首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy, with extensive allelic and nonallelic genetic heterogeneity. Autosomal recessive RP (arRP) is the most common form of RP worldwide, with at least nine loci known and accountable for approximately 10%-15% of all cases. Gamma-aminobutyric acid (GABA) is the major inhibitory transmitter in the CNS. Different GABA receptors are expressed in all retinal layers, and inhibition mediated by GABA receptors in the human retina could be related to RP. We have selected chromosomal regions containing genes that encode the different subunits of the GABA receptors, for homozygosity mapping in inbred families affected by arRP. We identify a new locus for arRP, on chromosome 6, between markers D6S257 and D6S1644. Our data suggest that 10%-20% of Spanish families affected by typical arRP could have linkage to this new locus. This region contains subunits GABRR1 and GABRR2 of the GABA-C receptor, which is the effector of lateral inhibition at the retina.  相似文献   

2.
The gene for Batten disease (CLN3) has been mapped to human chromosome 16 by demonstration of linkage to the haptoglobin locus, and its localization has been further refined using a panel of DNA markers. The aim of this work was to refine the genetic and physical mapping of this disease locus. Genetic linkage analysis was carried out in a larger group of families by using markers for five linked loci. Multipoint analysis indicated a most likely location for CLN3 in the interval between D16S67 and D16S148 (Z = 12.5). Physical mapping of linked markers was carried out using somatic cell hybrid analysis and in situ hybridization. A mouse/human hybrid cell panel containing various segments of chromosome 16 has been constructed. The relative order and physical location of breakpoints in the proximal portion of 16p were determined. Physical mapping in this panel of the markers for the loci flanking CLN3 positioned them to the bands 16p12.1----16p12.3. Fluorescent in situ hybridization of metaphase chromosomes by using these markers positioned them to the region 16p11.2-16p12.1. These results localize CLN3 to an interval of about 2 cM in the region 16p12.  相似文献   

3.
Autosomal recessive Charcot–Marie–Tooth disease type 4B (CMT4B) is a demyelinating hereditary motor and sensory neuropathy characterized by abnormal folding of myelin sheaths. A locus for CMT4B has previously been mapped to chromosome 11q23 in a southern Italian pedigree. We initially excluded linkage in two Tunisian families with CMT4B to chromosome 11q23, demonstrating genetic heterogeneity within the CMT4B phenotype. Subsequently, using homozygosity mapping and linkage analysis in the largest Tunisian pedigree, we mapped a new locus to chromosome 11p15. A maximum two-point lod score of 6.05 was obtained with the marker D11S1329. Recombination events refined the CMT4B locus region to a 5.6-cM interval between markers D11S1331 and D11S4194. The second Tunisian CMT4B family was excluded from linkage to the new locus, demonstrating the existence of at least a third locus for the CMT4B phenotype.  相似文献   

4.
Progressive familial intrahepatic cholestasis (PFIC; OMIM 211600) is the second most common familial cholestatic syndrome presenting in infancy. A locus has previously been mapped to chromosome 18q21-22 in the original Byler pedigree. This chromosomal region also harbors the locus for benign recurrent intrahepatic cholestasis (BRIC) a related phenotype. Linkage analysis in six consanguineous PFIC pedigrees from the Middle East has previously excluded linkage to chromosome 18q21-22, indicating the existence of locus heterogeneity within the PFIC phenotype. By use of homozygosity mapping and a genome scan in these pedigrees, a locus designated "PFIC2" has been mapped to chromosome 2q24. A maximum LOD score of 8.5 was obtained in the interval between marker loci D2S306 and D2S124, with all families linked.  相似文献   

