首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glial-cell-line-derived neurotrophic factor (GDNF) family receptors alpha (GFRalpha) are cell surface bound glycoproteins that mediate interactions of the GDNF ligand family with the RET receptor. These interactions are crucial to the development of the kidney and some peripheral nerve lineages. In humans, mutations of RET or RET ligands are associated with the congenital abnormality Hirschsprung disease (HSCR) in which nerves and ganglia of the hind gut are absent. As the GFRalpha family are required for normal activation of the RET receptor, they are also candidates for a role in HSCR. The GFRA2 gene, which is required for the development of the myenteric nerve plexus, is an excellent candidate gene for HSCR. In this study, we cloned the human GFRA2 locus, characterized the gene structure, and compared it with other GFRA family members. We further investigated the GFRA2 gene for mutations in a panel of HSCR patients. GFRA2 has nine coding exons that are similar in size and organization to those of other GFRA family genes. We identified six sequence variants of GFRA2, four of which did not affect the amino acid sequence of the GFRalpha-2 protein. Two further changes that resulted in amino acid substitutions were found in exon 9 and were predicted to lie in the amino acid sequence encoding the glycosylphosphatidylinositol-linkage signal of GFRalpha-2. There was no difference in frequency of any of the sequence variants between control and HSCR populations. Our data indicate that members of the GFRA gene family are closely related in intron/exon structure and in sequence. We have not detected any correlation between sequence variants of GFRA2 and the HSCR phenotype.  相似文献   

2.
Signaling by the glial cell line-derived neurotrophic factor (GDNF)-RET receptor tyrosine kinase and SPRY1, a RET repressor, is essential for early urinary tract development. Individual or a combination of GDNF, RET and SPRY1 mutant alleles in mice cause renal malformations reminiscent of congenital anomalies of the kidney or urinary tract (CAKUT) in humans and distinct from renal agenesis phenotype in complete GDNF or RET-null mice. We sequenced GDNF, SPRY1 and RET in 122 unrelated living CAKUT patients to discover deleterious mutations that cause CAKUT. Novel or rare deleterious mutations in GDNF or RET were found in six unrelated patients. A family with duplicated collecting system had a novel mutation, RET-R831Q, which showed markedly decreased GDNF-dependent MAPK activity. Two patients with RET-G691S polymorphism harbored additional rare non-synonymous variants GDNF-R93W and RET-R982C. The patient with double RET-G691S/R982C genotype had multiple defects including renal dysplasia, megaureters and cryptorchidism. Presence of both mutations was necessary to affect RET activity. Targeted whole-exome and next-generation sequencing revealed a novel deleterious mutation G443D in GFRα1, the co-receptor for RET, in this patient. Pedigree analysis indicated that the GFRα1 mutation was inherited from the unaffected mother and the RET mutations from the unaffected father. Our studies indicate that 5?% of living CAKUT patients harbor deleterious rare variants or novel mutations in GDNF-GFRα1-RET pathway. We provide evidence for the coexistence of deleterious rare and common variants in genes in the same pathway as a cause of CAKUT and discovered novel phenotypes associated with the RET pathway.  相似文献   

3.
Signaling pathways that are activated upon interaction of glial cell-line derived neurotrophic factor (Gdnf), its coreceptor Gfra1, and receptor tyrosine kinase Ret are critical for kidney development and ureter maturation. Outside the kidney, this pathway is implicated in a number of congenital diseases including Hirschsprung disease (intestinal aganglionosis, HSCR) and hereditary cancer syndromes (MEN 2). Total lack of Gdnf, Gfra1 or Ret in mice results in perinatal lethality due to bilateral renal agenesis or aplasia. In humans, RET mutations have been identified in a spectrum of congenital malformations involving the RET axis including isolated HSCR, isolated congenital anomalies of kidney or urinary tract (CAKUT), or CAKUT and HSCR together. The molecular basis for these pleiotropic effects of RET has just begun to be unraveled. In an effort to delineate the pathogenetic mechanisms that underlie these congenital malformations, we and others have characterized Ret''s role in early kidney and urinary system development. Here we present a brief overview of the “many faces” of Ret dysfunction in kidney with particular emphasis on Ret''s signaling specificity and intergenic interactions that confer normal urinary system development.Key words: RET, GDNF, kidney, RTK, CAKUT, branching morphogenesis, ureter  相似文献   

