myosin heavy chain (MHC) isoform expression upon differentiation in vitro. In cultures of somite or limb muscle cells isolated from Day 9 to Day 12 embryos, differentiated cells that expressed perinatal MHC were rare and perinatal MHC was not detectable by immunoblotting. In cultures of limb muscle cells isolated from Day 13 to Day 18 fetuses, in contrast, the perinatal MHC isoform was easily detected and was expressed in a substantial percentage of myocytes and myotubes. Analyses of clonally derived muscle colonies and cytosine arabinoside-treated fetal muscle cell cultures suggested that different fetal muscle cell nuclei initiated perinatal MHC expression at different times. In both embryonic and fetal cell cultures, the embryonic MHC isoform was expressed by all differentiated cells examined. A small number of myotubes in fetal muscle cell cultures showed a mosaic distribution of MHC isoform accumulation in which the perinatal MHC isoform accumulated in a restricted region of the myotube near particular nuclei, whereas the embryonic MHC isoform accumulated throughout the myotube. Thus, the myogenic program of fetal, but not embryonic, mouse myogenic cells includes expression of the perinatal MHC isoform upon differentiation in culture.  相似文献   

17.
The expression of myosin isoforms was studied during development of calf muscles in foetal and neonatal rats, using monoclonal antibodies against slow, embryonic and neonatal isoforms of myosin heavy chain (MHC). Primary myotubes had appeared in all prospective rat calf muscles by embryonic day 16 (E16). On both E16 and E17, primary myotubes in all muscles with the exception of soleus stained for slow, embryonic and neonatal MHC isoforms; soleus did not express neonatal MHC. In earlier stages of muscle formation staining for the neonatal isoform was absent or faint. Secondary myotubes were present in all muscles by E18, and these stained for both embryonic and neonatal MHCs, but not slow. In mixed muscles, primary myotubes destined to differentiate into fast muscle fibres began to lose expression of slow MHC, and primary myotubes destined to become slow muscle fibres began to lose expression of neonatal MHC. This pattern was further accentuated by E19, when many primary myotubes stained for only one of these two isoforms. Chronic paralysis or denervation from E15 or earlier did not disrupt the normal sequence of maturation of primary myotubes up until E18, but secondary myotubes did not form. By E19, however, most primary myotubes in aneural or paralyzed tibialis anterior muscles had lost expression of slow MHC and expressed only embryonic and neonatal MHCs. Similar changes occurred in other muscles, except for soleus which never expressed neonatal MHC, as in controls. Paralysis or denervation commencing later than E15 did not have these effects, even though it was initiated well before the period of change in expression of MHC isoforms. In this case, some secondary myotubes appeared in treated muscles. Paralysis initiated on E15, followed by recovery 2 days later so that animals were motile during the period of change in expression of MHC isoforms, was as effective as full paralysis. These experiments define a critical period (E15-17) during which foetuses must be active if slow muscle fibres are to differentiate during E19-20. We suggest that changes in expression of MHC isoforms in primary myotubes depend on different populations of myoblasts fusing with the myotubes, and that the normal sequence of appearance of these myoblasts has a stage-dependent reliance on active innervation of foetal muscles. A critical period of nerve-dependence for these myoblasts occurs several days before their action can be noted.  相似文献   

18.
Immunochemical studies have identified a distinct myosin heavy chain (MHC) in the chicken embryonic skeletal muscle that was undetectable in this muscle in the posthatch period by both immunocytochemical and the immunoblotting procedures. This embryonic isoform, identified by antibody 96J, which also recognises the cardiac and SM1 myosin heavy chains, differs from the embryonic myosin heavy chain belonging to the fast class described previously. Although the fast embryonic isoform is a major species present in the leg and pectoral embryonic muscles, slow embryonic isoform was present in significant amounts during early embryonic development. Immunocytochemical studies using another monoclonal antibody designated 9812, which is specific for SM1 MHC, showed this isoform to be restricted to only presumptive slow muscle cells. From these studies and those reported on the changes in SM2 MHC, it is proposed that as is the case for the fast class, there also exists a slow class of myosin heavy chains composed of slow embryonic, SM1 and SM2 isoforms. The differentiation of a muscle cell involves transitions in a series of myosin isozymes in both presumptive fast and slow skeletal muscle cells.  相似文献   

