首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Intercrosses between inbred lines provide a traditional approach to analysis of polygenic inheritance in model organisms. Chromosome substitution strains (CSSs) have been developed as an alternative to accelerate the pace of gene identification in quantitative trait mapping. We compared a classical intercross and three CSS intercrosses to examine the genetic architecture underlying plasma high-density lipoprotein cholesterol (HDL) levels in the C57BL/6J (B) and A/J (A) mouse strains. The B x A intercross revealed significant quantitative trait loci (QTL) for HDL on chromosomes 1, 4, 8, 15, 17, 18, and 19. A CSS survey revealed that many have significantly different HDL levels compared to the background strain B, including chromosomes with no significant QTL in the intercross and, in some cases (CSS-1, CSS-17), effects that are opposite to those observed in the B x A intercross population. Intercrosses between B and three CSSs (CSS-3, CSS-11, and CSS-8) revealed significant QTL but with some unexpected differences from the B x A intercross. Our inability to predict the results of CSS intercrosses suggests that additional complexity will be revealed by further crosses and that the CSS mapping strategy should be viewed as a complement to, rather than a replacement for, classical intercross mapping.  相似文献   

2.
Fear extinction is impaired in psychiatric disorders such as post-traumatic stress disorder and schizophrenia, which have a major genetic component. However, the genetic factors underlying individual variability in fear extinction remain to be determined. By comparing a panel of inbred mouse strains, we recently identified a strain, 129S1/SvImJ (129S1), that exhibits a profound and selective deficit in Pavlovian fear extinction, and associated abnormalities in functional activation of a key prefrontal-amygdala circuit, as compared with C57BL/6J. The first aim of the present study was to assess fear extinction across multiple 129 substrains representing the strain's four different genetic lineages (parental, steel, teratoma and contaminated). Results showed that 129P1/ReJ, 129P3/J, 129T2/SvEmsJ and 129X1/SvJ exhibited poor fear extinction, relative to C57BL/6J, while 129S1 showed evidence of fear incubation. On the basis of these results, the second aim was to further characterize the nature and specificity of the extinction phenotype in 129S1, as an exemplar of the 129 substrains. Results showed that the extinction deficit in 129S1 was neither the result of a failure to habituate to a sensitized fear response nor an artifact of a fear response to (unconditioned) tone per se . A stronger conditioning protocol (i.e. five × higher intensity shocks) produced an increase in fear expression in 129S1, relative to C57BL/6J, due to rapid rise in freezing during tone presentation. Taken together, these data show that impaired fear extinction is a phenotypic feature common across 129 substrains, and provide preliminary evidence that impaired fear extinction in 129S1 may reflect a pro-fear incubation-like process.  相似文献   

3.
Febrile seizures (FS) are the most common seizure type in children and recurrent FS are a risk factor for developing temporal lobe epilepsy. Although the mechanisms underlying FS are largely unknown, recent family, twin and animal studies indicate that genetics are important in FS susceptibility. Here, a forward genetic strategy was used employing mouse chromosome substitution strains (CSS) to identify novel FS susceptibility quantitative trait loci (QTLs). FS were induced by exposure to warm air at postnatal day 14. Video electroencephalogram monitoring identified tonic–clonic convulsion onset, defined as febrile seizure latency (FSL), as a reliable phenotypic parameter to determine FS susceptibility. FSL was determined in both sexes of the host strain (C57BL/6J), the donor strain (A/J) and CSS. C57BL/6J mice were more susceptible to FS than A/J mice. Phenotypic screening of the CSS panel identified six strains (CSS1, -2, -6 -10, -13 and -X) carrying QTLs for FS susceptibility. CSS1, -10 and -13 were less susceptible (protective QTLs), whereas CSS2, -6 and -X were more susceptible (susceptibility QTLs) to FS than the C57BL/6J strain. Our data show that mouse FS susceptibility is determined by complex genetics, which is distinct from that for chemically induced seizures. This is the first data set using CSS to screen for a seizure trait in mouse pups. It provides evidence for common FS susceptibility QTLs that serve as starting points to fine map FS susceptibility QTLs and to identify FS susceptibility genes. This will increase our understanding of human FS, working toward the identification of new therapeutic targets.  相似文献   