5.
For nephronophthisis (NPHP), the primary genetic cause of chronic renal failure in young adults, three loci have been mapped. To identify a new locus for NPHP, we here report on total-genome linkage analysis in seven families with NPHP, in whom we had excluded linkage to all three known NPHP loci. LOD scores >1 were obtained at nine loci, which were then fine mapped at 1-cM intervals. Extensive total-genome haplotype analysis revealed homozygosity in one family, in the region of the PCLN1 gene. Subsequent mutational analysis in this gene revealed PCLN1 mutations, thereby allowing exclusion of this family as a phenocopy. Multipoint linkage analysis for the remaining six families with NPHP together yielded a maximum LOD score (Zmax) of 8.9 (at D1S253). We thus identified a new locus, NPHP4, for nephronophthisis. Markers D1S2660 and D1S2642 are flanking NPHP4 at a 2.9-cM critical interval. In one family with NPHP4, extensive genealogical studies were conducted, revealing consanguinity during the 17th century. On the basis of haplotype sharing by descent, we obtained a multipoint Zmax of 5.8 for D1S253 in this kindred alone. In addition, we were able to localize to the NPHP4 locus a new locus for Senior-Løken syndrome, an NPHP variant associated with retinitis pigmentosa.  相似文献   

6.
Dominant optic atrophy, a hereditary optic neuropathy causing decreased visual acuity, colour vision deficits, a centro-caecal scotoma and optic nerve pallor, has been mapped to a genetic interval of 1.4 cM between loci D3S3669 and D3S3562 on chromosome 3q28-qter. In order to further refine the critical disease interval, and to test the power of haplotype analysis and linkage disequilibrium mapping, we identified a total of 38 families with dominant optic atrophy, unrelated on the basis of genealogy, from a data base of genetic eye disease families originating from the British Isles. They were studied with 12 highly polymorphic microsatellite markers spanning a region of 12 cM around the dominant optic atrophy locus (OPA1). Allelic frequency analysis [chi-squared test, likeli-hood ratio test (LRT) and P values] and haplotype parsimony analysis showed evidence of a founder effect in 36 of the 38 pedigrees. Six markers (D3S3669, D3S1523, D3S3642, D3S2305, D3S3590 and D3S3562), spanning 1.4 cM across the disease-associated region, demonstrated significant linkage disequilibrium by LRT (P < 0.05). A peak LRT value of 10.86 (P < 0.0005, λ = 0.4) occurred at D3S3669. On linkage disequilibrium multipoint analysis the maximum lod score of 8.01 is achieved at D3S1523, and 95% confidence intervals suggest that OPA1 lies within ca. 400 kb of D3S1523. Received: 13 August 1997 / Accepted: 22 September 1997  相似文献   

7.
Paroxysmal kinesigenic choreoathetosis (PKC), the most frequently described type of paroxysmal dyskinesia, is characterized by recurrent, brief attacks of involuntary movements induced by sudden voluntary movements. Some patients with PKC have a history of infantile afebrile convulsions with a favorable outcome. To localize the PKC locus, we performed genomewide linkage analysis on eight Japanese families with autosomal dominant PKC. Two-point linkage analysis provided a maximum LOD score of 10.27 (recombination fraction [theta] =.00; penetrance [p] =.7) at marker D16S3081, and a maximum multipoint LOD score for a subset of markers was calculated to be 11.51 (p = 0.8) at D16S3080. Haplotype analysis defined the disease locus within a region of approximately 12.4 cM between D16S3093 and D16S416. P1-derived artificial chromosome clones containing loci D16S3093 and D16S416 were mapped, by use of FISH, to 16p11.2 and 16q12.1, respectively. Thus, in the eight families studied, the chromosomal localization of the PKC critical region (PKCR) is 16p11.2-q12.1. The PKCR overlaps with a region responsible for "infantile convulsions and paroxysmal choreoathetosis" (MIM 602066), a recently recognized clinical entity with benign infantile convulsions and nonkinesigenic paroxysmal dyskinesias.  相似文献   

