首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mills W  Moore T 《Genetics》2004,168(4):2317-2327
Genomic imprinting causes parental origin-dependent differential expression of a small number of genes in mammalian and angiosperm plant embryos, resulting in non-Mendelian inheritance of phenotypic traits. The "conflict" theory of the evolution of imprinting proposes that reduced genetic relatedness of paternally, relative to maternally, derived alleles in offspring of polygamous females supports parental sex-specific selection at gene loci that influence maternal investment. While the theory's physiological predictions are well supported by observation, the requirement of polyandry in the evolution of imprinting from an ancestral Mendelian state has not been comprehensively analyzed. Here, we use diallelic models to examine the influence of various degrees of polyandry on the evolution of both Mendelian and imprinted autosomal gene loci that influence trade-offs between maternal fecundity and offspring viability. We show that, given a plausible assumption on the physiological relationship between maternal fecundity and offspring viability, low levels of polyandry are sufficient to reinforce exclusively the fixation of "greedy" paternally imprinted alleles that increase offspring viability at the expense of maternal fecundity and "thrifty" maternally imprinted alleles of opposite effect. We also show that, for all levels of polyandry, Mendelian alleles at genetic loci that influence the trade-off between maternal fecundity and offspring viability reach an evolutionary stable state, whereas pairs of reciprocally imprinted alleles do not.  相似文献   

2.
KVLQT1 (KCNQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential that is defective in cardiac arrhythmia. The channel is inhibited by the chromanol 293B, a compound that blocks cAMP-dependent electrolyte secretion in rat and human colon, therefore suggesting expression of a similar type of K+ channel in the colonic epithelium. We now report cloning and expression of KVLQT1 from rat colon. Overlapping clones identified by cDNA-library screening were combined to a full length cDNA that shares high sequence homology to KVLQT1 cloned from other species. RT-PCR analysis of rat colonic musoca demonstrated expression of KVLQT1 in crypt cells and surface epithelium. Expression of rKVLQT1 in Xenopus oocytes induced a typical delayed activated K+ current, that was further activated by increase of intracellular cAMP but not Ca2+ and that was blocked by the chromanol 293B. The same compound blocked a basolateral cAMP-activated K+ conductance in the colonic mucosal epithelium and inhibited whole cell K+ currents in patch-clamp experiments on isolated colonic crypts. We conclude that KVLQT1 is forming an important component of the basolateral cAMP-activated K+ conductance in the colonic epithelium and plays a crucial role in diseases like secretory diarrhea and cystic fibrosis. Received: 17 July 2000/Revised: 25 October 2000  相似文献   

3.
《Epigenetics》2013,8(4):241-247
A subset of mammalian genes exhibits genomic imprinting, whereby one parental allele is preferentially expressed. Differential DNA methylation at imprinted loci serves both to mark the parental origin of the alleles and to regulate their expression. In mouse, the imprinted gene Rasgrf1 is associated with a paternally methylated imprinting control region which functions as an enhancer blocker in its unmethylated state. Because Rasgrf1 is imprinted in a tissue-specific manner, we investigated the methylation pattern in monoallelic and biallelic tissues to determine if methylation of this region is required for both imprinted and non-imprinted expression. Our analysis indicates that DNA methylation is restricted to the paternal allele in both monoallelic and biallelic tissues of somatic and extraembryonic lineages. Therefore, methylation serves to mark the paternal Rasgrf1 allele throughout development, but additional factors are required for appropriate tissue-specific regulation of expression at this locus.  相似文献   

4.
5.
Genomic imprinting and the social brain   总被引:6,自引:0,他引:6  
Genomic imprinting refers to the parent-of-origin-specific epigenetic marking of a number of genes. This epigenetic mark leads to a bias in expression between maternally and paternally inherited imprinted genes, that in some cases results in monoallelic expression from one parental allele. Genomic imprinting is often thought to have evolved as a consequence of the intragenomic conflict between the parental alleles that occurs whenever there is an asymmetry of relatedness. The two main examples of asymmetry of relatedness are when there is partiality of parental investment in offspring (as is the case for placental mammals, where there is also the possibility of extended postnatal care by one parent), and in social groups where there is a sex-biased dispersal. From this evolutionary starting point, it is predicted that, at the behavioural level, imprinted genes will influence what can broadly be termed bonding and social behaviour. We examine the animal and human literature for examples of imprinted genes mediating these behaviours, and divide them into two general classes. Firstly, mother-offspring interactions (suckling, attachment and maternal behaviours) that are predicted to occur when partiality in parental investment in early postnatal offspring occurs; and secondly, adult social interactions, when there is an asymmetry of relatedness in social groups. Finally, we return to the evolutionary theory and examine whether there is a pattern of behavioural functions mediated by imprinted genes emerging from the limited data, and also whether any tangible predictions can be made with regards to the direction of action of genes of maternal or paternal origin.  相似文献   