4.
The identification of genes influencing sensitivity to stimulants and opioids is important for determining their mechanism of action and may provide fundamental insights into the genetics of drug abuse. We used a panel of C57BL/6J (B6; recipient)× A/J (donor) chromosome substitution strains (CSSs) to identify quantitative trait loci (QTL) for both open field activity and sensitivity to the locomotor stimulant response to methamphetamine (MA). Mice were injected with saline (days 1 and 2) and MA (day 3; 2 mg/kg i.p.). We analyzed the total distance traveled in the open field for 30 min following each injection. CSS-8, -11 and -16 showed reduced MA-induced locomotor activity relative to B6, whereas CSS-10 and -12 showed increased MA-induced locomotor activity. Further analysis focused on CSS-11 because it was robustly different from B6 following MA injection, but did not differ in activity following saline injection and because it also showed reduced locomotor activity in response to the mu-opioid receptor agonist fentanyl (0.2 mg/kg i.p.). Thus, CSS-11 captures QTLs for the response to both psychostimulants and opioids. Using a B6 × CSS-11 F2 intercross, we identified a dominant QTL for the MA response on chromosome 11. We used haplotype association mapping of cis expression QTLs and bioinformatic resources to parse among genes within the 95% confidence interval of the chromosome 11 QTL. Identification of the genes underlying QTLs for response to psychostimulants and opioids may provide insights about genetic factors that modulate sensitivity to drugs of abuse.  相似文献   

5.
Using chromosome substitution strains (CSS), we previously identified a large quantitative trait locus (QTL) for conditioned fear (CF) on mouse chromosome 10. Here, we used an F2 cross between CSS‐10 and C57BL/6J (B6) to localize that QTL to distal chromosome 10. That QTL accounted for all the difference between CSS‐10 and B6. We then produced congenic strains to fine‐map that interval. We identified two congenic strains that captured some or all the QTL. The larger congenic strain (Line 1: 122.387121–129.068 Mb; build 37) appeared to account for all the difference between CSS‐10 and B6. The smaller congenic strain (Line 2: 127.277–129.068 Mb) was intermediate between CSS‐10 and B6. We used haplotype mapping followed by quantitative polymerase chain reaction to identify one gene that was differentially expressed in both lines relative to B6 (Rnf41) and one that was differentially expressed between only Line 1 and B6 (Shmt2). These cis‐eQTLs may cause the behavioral QTLs; however, further studies are required to validate these candidate genes. More generally, our observation that a large QTL mapped using CSS and F2 crosses can be dissected into multiple smaller QTLs shows a weaknesses of two‐stage approaches that seek to use coarse mapping to identify large regions followed by fine‐mapping. Indeed, additional dissection of these congenic strains might result in further subdivision of these QTL regions. Despite these limitations, we have successfully fine‐mapped two QTLs to small regions and identified putative candidate genes, showing that the congenic approach can be effective for fine‐mapping QTLs .  相似文献   

6.
Prepulse inhibition (PPI) is a measure of sensorimotor gating, a pre-attentional inhibitory brain mechanism that filters extraneous stimuli. Prepulse inhibition is correlated with measures of cognition and executive functioning, and is considered an endophenotype of schizophrenia and other psychiatric illnesses in which patients show PPI impairments. As a first step toward identifying genes that regulate PPI, we performed a quantitative trait locus (QTL) screen of PPI phenotypes in a panel of mouse chromosome substitution strains (CSSs). We identified five CSSs with altered PPI compared with the host C57BL/6J strain: CSS-4 exhibited decreased PPI, whereas CSS-10, -11, -16 and -Y exhibited higher PPI compared with C57BL/6J. These data indicate that A/J chromosomes 4, 10, 11, 16 and Y harbor at least one QTL region that modulates PPI in these CSSs. Quantitative trait loci for the acoustic startle response were identified on seven chromosomes. Like PPI, habituation of the startle response is also disrupted in schizophrenia, and in the present study CSS-7 and -8 exhibited deficits in startle habituation. Linkage analysis of an F2 intercross identified a highly significant QTL for PPI on chromosome 11 between positions 101.5 and 114.4 Mb (peak LOD = 4.54). Future studies will map the specific genes contributing to these QTLs using congenic strains and other genomic approaches. Identification of genes that modulate PPI will provide insight into the neural mechanisms underlying sensorimotor gating, as well as the psychopathology of disorders characterized by gating deficits.  相似文献   