8.
Leber’s congenital amaurosis (LCA) is an autosomal recessive disease responsible for congenital blindness. It is the earliest and most severe inherited retinal dystrophy in human and its genetic heterogeneity has long been recognised. We have recently reported on the first localisation of a disease gene (LCA1) to the short arm of chromosome 17 by homozygosity mapping in five families of North African origin. Here, we refine the genetic mapping of LCA1 to chromosome 17p13 between loci D17S938 and D17S1353 and provide strong support for the genetic heterogeneity of this condition (maximum likelihood for heterogeneity, 17.20 in lnL; heterogeneity versus homogeneity, P = 0.0002, heterogeneity versus no linkage, P < 0.0001) Received: 23 October 1995 / Revised: 11 January 1996  相似文献   

9.
Hereditary hearing impairment (HI) displays extensive genetic heterogeneity. Autosomal recessive (AR) forms of prelingual HI account for ~75% of cases with a genetic etiology. A novel AR non-syndromic HI locus (DFNB47) was mapped to chromosome 2p25.1-p24.3, in two distantly related Pakistani kindreds. Genome scan and fine mapping were carried out using microsatellite markers. Multipoint linkage analysis resulted in a maximum LOD score of 4.7 at markers D2S1400 and D2S262. The three-unit support interval was bounded by D2S330 and D2S131. The region of homozygosity was found within the three-unit support interval and flanked by markers D2S2952 and D2S131, which corresponds to 13.2 cM according to the Rutgers combined linkage-physical map. This region contains 5.3 Mb according to the sequence-based physical map. Three candidate genes, KCNF1, ID2 and ATP6V1C2 were sequenced, and were found to be negative for functional sequence variants.  相似文献   

10.
Congenital hereditary endothelial dystrophy (CHED) is a corneal disorder that presents with diffuse bilateral corneal clouding. Vision may be severely impaired, and many patients require corneal transplantation. Both autosomal dominant (AD) and autosomal recessive (AR) forms of the disorder have been described. The gene responsible for AD CHED (HGMW-approved symbol CHED1) has been mapped to the pericentromeric region of chromosome 20. Investigating a large, consanguineous Irish pedigree with autosomal recessive CHED, we have previously excluded linkage to this AD CHED locus. We now describe a genome-wide search using homozygosity mapping and DNA pooling. Evidence of linkage to chromosome 20p was demonstrated with a maximum lod score of 9.30 at a recombination fraction of 0.0 using microsatellite marker D20S482. A region of homozygosity in all affected individuals was identified, narrowing the disease gene locus to an 8-cM region flanked by markers D20S113 and D20S882. This AR CHED (HGMW-approved symbol CHED2) disease gene locus is physically and genetically distinct from the AD CHED locus.  相似文献   

11.
The neuronal ceroid lipofuscinoses (NCL; Batten disease) are a collection of autosomal recessive disorders characterized by the accumulation of autofluorescent lipopigments in the neurons and other cell types. Clinically, these disorders are characterized by progressive encephalopathy, loss of vision, and seizures. CLN3, the gene responsible for juvenile NCL, has been mapped to a 15-cM region flanked by the marker loci D16S148 and D16S150 on human chromosome 16. CLN2, the gene causing the late-infantile form of NCL (LNCL), is not yet mapped. We have used highly informative dinucleotide repeat markers mapping between D16S148 and D16S150 to refine the localization of CLN3 and to test for linkage to CLN2. We find significant linkage disequilibrium between CLN3 and the dinucleotide repeat marker loci D16S288 (chi 2(7) = 46.5, P < .005), D16S298 (chi 2(6) = 36.6, P < .005), and D16S299 (chi 2(7) = 73.8, P < .005), and also a novel RFLP marker at the D16S272 locus (chi 2(1) = 5.7, P = .02). These markers all map to 16p12.1. The D16S298/D16S299 haplotype "5/4" is highly overrepresented, accounting for 54% of CLN3 chromosomes as compared with 8% of control chromosomes (chi 2 = 117, df = 1, P < .001). Examination of the haplotypes suggests that the CLN3 locus can be narrowed to the region immediately surrounding these markers in 16p12.1. Analysis of D16S299 in our LNCL pedigrees supports our previous finding that CLN3 and CLN2 are different genetic loci. This study also indicates that dinucleotide repeat markers play a valuable role in disequilibrium studies.  相似文献   