6.
Molecular features of imprinted genes include differences in expression, methylation, and the timing of DNA replication between parental alleles. Whereas methylation differences always seem to be associated with differences in expression, differences in the timing of replication between parental homologs are not always seen at imprinted loci. These observations raise the possibility that differences in replication timing may not be an essential feature underlying genomic imprinting. In this study, we examined the timing of replication of the two alleles of the imprinted RSVIgmyc transgene in individual embryonic cells using fluorescence in situ hybridization (FISH). The cis-acting signals for RSVIgmyc imprinting are within RSVIgmyc itself. Thus, allele-specific differences in replication, if they indeed govern RSVIgmyc imprinting, should be found in RSVIgmyc sequences. We found that the parental alleles of RSVIgmyc, which exhibit differences in methylation, replicated at the same time. Synchronous replication was also seen in embryonic cells containing a modified version of RSVIgmyc that exhibited parental allele differences in both methylation and expression. These findings indicate that maintenance of expression and methylation differences between alleles does not require a difference in replication timing. The differences in replication timing of endogenous imprinted alleles detected by FISH might therefore reflect structural differences between the two alleles that could be a consequence of imprinting or, alternatively, could be unrelated to imprinting. Dev. Genet. 23:275–284, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
8.
9.
Genomic imprinting results in monoallelic gene expression in a parent-of-origin-dependent manner. It is achieved by the differential epigenetic marking of parental alleles. Over the past decade, studies in the model systems Arabidopsis thaliana and maize (Zea mays) have shown a strong correlation between silent or active states with epigenetic marks, such as DNA methylation and histone modifications, but the nature of the primary imprint has not been clearly established for all imprinted genes. Phenotypes and expression patterns of imprinted genes have fueled the perception that genomic imprinting is specific to the endosperm, a seed tissue that does not contribute to the next generation. However, several lines of evidence suggest a potential role for imprinting in the embryo, raising questions as to how imprints are erased and reset from one generation to the next. Imprinting regulation in flowering plants shows striking similarities, but also some important differences, compared with the mechanisms of imprinting described in mammals. For example, some imprinted genes are involved in seed growth and viability in plants, which is similar in mammals, where imprinted gene regulation is essential for embryonic development. However, it seems to be more flexible in plants, as imprinting requirements can be bypassed to allow the development of clonal offspring in apomicts.  相似文献   

10.
11.
12.
13.
There are multiple theories on the evolution of genomic imprinting. We investigated whether the molecular evolution of true orthologs of known imprinted genes provides support for theories based on gene duplication or parental conflicts (where mediated by amino-acid changes). Our analysis of 34 orthologous genes demonstrates that the vast majority of mammalian imprinted genes have not undergone any subsequent significant gene duplication within placental species, suggesting that selection pressures against gene duplication events could be operating for imprinted loci. As antagonistic co-evolution between imprinted genes can regulate offspring growth, proteins mediating this interaction could be subject to rapid evolution via positive selection. Supporting this, we detect evidence of site specific positive selection for the imprinted genes OSBPL5 (and GNASXL), and detect lineage-specific positive selection for 14 imprinted genes where it is known that the gene is imprinted in a specific lineage, namely for: PLAGL1, IGF2, SLC22A18, OSBPL5, DCN, DLK1, RASGRF1, IGF2R, IMPACT, GRB10, NAPIL4, UBE3A, GATM and GABRG3. However, there is an overall lack of concordance between the known imprinting status of each gene (i.e. whether the gene is imprinted or biallelically expressed in a particular mammalian lineage) and positive selection. While only a small number of orthologs of imprinted loci display evidence of positive selection, we observe that the majority of orthologs of imprinted loci display high levels of micro-synteny conservation and have undergone very few cis- or trans-duplications in placental mammalian lineages.  相似文献   

14.
During gametogenesis, chromosomes may become imprinted with information which facilitates proper expression of the DNA in offspring. We have used a position effect variegation mutant as a reporter system to investigate the possibility of imprinting inDrosophila melanogaster. Genetic crosses were performed in which the variegating gene and a strong modifier of variegation were present either within the same parental genome or in opposite parental genomes in all possible combinations. Our results indicate that the presence of the variegating chromosome and a modifier chromosome in the same parental genome can alter the amount of variegation formed in progeny. The genomic imprinting we observed is not determined by the parental origin of the variegating chromosome but is instead determined by the genetic background the variegating chromosome is subjected to during gametogenesis.  相似文献   