7.
Empathy is an important emotional process that involves the ability to recognize and share emotions with others. We have previously developed an observational fear learning (OFL) behavioral assay to measure empathic fear in mice. In the OFL task, a mouse is conditioned for context‐dependent fear when it observes a conspecific demonstrator receiving aversive stimuli. In the present study, by comparing 11 different inbred mouse strains that are commonly used in the laboratory, we found that empathic fear response was highly variable between different strains. Five strains – C57BL/6J, C57BL/6NTac, 129S1/SvImJ, 129S4/SvJae and BTBR T+ Itpr3tf/J – showed observational fear (OF) responses, whereas AKR/J, BALB/cByJ, C3H/HeJ, DBA/2J, FVB/NJ and NOD/ShiLtJ mice exhibited low empathic fear response. Importantly, day 2 OF memory was significantly correlated with contextual memory in the classical fear conditioning among the 11 strains. Innate differences in anxiety, locomotor activity, sociability and preference for social novelty were not significantly correlated with OFL. Interestingly, early adolescent C57BL/6J mice exhibited an increase in acquisition of OF. The level of OFL in C57BL/6J strain was not affected by sex or strains of the demonstrator. Taken together, these data strongly suggest that there are naturally occurring OFL‐specific genetic variations modulating empathic fear behaviors in mice. The identification of causal genes may uncover novel genetic pathways and underlying neural mechanisms that modulate empathic fear and, ultimately, provide new targets for therapeutic intervention in human mental disorders associated with impaired empathy.  相似文献   

8.
In fear-conditioned Wistar rats freezing was induced by the delivery of a series of footshocks paired to tones (CS) in a specific conditioning chamber (context). CS and contextual fear were acquired in the same single conditioning session without preexposition to the conditioning chamber (day 1). Different groups of animals were conditioned employing three increasing US (footshock) intensities (0.25, 0.5, 0.75 mA). During the retention sessions context and CS conditioned freezing (fear response) were measured using a paradigm that fulfilled the following conditions: i) CS freezing retention was measured in a context different from the conditioning one; ii) CS and context freezing were measured at increased delays after the training session (days 3 and 4, 14 and 15, 28 and 29). The results show that there are significant differences between CS and context freezing retention, which are clearly related to delay after the initial session and to US intensity. In particular: 1) conditioned freezing to a discrete tone is better retained than conditioned freezing to context (irrespective of US intensity); 2) context freezing is directly related to US intensity much more than to tone freezing; 3) context freezing is easier to extinguish than tone freezing. The results are discussed in relation to previous ones and to their relevance to freezing genesis neural correlates.  相似文献   

9.
Seizure susceptibility varies among inbred mouse strains. Chromosome substitution strains (CSS), in which a single chromosome from one inbred strain (donor) has been transferred onto a second strain (host) by repeated backcrossing, may be used to identify quantitative trait loci (QTLs) that contribute to seizure susceptibility. QTLs for susceptibility to pilocarpine-induced seizures, a model of temporal lobe epilepsy, have not been reported, and CSS have not previously been used to localize seizure susceptibility genes. We report QTLs identified using a B6 (host) × A/J (donor) CSS panel to localize genes involved in susceptibility to pilocarpine-induced seizures. Three hundred fifty-five adult male CSS mice, 58 B6, and 39 A/J were tested for susceptibility to pilocarpine-induced seizures. Highest stage reached and latency to each stage were recorded for all mice. B6 mice were resistant to seizures and slower to reach stages compared to A/J mice. The CSS for Chromosomes 10 and 18 progressed to the most severe stages, diverging dramatically from the B6 phenotype. Latencies to stages were also significantly shorter for CSS10 and CSS18 mice. CSS mapping suggests seizure susceptibility loci on mouse Chromosomes 10 and 18. This approach provides a framework for identifying potentially novel homologous candidate genes for human temporal lobe epilepsy.  相似文献   

10.
11.
Studying the behavior of genetic background strains provides important information for the design and interpretation of cognitive phenotypes in mutant mice. Our experiments examined the performance of three commonly used strains (C57BL/6J, 129S6, DBA/2J) on three behavioral tests for learning and memory that measure very different forms of memory, and for which there is a lack of data on strain differences. In the social transmission of food preference test (STFP) all three strains demonstrated intact memory for an odor-cued food that had been sampled on the breath of a cagemate 24 hours previously. While C57BL/6J and 129S6 mice showed good trace fear conditioning, DBA/2J mice showed a profound deficit on trace fear conditioning. In the Barnes maze test for spatial memory, the 129S6 strain showed poor probe trial performance, relative to C57BL/6J mice. Comparison of strains for open field exploratory activity and anxiety-like behavior suggests that poor Barnes maze performance reflects low exploratory behavior, rather than a true spatial memory deficit, in 129S6 mice. This interpretation is supported by good Morris water maze performance in 129S6 mice. These data support the use of a C57BL/6J background for studying memory deficits in mutant mice using any of these tasks, and the use of a 129S6 background in all but the Barnes maze. A DBA/2J background may be particularly useful for investigating the genetic basis of emotional memory using fear conditioning.  相似文献   