12.
Hereditary spastic paraplegias (HSPs), a group of neurodegenerative disorders that cause progressive spasticity of the lower limbs, are characterized by clinical and genetic heterogeneity. To date, three loci for autosomal recessive HSP have been mapped on chromosomes 8p, 16q, and 15q. After exclusion of linkage at these loci, we performed a genomewide search in a consanguineous Italian family with autosomal recessive HSP complicated by mild mental retardation and distal motor neuropathy. Using homozygosity mapping, we obtained positive LOD scores for markers on chromosome region 3q27-q28, with a maximum multipoint LOD score of 3.9 for marker D3S1601. Haplotype analysis allowed us to identify a homozygous region (4.5 cM), flanked by markers D3S1580 and D3S3669, that cosegregates with the disease. These data strongly support the presence, on chromosome 3q27-28, of a new locus for complicated recessive spastic paraplegia, which we have named "SPG14."  相似文献   

13.
The locus responsible for the childhood-onset proximal spinal muscular atrophies (SMA) has recently been mapped to an area of 2–3 Mb in the region q12–13.3 of chromosome 5. We have used a series of radiation hybrids (RHs) containing distinct parts of the SMA region as defined by reference markers. A cosmid library was constructed from one RH. Thirteen clones were isolated and five of these were mapped within the SMA region. Both RH mapping and fluorescence in situ hybridization analysis showed that two clones map in the region between loci D5S125 and D5S351. One of the cosmids contains expressed sequences. Polymorphic dinucleotide repeats were identified in both clones and used for segregation analysis of key recombinant SMA families. One recombination between the SMA locus and the new marker 9Ic (D5S685) indicates that 9Ic is probably the closest distal marker. The absence of recombination between the SMA locus and marker Fc (D5S684) suggests that Fc is located close to the disease gene. These new loci should refine linkage analysis in SMA family studies and may facilitate the isolation of the disease gene.  相似文献   

14.
Muscle-eye-brain disease (MEB) is an autosomal recessive disease of unknown etiology characterized by severe mental retardation, ocular abnormalities, congenital muscular dystrophy, and a polymicrogyria-pachygyria-type neuronal migration disorder of the brain. A similar combination of muscle and brain involvement is also seen in Walker-Warburg syndrome (WWS) and Fukuyama congenital muscular dystrophy (FCMD). Whereas the gene underlying FCMD has been mapped and cloned, the genetic location of the WWS gene is still unknown. Here we report the assignment of the MEB gene to chromosome 1p32-p34 by linkage analysis and homozygosity mapping in eight families with 12 affected individuals. After a genomewide search for linkage in four affected sib pairs had pinpointed the assignment to 1p, the MEB locus was more precisely assigned to a 9-cM interval flanked by markers D1S200 proximally and D1S211 distally. Multipoint linkage analysis gave a maximum LOD score of 6.17 at locus D1S2677. These findings provide a starting point for the positional cloning of the disease gene, which may play an important role in muscle function and brain development. It also provides an opportunity to test other congenital muscular dystrophy phenotypes, in particular WWS, for linkage to the same locus.  相似文献   

15.
Summary The polymorphic DNA probe VK5B (D16S94) was mapped by genetic linkage in families from the Centre d'Etude de Polymorphisme Humain (CEPH) as being in the same interval as the autosomal dominant adult polycystic kidney disease locus (PKD1). The maximum likelihood estimate of the genetic location of VK5B using multipoint linkage analysis was 9.6cM proximal to {ie286-01} (D16S85) and 5.4cM distal to CRI-0327 (D16S63), in males. The VK5B probe may be useful in PKD1 families for prenatal and presymptomatic diagnosis of the disease. Additional typing of PKD1 families is required to determine whether the location of VK5B is distal or proximal to (PKD1).  相似文献   

