共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The human dynactin 1 gene (DCTN1) is positioned on chromosome 2p13, the candidate region for various diseases including Alström syndrome, limb-girdle muscle dystrophy, and Miyoshi myopathy. Here, we report the exon–intron structure ofDCTN1along with characterization of the 5′ upstream sequence and alternative splice variants previously identified by Tokitoet al.(1996),Mol. Biol. Cell7: 1167–1180). Knowledge of the genomic structure ofDCTN1allowed us to design intronic primers necessary for analyzing mutations in families segregating for diseases linked to this gene. These primers were tested on a French Acadian kindred segregating for Alström syndrome. No mutations were observed within the coding region ofDCTN1in this family. However, the intronic primers should allow for the rapid amplification of the coding region for mutational analysis of additional Alström families and other diseases tightly linked to theDCTN1locus on chromosome 2p13. 相似文献
3.
The peroxisome biogenesis disorders (PBDs) are a set of lethal genetic diseases characterized by peroxisomal metabolic deficiencies, multisystem abnormalities, mental retardation, and premature death. These disorders are genetically heterogeneous and are caused by mutations in genes, termedPEXgenes, required for import of proteins into the peroxisomal matrix. We have previously reported the identification of humanPEX13,the gene encoding the docking factor for the PTS1 receptor, or PEX5 protein. As such, mutations inPEX13would be expected to abrogate peroxisomal protein import and result in PBD phenotypes. We report here the structure of the humanPEX13gene.PEX13spans approximately 11 kb on chromosome 2 and contains four exons, one more than previously thought. The corrected PEX13 cDNA is predicted to encode a protein product with a molecular mass of 44,312 Da. We examined the ability ofPEX13expression to rescue the peroxisomal protein import defects of fibroblast cells representing all known PBD complementation groups. No complementation was observed, suggesting that this gene is not mutated in any set of existing patients. However, given that complementation group assignments have been determined for only a subset of PBD patients, it is possible thatPEX13-deficient patients may exist at a low frequency within our existing PBD patient population or within ethnic groups underrepresented in our patient pool. 相似文献
4.
5.
Jolanta Kwiatkowska Richard Slomski Sergiusz Jozwiak M.Priscilla Short David J. Kwiatkowski 《Genomics》1997,44(3):350
XPMC2 is a Xenopus gene identified on the basis of its ability to correct a mitotic defect in fission yeast. Here we report the identification of cDNA clones for human XPMC2H, its mapping to the tuberous sclerosis gene TSC1 region on 9q34, determination of genomic structure, and identification of several coding region polymorphisms. The predicted protein has strong sequence similarity to the Xenopus gene. Through SSCP and heteroduplex analysis of genomic DNA, we found two intragenic polymorphisms but no evidence for significant mutations in patients with tuberous sclerosis in this gene. 相似文献
6.
7.
8.
Mutations in the X-linked gene FMR1 cause fragile X syndrome, the leading cause of inherited mental retardation. Two autosomal paralogs of FMR1 have been identified, and are known as FXR1 and FXR2. Here we describe and compare the genomic structures of the mouse and human genes FMR1, FXR1, and FXR2. All three genes are very well conserved from mouse to human, with identical exon sizes for all but two FXR2 exons. In addition, the three genes share a conserved gene structure, suggesting they are derived from a common ancestral gene. As a first step towards exploring this hypothesis, we reexamined the Drosophila melanogaster gene Fmr1, and found it to have several of the same intron/exon junctions as the mammalian FXRs. Finally, we noted several regions of mouse/human homology in the noncoding portions of FMR1 and FXR1. Knowledge of the genomic structure and sequence of the FXR family of genes will facilitate further studies into the function of these proteins. 相似文献
9.
10.
11.
ZNF179,a RING finger protein encoding gene, has been mapped within the critical deletion region for Smith–Magenis syndrome (SMS), a disorder characterized by mental retardation and multiple congenital anomalies associated with del(17)(p11.2). Here we report the cloning ofZnf179,the mouse homologue ofZNF179,and characterization of its gene structure. The 3028-bp cDNA has a 1.9-kb open reading frame that contains a RING finger domain at its N-terminus and an alanine-rich and glycine-rich domain at its C-terminus.Znf179genomic sequence includes 15 introns and spans about 10 kb on mouse chromosome 11, which maintains conserved synteny with human 17p. Northern analysis indicates thatZnf179is predominantly expressed in brain and testis. Although contained within the SMS common deletion interval, FISH experiments show thatZNF179is not deleted in two SMS patients with smaller deletions. 相似文献
12.