15.
Competition--a common motif for the imprinting mechanism?   总被引:18,自引:1,他引:17       下载免费PDF全文
D P Barlow 《The EMBO journal》1997,16(23):6899-6905
  相似文献   

16.
Santure AW  Spencer HG 《Genetics》2006,173(4):2297-2316
The expression of an imprinted gene is dependent on the sex of the parent it was inherited from, and as a result reciprocal heterozygotes may display different phenotypes. In contrast, maternal genetic terms arise when the phenotype of an offspring is influenced by the phenotype of its mother beyond the direct inheritance of alleles. Both maternal effects and imprinting may contribute to resemblance between offspring of the same mother. We demonstrate that two standard quantitative genetic models for deriving breeding values, population variances and covariances between relatives, are not equivalent when maternal genetic effects and imprinting are acting. Maternal and imprinting effects introduce both sex-dependent and generation-dependent effects that result in differences in the way additive and dominance effects are defined for the two approaches. We use a simple example to demonstrate that both imprinting and maternal genetic effects add extra terms to covariances between relatives and that model misspecification may over- or underestimate true covariances or lead to extremely variable parameter estimation. Thus, an understanding of various forms of parental effects is essential in correctly estimating quantitative genetic variance components.  相似文献   

17.
Uniparental embryos have been instrumental in studying imprinting because contributions from the parental genomes can be determined unambiguously. In this study, we set out to identify imprinted genes showing differential expression between parthenogenetic and fertilized embryos during preimplantation and early postimplantation stages of development. We identified three genes-apolipoprotein E, pyruvate kinase-3, and protein phosphatase 1 gamma-that represent excellent candidates for imprinted genes, based on the results of the differential screen, their function in differentiation and the cell cycle, and their location within imprinted chromosomal regions. In addition, two novel genes expressed in trophoblast were identified, 1661 and RA81. These genes, together with four known imprinted genes, H19, Igf2r, Igf2, and Snrpn, showed evidence of expression from both parental alleles in early stage embryos, indicating a role for postfertilization processes in regulating imprinted gene function. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Epigenetic Resetting of a Gene Imprinted in Plant Embryos   总被引:1,自引:0,他引:1  
Genomic imprinting resulting in the differential expression of maternal and paternal alleles in the fertilization products has evolved independently in placental mammals and flowering plants. In most cases, silenced alleles carry DNA methylation [1]. Whereas these methylation marks of imprinted genes are generally erased and reestablished in each generation in mammals [2], imprinting marks persist in endosperms [3], the sole tissue of reported imprinted gene expression in plants. Here we show that the maternally expressed in embryo 1 (mee1) gene of maize is imprinted in both the embryo and endosperm and that parent-of-origin-specific expression correlates with differential allelic methylation. This epigenetic asymmetry is maintained in the endosperm, whereas the embryonic maternal allele is demethylated on fertilization and remethylated later in embryogenesis. This report of imprinting in the plant embryo confirms that, as in mammals, epigenetic mechanisms operate to regulate allelic gene expression in both embryonic and extraembryonic structures. The embryonic methylation profile demonstrates that plants evolved a mechanism for resetting parent-specific imprinting marks, a necessary prerequisite for parent-of-origin-dependent gene expression in consecutive generations. The striking difference between the regulation of imprinting in the embryo and endosperm suggests that imprinting mechanisms might have evolved independently in both fertilization products of flowering plants.  相似文献   

19.
20.
Maternal inheritance of targeted loss of function alleles encoding either the cyclin-dependent kinase inhibitor 1C (Cdkn1c) or the insulin-like growth factor 2 receptor (Igf2r) leads to fully penetrant perinatal lethality in C57BL/6J mice due to genomic imprinting. Here, we demonstrate that there is a marked enhancement in postnatal viability of F(1) mice carrying either the ablated Igf2r ( approximately 32%) or Cdkn1c ( approximately 83%) when the paternal genome was derived from the inbred Mus musculus musculus CzechII/Ei strain. Genetic and molecular analyses indicated that the increased viability was not caused by relaxation of imprinted gene expression, but is the consequence of unidentified polygenic modifiers that are not imprinted. In the course of this study, restriction-site polymorphisms between 129S1 and CzechII/Ei in 21 imprinted and 14 biallelically expressed genes were identified. These polymorphisms may prove useful in determining the effects of different mutant backgrounds on genomic imprinting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号