4.
《Organogenesis》2013,9(4):177-190
Signaling pathways that are activated upon interaction of glial cell-line derived neurotrophic factor (Gdnf), its coreceptor Gfrα1, and receptor tyrosine kinase Ret are critical for kidney development and ureter maturation. Outside the kidney, this pathway is implicated in a number of congenital diseases including Hirschsprung disease (intestinal aganglionosis, HSCR) and hereditary cancer syndromes (MEN 2). Total lack of Gdnf, Gfrα1 or Ret in mice results in perinatal lethality due to bilateral renal agenesis or aplasia. In humans, RET mutations have been identified in a spectrum of congenital malformations involving the RET axis including isolated HSCR, isolated congenital anomalies of kidney or urinary tract (CAKUT), or CAKUT and HSCR together. The molecular basis for these pleiotropic effects of RET has just begun to be unraveled. In an effort to delineate the pathogenetic mechanisms that underlie these congenital malformations, we and others have characterized Ret’s role in early kidney and urinary system development. Here we present a brief overview of the “many faces” of Ret dysfunction in kidney with particular emphasis on Ret’s signaling specificity and intergenic interactions that confer normal urinary system development.  相似文献   

5.
Molecular analysis of congenital central hypoventilation syndrome   总被引:7,自引:0,他引:7  
Congenital central hypoventilation syndrome (CCHS or Ondines curse; OMIM 209880) is a disorder characterized by an idiopathic failure of the automatic control of breathing. CCHS is frequently complicated with neurocristopathies such as Hirschsprungs disease (HSCR). The genes involved in the RET-GDNF signaling and/or EDN3-EDNRB signaling pathways have been analyzed as candidates for CCHS; however, only a few patients have mutations of the RET, EDN3, and GDNF genes. Recently, mutations of the PHOX2B gene, especially polyalanine expansions, have been detected in two thirds of patients. We studied the RET, GDNF, GFRA1, PHOX2A, PHOX2B, HASH-1, EDN1, EDN3, EDNRB, and BDNF genes in seven patients with isolated CCHS and three patients with HSCR. We detected polyalanine expansions and a novel frameshift mutation of the PHOX2B gene in four patients and one patient, respectively. We also found several mutations of the RET, GFRA1, PHOX2A, and HASH-1 genes in patients with or without mutations of the PHOX2B gene. Our study confirmed the prominent role of mutations in the PHOX2B gene in the pathogenesis of CCHS. Mutations of the RET, GFRA1, PHOX2A, and HASH-1 genes may also be involved in the pathogenesis of CCHS. To make clear the pathogenesis of CCHS, the analysis of more cases and further candidates concerned with the development of the autonomic nervous system is required.  相似文献   

6.

Background

The enteric nervous system (ENS) is entirely derived from neural crest and its normal development is regulated by specific molecular pathways. Failure in complete ENS formation results in aganglionic gut conditions such as Hirschsprung''s disease (HSCR). Recently, PROKR1 expression has been demonstrated in mouse enteric neural crest derived cells and Prok-1 was shown to work coordinately with GDNF in the development of the ENS.

Principal Findings

In the present report, ENS progenitors were isolated and characterized from the ganglionic gut from children diagnosed with and without HSCR, and the expression of prokineticin receptors was examined. Immunocytochemical analysis of neurosphere-forming cells demonstrated that both PROKR1 and PROKR2 were present in human enteric neural crest cells. In addition, we also performed a mutational analysis of PROKR1, PROKR2, PROK1 and PROK2 genes in a cohort of HSCR patients, evaluating them for the first time as susceptibility genes for the disease. Several missense variants were detected, most of them affecting highly conserved amino acid residues of the protein and located in functional domains of both receptors, which suggests a possible deleterious effect in their biological function.