在用suc2信号肽捕获系统对小鼠胚胎cDNA文库筛选的过程中,反复获得一个相同的强阳性克隆,命名为spt1。对该克隆的序列分析表明:插入序列由697bp组成,6个开放阅读框中共有37个启始密码子(ATG)和80个终止密码子(TGA、TAG、TAA);没有较大的有意义开放读框存在。经BLAST分析,结果显示该序列定位于小鼠第17号染色体长臂,没有发现同源基因。NortherTl blot和RT-PCR分析表明,该序列仅表达于小鼠卵巢组织,全长约4.5~5.0kb。酵母转化和序列截短实验提示,该序列能够介导蔗糖转换酶向细胞外的分泌。因此,推测spt1很有可能是一个新的非编码RNA的一部分,参与蛋白质的分泌过程。 相似文献
13.
Dawn L. DeMeo Thomas Mariani Sorachai Srisuma Augusto Litonjua Raphael Bueno Sreekumar G. Pillai David Sparrow Gerard J. Criner Zhihua Chen Augustine M.K. Choi John Reilly 《American journal of human genetics》2009,85(4):493-502
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide and is influenced by both genetic determinants and smoking. We identified genomic regions from 56 lung-tissue gene-expression microarrays and used them to select 889 SNPs to be tested for association with COPD. We genotyped SNPs in 389 severe COPD cases from the National Emphysema Treatment Trial and 424 cigarette-smoking controls from the Normative Aging Study. A total of 71 autosomal SNPs demonstrated at least nominal significance with COPD susceptibility (p = 3.4 × 10−6 to 0.05). These 71 SNPs were evaluated in a family-based study of 127 probands with severe, early-onset COPD and 822 of their family members in the Boston Early-Onset COPD Study. We combined p values from the case-control and family-based analyses, setting p = 5.60 × 10−5 as a conservative threshold for significance. Three SNPs in the iron regulatory protein 2 (IREB2) gene met this stringent threshold for significance, and four other IREB2 SNPs demonstrated combined p < 0.02. We demonstrated replication of association for these seven IREB2 SNPs (all p values ≤ 0.02) in a family-based study of 3117 subjects from the International COPD Genetics Network; combined p values across all cohorts for the main phenotype of interest ranged from 1.6 × 10−7 to 6.4 × 10−4. IREB2 protein and mRNA were increased in lung-tissue samples from COPD subjects in comparison to controls. In summary, gene-expression and genetic-association results have implicated IREB2 as a COPD susceptibility gene. 相似文献
14.
15.
Mutations in DNA repair/cell cycle checkpoint genes can lead to the development of cancer. The cloning of human homologs of yeast DNA repair/cell cycle checkpoint genes should yield candidates for human tumor suppressor genes as well as identifying potential targets for cancer therapy. TheSchizosaccharomyces pombegenesrad17, rad1,andhus1have been identified as playing roles in DNA repair and cell cycle checkpoint control pathways. We have cloned the cDNA for the human homolog ofS. pombe rad17,RAD17, which localizes to chromosomal location 5q13 by fluorescencein situhybridization and radiation hybrid mapping; the cDNA for the human homolog ofS. pombe rad1,RAD1, which maps to 5p14–p13.2; and the cDNA for the human homolog ofS. pombe hus1,HUS1, which maps to 7p13–p12. The human gene loci have previously been identified as regions containing tumor suppressor genes. In addition, we report the cloning of the cDNAs for genes related toS. pombe rad17, rad9, rad1,andhus1from mouse,Caenorhabditis elegans,andDrosophila melanogaster.These includeRad17andRad9fromD. melanogaster,hpr-17 and hpr-1 fromC. elegans,and RAD1 and HUS1 from mouse. The identification of homologs of theS. pomberad checkpoint genes from mammals, arthropods, and nematodes indicates that this cell cycle checkpoint pathway is conserved throughout eukaryotes. 相似文献
16.
Lijun Feng Brian W. Rigatti Edward K. Novak Michael B. Gorin Richard T. Swank 《Genomics》2000,69(3):370
The mouse hypopigmentation mutant pearl is an established model for Hermansky–Pudlak syndrome (HPS), a genetically heterogenous disease with misregulation of the biogenesis/function of melanosomes, lysosomes, and platelet dense granules. The pearl (Ap3b1) gene encodes the β3A subunit of the AP-3 adaptor complex, which regulates vesicular trafficking. The genomic structure of the normal Ap3b1 gene includes 25 introns and a putative promoter sequence. The original pearl (pe) mutation, which has an unusually high reversion rate on certain strain backgrounds, has been postulated to be caused by insertion of a transposable element. Indeed, the mutation contains a 215-bp partial mouse transposon at the junction point of a large tandem genomic duplication of 6 exons and associated introns. At the cDNA level, three pearl mutations (pearl, pearl-8J, and pearl-9J) are caused by deletions or duplications of a complete exon(s). 相似文献
17.