12.
Fear conditioning is an associative learning process by which organisms learn to avoid environmental stimuli that are predictive of aversive outcomes. Fear extinction learning is a process by which avoidance of fear‐conditioned stimuli is attenuated when the environmental stimuli is no longer predictive of the aversive outcome. Aberrant fear conditioning and extinction learning are key elements in the development of several anxiety disorders. The 129S1 inbred strain of mice is used as an animal model for maladaptive fear learning because this strain has been shown to generalize fear to other nonaversive stimuli and is less capable of extinguishing fear responses relative to other mouse strains, such as the C57BL/6. Here we report new environmental manipulations that enhance fear and extinction learning, including the ability to discriminate between an aversively paired tone and a neutral tone, in both the 129S1 and C57BL/6 strains of mice. Specifically, we show that discontinuous (“pipped”) tone stimuli significantly enhance within‐session extinction learning and the discrimination between neutral and aversively paired stimuli in both strains. Furthermore, we find that extinction training in novel contexts significantly enhances the consolidation and recall of extinction learning for both strains. Cumulatively, these results underscore how environmental changes can be leveraged to ameliorate maladaptive learning in animal models and may advance cognitive and behavioral therapeutic strategies.  相似文献   

13.
We measured the combined area of posterior medial barrel subfield (PMBSF) and anterior lateral barrel subfield (ALBSF) areas in four common inbred strains (C3H/HeJ, A /J, C57BL /6J, DBA/2J), B6D2F1, and ten recombinant inbred (RI) strains generated from C57BL/6J and DBA/2J progenitors (BXD) as an initial attempt to examine the genetic influences underlying natural variation in barrel field size in adult mice. These two subfields are associated with the representation of the whisker pad and sinus hairs on the contralateral face. Using cytochrome oxidase labeling to visualize the barrel field, we measured the size of the combined subfields in each mouse strain. We also measured body weight and brain weight in each strain. We report that DBA/2J mice have a larger combined PMBSF/ALBSF area (6.15 +/- 0.10 mm(2), n = 7) than C57BL /6J (5.48 +/- 0.13 mm(2), n = 10), C3H/HeJ (5.37 +/- 0.16 mm(2), n = 10), and A/J mice (5.04 +/- 0.09 mm(2), n = 15), despite the fact that DBA/2J mice have smaller average brain and body sizes. This finding may reflect dissociation between systems that control brain size with those that regulate barrel field area. In addition, BXD strains (average n = 4) and parental strains showed considerable and continuous variation in PMBSF/ALBSF area, suggesting that this trait is polygenic. Furthermore, brain, body, and cortex weights have heritable differences between inbred strains and among BXD strains. PMBSF/ALBSF pattern appears similar among inbred and BXD strains, suggesting that somatosensory patterning reflects a common plan of organization. This data is an important first step in the quantitative genetic analysis of the parcellation of neocortex into diverse cytoarchitectonic zones that vary widely within and between species, and in identifying the genetic factors underlying barrel field size using quantitative trait locus (QTL) analyses.  相似文献   

14.
Zhou M  Kindt M  Joëls M  Krugers HJ 《PloS one》2011,6(10):e26220

Background

Corticosteroid hormones regulate appraisal and consolidation of information via mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respectively. How activation of these receptors modulates retrieval of fearful information and the subsequent expression of fear is largely unknown. We tested here whether blockade of MRs or GRs during retrieval also affects subsequent expression of fear memory.

Methodology/Principal Findings

Mice were trained in contextual or tone cue fear conditioning paradigms, by pairing mild foot shocks with a particular context or tone respectively. Twenty-four hours after training, context-conditioned animals were re-exposed to the context for 3 or 30 minutes (day 2); tone-conditioned animals were placed in a different context and re-exposed to one or six tones. Twenty-four hours (day 3) and one month later, freezing behavior to the aversive context/tone was scored again. MR or GR blockade was achieved by giving spironolactone or RU486 subcutaneously one hour before retrieval on day 2. Spironolactone administered prior to brief context re-exposure reduced freezing behavior during retrieval and 24 hours later, but not one month later. Administration of spironolactone without retrieval of the context or immediately after retrieval on day 2 did not reduce freezing on day 3. Re-exposure to the context for 30 minutes on day 2 significantly reduced freezing on day 3 and one month later, but freezing was not further reduced by spironolactone. Administration of spironolactone prior to tone-cue re-exposure on day 2 did not affect freezing behavior. Treatment with RU486 prior to re-exposure did not affect context or tone-cue fear memories at any time point.