Conclusions

Our results suggest that not only PROKR1, but also PROKR2 might mediate a complementary signalling to the RET/GFRα1/GDNF pathway supporting proliferation/survival and differentiation of precursor cells during ENS development. These findings, together with the detection of sequence variants in PROKR1, PROK1 and PROKR2 genes associated to HSCR and, in some cases in combination with RET or GDNF mutations, provide the first evidence to consider them as susceptibility genes for HSCR.  相似文献   

7.
The RET (rearranged during transfection) proto-oncogene encodes a tyrosine kinase receptor involved in both multiple endocrine neoplasia type 2 (MEN 2), an inherited cancer syndrome, and Hirschsprung disease (HSCR), a developmental defect of enteric neurons. We report here that the expression of RET receptor induces apoptosis. This pro-apoptotic effect of RET is inhibited in the presence of its ligand glial cell line-derived neurotrophic factor (GDNF). Furthermore, we present evidence that RET induces apoptosis via its own cleavage by caspases, a phenomenon allowing the liberation/exposure of a pro-apoptotic domain of RET. In addition, we report that Hirschsprung-associated RET mutations impair GDNF control of RET pro-apoptotic activity. These results indicate that HSCR may result from apoptosis of RET-expressing enteric neuroblasts.  相似文献   

8.
The RET proto-oncogene encodes a tyrosine kinase receptor expressed in neuroectoderm-derived cells. Mutations in specific regions of the gene are responsible for the tumor syndromes multiple endocrine neoplasia types 2A and 2B (MEN 2A and 2B), while mutations along the entire gene are involved in a developmental disorder of the gastrointestinal tract, Hirschsprung’s disease (HSCR disease). Two mutants in the extracellular domain of RET, one associated with HSCR disease and one carrying a flag epitope, were analyzed to investigate the impact of the mutations on RET function. Both mutants were impeded in their maturation, resulting in the lack of the 170-kDa mature form and the accumulation of the 150-kDa immature form in the endoplasmic reticulum. Although not exposed on the cell surface, the 150-kDa species formed dimers and aggregates; this was more pronounced in a double mutant bearing a MEN 2A mutation. Tyrosine phosphorylation and the transactivation potential were drastically reduced in single and double mutants. Finally, in cotransfection experiments both mutants exerted a dominant negative effect over protoRET and RET2A through the formation of a heteromeric complex that prevents their maturation and function. These results suggest that HSCR mutations in the extracellular region cause RET loss of function through a dominant negative mechanism.  相似文献   

9.
Glial cell line-derived neurotrophic factor (GDNF) family ligands signal through receptor complex consisting of a glycosylphosphatidylinositol-linked GDNF family receptor (GFR) alpha subunit and the transmembrane receptor tyrosine kinase RET. The inherited cancer syndrome multiple endocrine neoplasia type 2 (MEN2), associated with different mutations in RET, is characterized by medullary thyroid carcinoma. GDNF signals via GFRalpha1, neurturin via GFRalpha2, artemin via GFRalpha3, whereas the mammalian GFRalpha receptor for persephin (PSPN) is unknown. Here we characterize the human GFRalpha4 as the ligand-binding subunit required together with RET for PSPN signaling. Human and mouse GFRalpha4 lack the first Cys-rich domain characteristic of other GFRalpha receptors. Unlabeled PSPN displaces (125)I-PSPN from GFRA4-transfected cells, which express endogenous Ret. PSPN can be specifically cross-linked to mammalian GFRalpha4 and Ret, and is able to promote autophosphorylation of Ret in GFRA4-transfected cells. PSPN, but not other GDNF family ligands, promotes the survival of cultured sympathetic neurons microinjected with GFRA4. We identified different splice forms of human GFRA4 mRNA encoding for two glycosylphosphatidylinositol-linked and one putative soluble isoform that were predominantly expressed in the thyroid gland. Overlapping expression of RET and GFRA4 but not other GFRA mRNAs in normal and malignant thyroid medullary cells suggests that GFRalpha4 may restrict the MEN2 syndrome to these cells.  相似文献   