16.
From a large collection of families with autosomal recessive non-syndromic hearing impairment (NSHI) from Pakistan, linkage has been established for two unrelated consanguineous families to 19p13.2. This new locus was assigned the name DFNB68. A 10 cM genome scan and additional fine mapping were carried out using microsatellite marker loci. Linkage was established for both families to DFNB68 with maximum multipoint LOD scores of 4.8 and 4.6. The overlap of the homozygous regions between the two families was bounded by D19S586 and D19S584, which limits the locus interval to 1.9 cM and contains 1.4 Mb. The genes CTL2, KEAP1 and CDKN2D were screened but were negative for functional sequence variants.Regie Lyn P. Santos and Muhammad Jawad Hassan contributed equally to this work.  相似文献   

17.
Genetic linkage studies have mapped Huntington's disease (HD) to the distal portion of the short arm of chromosome 4 (4p16.3), 4 cM distal to D4S10 (G8). To date, no definite flanking marker has been identified. A new DNA marker, D4S90 (D5), which maps to the distal region of 4p16.3, is described. The marker was used in a genetic linkage study in the CEPH reference families with seven other markers at 4p16. The study, together with knowledge of the physical map of the region, places D4S90 as the most distal marker, 6 cM from D4S10. A provisional linkage study with HD gave a maximum lod score of 2.14 at a θ of 0.00 and no evidence of linkage disequilibrium. As D4S90 appears to be located terminally, it should play an important role in the accurate mapping and cloning of the HD gene.  相似文献   

18.
Evidence for a novel glaucoma locus at chromosome 3p21-22   总被引:2,自引:0,他引:2  
Primary open-angle glaucoma (POAG) is one of the leading causes of blindness in the world. It is a clinically variable group of diseases with the majority of cases presenting as the late onset adult type. Several chromosomal loci have been implicated in disease aetiology, but causal mutations have only been identified in a small proportion of glaucoma. We have previously described a large six-generation Tasmanian family with POAG exhibiting genetic heterogeneity. In this family, approximately one third of affected individuals presented with a glutamine-368-STOP (Q368STOP) mutation in the myocilin gene. We now use a Markov Chain Monte Carlo (MCMC) method to identify a second disease region in this family on the short arm of chromosome 3. This disease locus was initially mapped to the marker D3S1298 and a subsequent minimum disease region of 9 cM between markers D3S1298 and D3S1289 was identified through additional mapping. The region did not overlap with any previously described locus for POAG. Using a multiplicative relative risk model, we identified a positive association between this region and the Q368STOP mutation of myocilin on chromosome 1 in affected individuals. These findings provide evidence of a new autosomal dominant glaucoma locus on the short arm of chromosome 3.  相似文献   

19.
Fanconi anaemia (FA) is an autosomal recessive disease characterised by genetic heterogeneity, with at least five complementation groups (FA-A to FA-E). The FAC gene has been cloned and localised to 9q22.3. The most frequent defective gene, FAA, was recently mapped to chromosome 16q24.3, in a region of 10 cM between D16S498 and the telomere. Eleven FA-A and 16 unclassified Italian families were analysed by microsatellite markers. To define the localisation of the FAA locus further, microsatellites were analysed at 16q24. All the families were consistent with linkage, the highest lod score being observed with D16S1320. Evidence for common haplotypes was obtained in two genetic isolates from the Brenta basin and the Naples region. Autozygosity mapping and haplotype analysis suggest that the FAA locus is distal to D16S305. Received: 29 July 1996  相似文献   

20.
Summary DNA markers in the pericentromeric region of human chromosome 21 have shown linkage to a gene for Familial Alzheimer disease (FAD; St. George Hyslop et al. 1987). The limited informativeness of probes for the loci D21S13 and D21S16 have hindered precise mapping of the FAD locus and analysis of non-allelic heterogeneity in FAD (Schellenberg et al. 1988; St. George-Hyslop et al. 1987). We recently described a new EcoRII polymorphism at the D21S13 locus that was very informative in a large FAD pedigree (Pulst et al. 1990a, b). We now report another polymorphism for the D21S13 locus that further increases the informativeness of this locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号