19.
A cDNA expression strategy was used to localize amino acid sequences which were specific for fast, as opposed to slow, isoforms of the chicken skeletal muscle myosin heavy chain (MHC) and which were conserved in vertebrate evolution. Five monoclonal antibodies (mAbs), termed F18, F27, F30, F47, and F59, were prepared that reacted with all of the known chicken fast MHC isoforms but did not react with any of the known chicken slow nor with smooth muscle MHC isoforms. The epitopes recognized by mAbs F18, F30, F47, and F59 were on the globular head fragment of the MHC, whereas the epitope recognized by mAb F27 was on the helical tail or rod fragment. Reactivity of all five mAbs also was confined to fast MHCs in the rat, with the exception of mAb F59, which also reacted with the beta-cardiac MHC, the single slow MHC isoform common to both the rat heart and skeletal muscle. None of the five epitopes was expressed on amphioxus, nematode, or Dictyostelium MHC. The F27 and F59 epitopes were found on shark, electric ray, goldfish, newt, frog, turtle, chicken, quail, rabbit, and rat MHCs. The epitopes recognized by these mAbs were conserved, therefore, to varying degrees through vertebrate evolution and differed in sequence from homologous regions of a number of invertebrate MHCs and myosin-like proteins. The sequence of those epitopes on the head were mapped using a two-part cDNA expression strategy. First, Bal31 exonuclease digestion was used to rapidly generate fragments of a chicken embryonic fast MHC cDNA that were progressively deleted from the 3' end. These cDNA fragments were expressed as beta-galactosidase/MHC fusion proteins using the pUR290 vector; the fusion proteins were tested by immunoblotting for reactivity with the mAbs; and the approximate locations of the epitopes were determined from the sizes of the cDNA fragments that encoded a particular epitope. The epitopes were then precisely mapped by expression of overlapping cDNA fragments of known sequence that covered the approximate location of the epitopes. With this method, the epitope recognized by mAb F59 was mapped to amino acids 211-231 of the chicken embryonic fast MHC and the three distinct epitopes recognized by mAbs F18, F30, and F47 were mapped to amino acids approximately 65-92. Each of these epitope sequences is at or near the ATPase active site.  相似文献   

20.
Segregated assembly of muscle myosin expressed in nonmuscle cells.   总被引:6,自引:2,他引:4       下载免费PDF全文
Skeletal muscle myosin cDNAs were expressed in a simian kidney cell line (COS) and a mouse myogenic cell line to investigate the mechanisms controlling early stages of myosin filament assembly. An embryonic chicken muscle myosin heavy chain (MHC) cDNA was linked to constitutive promoters from adenovirus or SV40 and transiently expressed in COS cells. These cells accumulate hybrid myosin molecules composed of muscle MHCs and endogenous, nonmuscle, myosin light chains. The muscle myosin is found associated with a Triton insoluble fraction from extracts of the COS cells by immunoprecipitation and is detected in 2.4 +/- 0.8-micron-long filamentous structures distributed throughout the cytoplasm by immunofluorescence microscopy. These structures are shown by immunoelectron microscopy to correspond to loosely organized bundles of 12-16-nm-diameter myosin filaments. The muscle and nonmuscle MHCs are segregated in the transfected cells; the endogenous nonmuscle myosin displays a normal distribution pattern along stress fibers and does not colocalize with the muscle myosin filament bundles. A similar assembly pattern and distribution are observed for expression of the muscle MHC in a myogenic cell line. The myosin assembles into filament bundles, 1.5 +/- 0.6 micron in length, that are distributed throughout the cytoplasm of the undifferentiated myoblasts and segregated from the endogenous nonmuscle myosin. In both cell lines, formation of the myosin filament bundles is dependent on the accumulation of the protein. In contrast to these results, the expression of a truncated MHC that lacks much of the rod domain produces an assembly deficient molecule. The truncated MHC is diffusely distributed throughout the cytoplasm and not associated with cellular stress fibers. These results establish that the information necessary for the segregation of myosin isotypes into distinct cellular structures is contained within the primary structure of the MHC and that other factors are not required to establish this distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号