10.
In animal models, kidney formation is known to be controlled by the proteins RET, GDNF, and GFRA1; however, no human studies to date have shown an association between abnormal kidney development and mutation of these genes. We hypothesized that stillborn fetuses with congenital renal agenesis or severe dysplasia would possess mutations in RET, GDNF, or GFRA1. We assayed for mutations in these genes in 33 stillborn fetuses that had bilateral or unilateral renal agenesis (29 subjects) or severe congenital renal dysplasia (4 subjects). Mutations in RET were found in 7 of 19 fetuses with bilateral renal agenesis (37%) and 2 of 10 fetuses (20%) with unilateral agenesis. In two fetuses, there were two different RET mutations found, and a total of ten different sequence variations were identified. We also investigated whether these mutations affected RET activation; in each case, RET phosphorylation was either absent or constitutively activated. A GNDF mutation was identified in only one fetus with unilateral agenesis; this subject also had two RET mutations. No GFRA1 mutations were seen in any fetuses. These data suggest that in humans, mutations in RET and GDNF may contribute significantly to abnormal kidney development.  相似文献   

11.
Recent progress in chemotherapy has significantly increased its efficacy, yet the development of chemoresistance remains a major drawback. In this study, we show that GFRA1/GFRα1 (GDNF family receptor α 1), contributes to cisplatin-induced chemoresistance by regulating autophagy in osteosarcoma. We demonstrate that cisplatin treatment induced GFRA1 expression in human osteosarcoma cells. Induction of GFRA1 expression reduced cisplatin-induced apoptotic cell death and it significantly increased osteosarcoma cell survival via autophagy. GFRA1 regulates AMPK-dependent autophagy by promoting SRC phosphorylation independent of proto-oncogene RET kinase. Cisplatin-resistant osteosarcoma cells showed NFKB1/NFκB-mediated GFRA1 expression. GFRA1 expression promoted tumor formation and growth in mouse xenograft models and inhibition of autophagy in a GFRA1-expressing xenograft mouse model during cisplatin treatment effectively reduced tumor growth and increased survival. In cisplatin-treated patients, treatment period and metastatic status were associated with GFRA1-mediated autophagy. These findings suggest that GFRA1-mediated autophagy is a promising novel target for overcoming cisplatin resistance in osteosarcoma.  相似文献   

12.
Hirschsprung disease (HSCR, aganglionic megacolon) is a complex genetic disorder of the enteric nervous system (ENS) characterized by the absence of enteric neurons along a variable length of the intestine. While rare variants (RVs) in the coding sequence (CDS) of several genes involved in ENS development lead to disease, the association of common variants (CVs) with HSCR has only been reported for RET (the major HSCR gene) and NRG1. Importantly, RVs in the CDS of these two genes are also associated with the disorder. To assess independent and joint effects between the different types of RET and NRG1 variants identified in HSCR patients, we used 254 Chinese sporadic HSCR patients and 143 ethnically matched controls for whom the RET and/or NRG1 variants genotypes (rare and common) were available. Four genetic risk factors were defined and interaction effects were modeled using conditional logistic regression analyses and pair-wise Kendall correlations. Our analysis revealed a joint effect of RET CVs with RET RVs, NRG1 CVs or NRG1 RVs. To assess whether the genetic interaction translated into functional interaction, mouse neural crest cells (NCCs; enteric neuron precursors) isolated from embryonic guts were treated with NRG1 (ErbB2 ligand) or/and GDNF (Ret ligand) and monitored during the subsequent neural differentiation process. Nrg1 inhibited the Gdnf-induced neuronal differentiation and Gdnf negatively regulated Nrg1-signaling by down-regulating the expression of its receptor, ErbB2. This preliminary data suggest that the balance neurogenesis/gliogenesis is critical for ENS development.  相似文献   