为了解BRI1基因在巨桉中的功能,采用PCR技术克隆了EgrBRI1基因,分析了EgrBRI1的生物信息学和亚细胞定位,并对EgrBRI1基因响应激素和胁迫的差异表达进行了分析。结果表明,EgrBRI1基因全长3 893 bp,编码1 197个氨基酸。EgrBRI1蛋白稳定,空间结构复杂,存在3个motifs,主要定位于细胞膜。茉莉酸甲酯和油菜素内酯(BR)处理后,EgrBRI1基因在叶片中的表达上升,而水杨酸处理则没有明显的变化。盐胁迫和冷胁迫下,EgrBRI1基因表达表现为先下降后上升的趋势。因此,EgrBRI1基因能快速对外施激素做出响应,并在巨桉抗逆方面发挥重要作用,这可能是通过对BR信号的响应来实现的。 相似文献
18.
Anna Hellquist Marco Zucchelli Cecilia M. Lindgren Ulpu Saarialho-Kere Tiina M. J?rvinen Sari Koskenmies Heikki Julkunen P?ivi Onkamo Tiina Skoog Jaana Panelius Anne R?is?nen-Sokolowski Taina Hasan Elisabeth Widen Iva Gunnarson Elisabet Svenungsson Leonid Padyukov Ghazaleh Assadi Linda Berglind Ville-Veikko M?kel? Katja Kivinen Andrew Wong Deborah S. Cunningham Graham Timothy J. Vyse Mauro D'Amato Juha Kere 《PloS one》2009,4(12)
Background
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with multiple susceptibility genes. We have previously reported suggestive linkage to the chromosomal region 14q21-q23 in Finnish SLE families.Principal Findings
Genetic fine mapping of this region in the same family material, together with a large collection of parent affected trios from UK and two independent case-control cohorts from Finland and Sweden, indicated that a novel uncharacterized gene, MAMDC1 (MAM domain containing glycosylphosphatidylinositol anchor 2, also known as MDGA2, MIM 611128), represents a putative susceptibility gene for SLE. In a combined analysis of the whole dataset, significant evidence of association was detected for the MAMDC1 intronic single nucleotide polymorphisms (SNP) rs961616 (P –value = 0.001, Odds Ratio (OR) = 1.292, 95% CI 1.103–1.513) and rs2297926 (P –value = 0.003, OR = 1.349, 95% CI 1.109–1.640). By Northern blot, real-time PCR (qRT-PCR) and immunohistochemical (IHC) analyses, we show that MAMDC1 is expressed in several tissues and cell types, and that the corresponding mRNA is up-regulated by the pro-inflammatory cytokines tumour necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) in THP-1 monocytes. Based on its homology to known proteins with similar structure, MAMDC1 appears to be a novel member of the adhesion molecules of the immunoglobulin superfamily (IgCAM), which is involved in cell adhesion, migration, and recruitment to inflammatory sites. Remarkably, some IgCAMs have been shown to interact with ITGAM, the product of another SLE susceptibility gene recently discovered in two independent genome wide association (GWA) scans.Significance
Further studies focused on MAMDC1 and other molecules involved in these pathways might thus provide new insight into the pathogenesis of SLE. 相似文献19.
20.
G-box结合蛋白(GBF)是一类能够识别并结合G-box的转录因子,广泛参与植物基因响应外界刺激的表达调控。通过巨桉(Eucalyptus grandis)初生生长到次生生长的转录组测序筛选出差异表达基因EgrGBF1,为探讨其在桉树生长发育中的功能,从巨桉中克隆了该基因,并进行了结构和进化分析。结果表明,EgrGBF1编码区长度为984 bp,编码327个氨基酸, 存在2个转录本,分别命名为EgrGBF1α和EgrGBF1β。实时荧光定量PCR结果表明,EgrGBF1α和EgrGBF1β在不同组织中,不同激素、胁迫处理下的表达模式不同,EgrGBF1α主要在茎尖表达,沿节间向下表达量逐渐降低,而EgrGBF1β在韧皮部高表达,在节间的表达量无显著差异。在水杨酸和缺硼处理下,EgrGBF1α和EgrGBF1β的表达趋势相反。EgrGBF1α在缺磷处理168 h的表达量最高,而EgrGBF1β在处理6 h的表达量最高。因此,EgrGBF1在桉树生长发育以及响应胁迫中发挥着重要作用,且转录本EgrGBF1α和EgrGBF1β可能具有不同的功能。 相似文献