Conclusions/Significance

We conclude that MR blockade prior to retrieval strongly reduces the expression of contextual fear, implying that MRs, rather than GRs, play an important role in retrieval of emotional information and subsequent fear expression.  相似文献   

15.
Halophilic archaeon A J6 was isolated and purified from the Altun Mountain National Nature Reserve of the Xinjiang Uygur Autonomous Region.Strain AJ6 is a Gram-negative rod whose size is 0.2-0.6 by 1.6-4.2 μm,wherein a few cells are globular.The optimum salt concentration for its growth is 20% NaC1 and 0.6% Mg2+,and the optimum pH is 6.0-7.0.Morphological,physiological,and biochemical characteristics of strain AJ6 were observed.The 16S rRNA encoding gene (16S rDNA)sequence of strain A J6 was amplified by PCR,and its nucteotide sequence was determined subsequently."Clustalw"and"PHYLIP"software bags were used to analyze the 16S rDNA sequence;the homology was compared,and then the phylogenetic tree was established.The results indicate that strain AJ6 is a novel species of the genus Natrinema.The GenBank accession number of the 16S rDNA sequences of strain AJ6 is AY277584.  相似文献   

16.
Prepulse inhibition (PPI) of acoustic startle is a genetically complex quantitative phenotype of considerable medical interest due to its impairment in psychiatric disorders such as schizophrenia. To identify quantitative trait loci (QTL) involved in mouse PPI, we studied mouse chromosome substitution strains (CSS) that each carry a homologous chromosome pair from the A/J inbred strain on a host C57BL/6J inbred strain background. We determined that the chromosome 16 substitution strain has elevated PPI compared to C57BL/6J (P = 1.6 x 10(-11)), indicating that chromosome 16 carries one or more PPI genes. QTL mapping using 87 F(2) intercross progeny identified two significant chromosome 16 loci with LODs of 3.9 and 4.7 (significance threshold LOD is 2.3). The QTL were each highly significant independently and do not appear to interact. Sequence variation between B6 and A/J was used to identify strong candidate genes in the QTL regions, some of which have known neuronal functions. In conclusion, we used mouse CSS to rapidly and efficiently identify two significant QTL for PPI on mouse chromosome 16. The regions contain a limited number of strong biological candidate genes that are potential risk genes for psychiatric disorders in which patients have PPI impairments.  相似文献   

17.
Five strains of mice commonly used in transgenic and knockout production were compared with regard to genetic background and behavior. These strains were: C57BL/6J, C57BL/6NTac, 129P3/J (formerly 129/J), 129S6/SvEvTac (formerly 129/SvEvTac) and FVB/NTac. Genotypes for 342 microsatellite markers and performance in three behavioral tests (rotorod, open field activity and habituation, and contextual and cued fear conditioning) were determined. C57BL/6J and C57BL/6NTac were found to be true substrains; there were only 12 microsatellite differences between them. Given the data on the genetic background, one might predict that the two C57BL/6 substrains should be very similar behaviorally. Indeed, there were no significant behavioral differences between C57BL/6J and C57BL/6NTac. Contrary to literature reports on other 129 strains, 129S6/SvEvTac often performed similarly to C57BL/6 strains, except that it was less active. FVB/NTac showed impaired rotorod learning and cued fear conditioning. Therefore, both 129S6/SvEvTac and C57BL/6 are recommended as background strains for targeted mutations when researchers want to evaluate their mice in any of these three behavior tests. However, any transgene on the FVB/NTac background should be transferred to B6. Habituation to the open field was analyzed using the parameters: total distance, center distance, velocity and vertical activity. Contrary to earlier studies, we found that all strains habituated to the open field in at least two of these parameters (center distance and velocity).  相似文献   