13.
Hirschsprung's disease (HSCR) is a rare congenital disease caused by impaired proliferation and migration of neural crest cells. We investigated changes in expression of microRNAs (miRNAs) and the genes they regulate in tissues of patients with HSCR. Quantitative real‐time PCR and immunoblot analyses were used to measure levels of miRNA, mRNAs, and proteins in colon tissues from 69 patients with HSCR and 49 individuals without HSCR (controls). Direct interactions between miRNAs and specific mRNAs were indentified in vitro, while the function role of miR‐218‐1 was investigated by using miR‐218 transgenic mice. An increased level of miR‐218‐1 correlated with increased levels of SLIT2 and decreased levels of RET and PLAG1 mRNA and protein. The reductions in RET and PLAG1 by miR‐218‐1 reduced proliferation and migration of SH‐SY5Y cells. Overexpression of the secreted form of SLIT2 inhibited cell migration via binding to its receptor ROBO1. Bowel tissues from miR‐218‐1 transgenic mice had nerve fibre hyperplasia and reduced numbers of gangliocytes, compared with wild‐type mice. Altered miR‐218‐1 regulation of SLIT2, RET and PLAG1 might be involved in the pathogenesis of HSCR.  相似文献   

14.
15.
Medullary thyroid carcinoma (MTC) develops from hyperplasia of thyroid C cells and represents one of the major causes of thyroid cancer mortality. Mutations in the cysteine‐rich domain (CRD) of the RET gene are the most prevalent genetic cause of MTC. The current consensus holds that such cysteine mutations cause ligand‐independent dimerization and constitutive activation of RET. However, given the number of the CRD mutations left uncharacterized, our understanding of the pathogenetic mechanisms by which CRD mutations lead to MTC remains incomplete. We report here that RET(C618F), a mutation identified in MTC patients, displays moderately high basal activity and requires the ligand for its full activation. To assess the biological significance of RET(C618F) in organogenesis, we generated a knock‐in mouse line conditionally expressing RET(C618F) cDNA by the Ret promoter. The RET(C618F) allele can be made to be Ret‐null and express mCherry by Cre‐loxP recombination, which allows the assessment of the biological influence of RET(C618F) in vivo. Mice expressing RET(C618F) display mild C cell hyperplasia and increased numbers of enteric neurons, indicating that RET(C618F) confers gain‐of‐function phenotypes. This mouse line serves as a novel biological platform for investigating pathogenetic mechanisms involved in MTC and enteric hyperganglionosis.  相似文献   

16.
Hirschsprung disease and the multiple endocrine neoplasia type 2 syndromes are hereditary disorders related to the abnormal migration, proliferation or survival of neural crest cells and their derivatives. Hirschsprung disease is a frequent disorder of the enteric nervous system, resulting in intestinal obstruction. The multiple endocrine neoplasia type 2 syndromes predispose to cancers of neural crest derivatives. Both diseases are associated with heterozygous mutations in the RET proto-oncogene. RET encodes a transmembrane receptor tyrosine kinase expressed in neural crest lineages and whose ligand, glial-cell-line-derived neurotrophic factor, has been very recently identified. In vitro expression studies demonstrate that while Hirschsprung disease mutations result in loss of function of the mutant RET tyrosine kinase, multiple endocrine neoplasia type 2 mutations lead to its constitutive activation. Thus, the two ‘faces’ of RET, gain of function and loss of function, each lead to a different syndrome, respectively: multiple endocrine neoplasia type 2, a cancer syndrome, or Hirschsprung disease, a developmental defect.  相似文献   

17.
The GDNF family ligands (GFLs: GDNF, neurturin, persephin, and artemin) signal through RET and a gly-cosyl-phosphatidylinositol (GPI)-anchored coreceptor (GFRalpha1-alpha4) that binds ligand with high affinity and provides specificity. The importance of the GPI anchor is not fully understood; however, GPI-linked proteins cluster into lipid rafts, structures that may represent highly specialized signaling organelles. Here, we report that GPI-anchored GFRalpha1 recruits RET to lipid rafts after GDNF stimulation and results in RET/Src association. Disruption of RET localization using either transmembrane-anchored or soluble GFRalpha1 results in RET phosphorylation, but GDNF-induced intracellular signaling events are markedly attenuated as are neuronal differentiation and survival responses. Therefore, proper membrane localization of RET via interaction with a raft-localized, GPI-linked coreceptor is of fundamental importance in GFL signaling.  相似文献   