18.
Susceptibility to thrombosis varies in human populations as well as many inbred mouse strains. Only a small portion of this variation has been identified, suggesting that there are unknown modifier genes. The objective of this study was to narrow the quantitative trait locus (QTL) intervals previously identified for hemostasis and thrombosis on mouse distal chromosome 11 (Hmtb6) and on chromosome 5 (Hmtb4 and Hmtb5). In a tail bleeding/rebleeding assay, a reporter assay for hemostasis and thrombosis, subcongenic strain (6A-2) had longer clot stability time than did C57BL/6J (B6) mice but a similar time to the B6-Chr11A/J consomic mice, confirming the Hmtb6 phenotype. Six congenic and subcongenic strains were constructed for chromosome 5, and the congenic strain, 2A-1, containing the shortest A/J interval (16.6 cM, 26.6 Mbp) in the Hmtb4 region, had prolonged clot stability time compared to B6 mice. In the 3A-2 and CSS-5 mice bleeding time was shorter than for B6, mice confirming the Hmtb5 QTL. An increase in bleeding time was identified in another congenic strain (3A-1) with A/J interval (24.8 cM, 32.9 Mbp) in the proximal region of chromosome 5, confirming a QTL for bleeding previously mapped to that region and designated as Hmtb10. The subcongenic strain 4A-2 with the A/J fragment in the proximal region had a long occlusion time of the carotid artery after ferric chloride injury and reduced dilation after injury to the abdominal aorta compared to B6 mice, suggesting an additional locus in the proximal region, which was designated Hmtb11 (5 cM, 21.4 Mbp). CSS-17 mice crossed with congenic strains, 3A-1 and 3A-2, modified tail bleeding. Using congenic and subcongenic analysis, candidate genes previously identified and novel genes were identified as modifiers of hemostasis and thrombosis in each of the loci Hmtb6, Hmtb4, Hmtb10, and Hmtb11.  相似文献   

19.
Chromosome substitution strains (CSS or consomic strains) are useful for mapping phenotypes to chromosomes. However, huge efforts are needed to identify the gene(s) responsible for the phenotype in the complex context of the chromosome. Here we report the identification of candidate disease genes from a CSS by using a combination of genetic and genomic approaches and by using knowledge about the germ cell tumor disease etiology. We used the CSS 129.MOLF-Chr19 chromosome substitution strain, in which males develop germ cell tumors of the testes at an extremely high rate. We were able to identify three protein-coding genes and one microRNA on chromosome 19 that have previously not been implicated to be testicular tumor susceptibility genes. Our findings suggest that changes in gene expression levels in the gonadal tissues of multiple genes from Chr 19 likely contribute to the high testicular germ cell tumor (TGCT) incidence of the 129.MOLF-Chr19 strain. Our data advance the use of CSS to identify disease susceptibility genes and demonstrate that the 129.MOLF-Chr19 strain serves as a useful model to elucidate the genetics and biology of germ cell transformation and tumor development. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

20.
Women are thought to form fear memory more robust than men do and testosterone is suspected to play a role in determining such a sex difference. Mouse cued fear freezing was used to study the sex-related susceptibility and the role of testosterone in fear memory in humans. A 75-dB tone was found to provoke weak freezing, while 0.15-mA and 0.20-mA footshock caused strong freezing responses. No sex differences were noticed in the tone- or footshock-induced (naïve fear) freezing. Following the conditionings, female mice exhibited greater tone (cued fear)-induced freezing than did male mice. Nonetheless, female mice demonstrated indistinctive cued fear freezing across the estrous phases and ovariectomy did not affect such freezing in female mice. Orchidectomy enhanced the cued fear freezing in male mice. Systemic testosterone administrations and an intra-lateral nucleus of amygdala (LA) testosterone infusion diminished the cued fear freezing in orchidectomized male mice, while pretreatment with flutamide (Flu) eradicated these effects. Long-term potentiation (LTP) magnitude in LA has been known to correlate with the strength of the cued fear conditioning. We found that LA LTP magnitude was indeed greater in female than male mice. Orchidectomy enhanced LTP magnitude in males' LA, while ovariectomy decreased LTP magnitude in females' LA. Testosterone decreased LTP magnitude in orchidectomized males' LA and estradiol enhanced LTP magnitude in ovariectomized females' LA. Finally, male mice had lower LA GluR1 expression than female mice and orchidectomy enhanced the GluR1 expression in male mice. These findings, taken together, suggest that testosterone plays a critical role in rendering the sex differences in the cued fear freezing and LA LTP. Testosterone is negatively associated with LA LTP and the cued fear memory in male mice. However, ovarian hormones and LA LTP are loosely associated with the cued fear memory in female mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号