18.
The GDNF/RET signaling pathway and human diseases   总被引:16,自引:0,他引:16  
Glial cell line-derived neurotrophic factor (GDNF) and related molecules, neurturin, artemin and persephin, signal through a unique multicomponent receptor system consisting of RET tyrosine kinase and glycosyl-phosphatidylinositol-anchored coreceptor (GFR1–4). These neurotrophic factors promote the survival of various neurons including peripheral autonomic and sensory neurons as well as central motor and dopamine neurons, and have been expected as therapeutic agents for neurodegenerative diseases. In addition, it turned out that the GDNF/RET signaling plays a crucial role in renal development and regulation of spermatogonia differentiation. RET mutations cause several human diseases such as papillary thyroid carcinoma, multiple endocrine neoplasia types 2A and 2B, and Hirschsprung's disease. The mutations resulted in RET activation or inactivation by various mechanisms and the biological properties of mutant proteins appeared to be correlated with disease phenotypes. The signaling pathways activated by GDNF or mutant RET are being extensively investigated to understand the molecular mechanisms of disease development and the physiological roles of the GDNF family ligands.  相似文献   

19.
Hirschsprung's disease (HSCR, aganglionic megacolon) is a frequent congenital malformation regarded as a multigenic neurocristopathy. Three susceptibility genes have been recently identified in HSCR, namely the RET proto-oncogene, the endothelin B receptor (EDNRB) gene, and the endothelin 3 (EDN3) gene. RET gene mutations were found in significant proportions of familial (50%) and sporadic (15-20%) HSCR, while homozygosity for EDNRB or EDN3 mutations accounted for the rare HSCR-Waardenburg syndrome (WS) association. More recently, heterozygous EDNRB an EDN3 missense mutations have been reported in isolated HSCR patients. Some of these results were obtained after the identification of mouse genes whose natural or site-directed mutations resulted in megacolon and coat color spotting. There is also conclusive evidence for the involvement of other independent loci in HSCR. In particular, the recent identification of neurotrophic factors acting as RET ligands (GDNF and Neurturin) provide additional candidate genes for HSCR. The dissection of the genetic etiology of HSCR disease may then provide a unique opportunity to distinguish between a polygenic and a genetically heterogeneous disease, thereby helping to understand other complex disorders and congenital malformations hitherto considered as multifactorial in origin. Finally, the study of the molecular bases of HSCR is also a step towards the understanding of developmental genetics of the enteric nervous system giving support to the role of the tyrosine kinase and endothelin-signaling pathways in the development of neural crest-derived enteric neurons in human.  相似文献   

20.
The glial cell line-derived neurotrophic factor (GDNF) family coreceptor alpha1 (GFRalpha1) is a critical component of the RET receptor kinase signal-transducing complex. The activity of this multicomponent receptor is stimulated by the glial cell line-derived neurotrophic factor (GDNF) and is involved in neuronal cells survival and kidney development. GFRalpha1 pre-mRNA is alternatively spliced and produces two isoforms: GFRalpha1a, which includes the exon 5; and GFRalpha1b, which excludes it. Here we show that the Gfralpha1a isoform is predominantly expressed in neuronal tissues and in PC12 cells differentiated toward a neuronal phenotype. GFRalpha1 splicing is also regulated during kidney development, GFRalpha1a is the minor isoform before birth and then rapidly becomes the major form after birth. We established cell lines expressing either GFRalpha1 isoforms and demonstrated that the GFRalpha1b isoform binds GDNF more efficiently than GFRalpha1a. Consistently, GFRalpha1b promotes a stronger RET phosphorylation than GFRalpha1a. These results indicate that specific inclusion of the GFRalpha1 exon 5 in neuronal tissues or during kidney development may alter the binding properties of GDNF to GFRalpha1, and thus could constitute an additional regulatory mechanism of the RET signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号