首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions for efficient direct somatic embryogenesis and plant regeneration of leaf explants from carnation cultivars Lena (SIM group) and Bulgarian spray cultivars Nasslada, Yanita, Regina and Line 84 were established. Murashige and Skoog (MS) liquid medium supplemented with 1 mg/l 2,4-dichlorophenoxyacetic acid and 0.2 mg/l 6-benzylaminopurine was used for direct induction of embryoids without an additional callus phase. The first globular structures were observed after 20 days of cultivation. Their further development to the torpedo stage was correlated with the presence of polyethylene glycol (PEG 6000). Somatic embryo maturation was promoted by casein hydrolysate (1000 mg/l) in MS liquid media. The percentage conversion of embryos and polyembryos to whole plants varied between 10 and 75% among studied cultivars. Plantlets regenerated by this procedure were morphologically identical to the donor material and developed normally in a greenhouse. Received: 29 November 1996 / Revision received: 28 April 1997 / Accepted: 28 May 1998  相似文献   

2.
W. Tang 《Plant cell reports》2000,19(7):727-732
 The morphogenesis ability of light yellowish globular callus derived from cotyledons of mature zygotic embryos of Panax ginseng was investigated. The optimal media for somatic embryogenesis and shoot organogenesis were MS medium containing 0.5 mg l–1 2,4-dichlorophenoxyacetic acid, 0.1 mg l–1 6-benzyladenine (BA), and 500 mg l–1 lactoalbumin hydrolysate, and SH medium supplemented with 0.5 mg l–1 α-naphthaleneacetic acid, 0.1 mg l–1 BA, and 500 mg l–1casein hydrolysate. The influences of glucose, mannose, fructose, and sorbose in the media on somatic embryogenesis and shoot organogenesis were revealed as differences in the numbers of somatic embryos and adventitious shoots per gram of morphogenic callus. The best regeneration of somatic embryos was obtained on medium containing glucose, with a mean of 8.7 somatic embryos per gram of callus. The best regeneration of shoots was observed on medium containing fructose, with an average of 12.2 adventitious shoots per gram of callus. Of the somatic embryos 95% were converted into regenerated plantlets, and 100% of adventitious shoots rooted to form regenerated plantlets. Regenerated plants were successfully established in soil. Flowering was observed in 5.7% of the regenerated plants derived from shoot organogenesis and in 1.4% of the regenerated plants derived from somatic embryogenesis. Received: 1 December 1998 / Revision received: 13 September 1999 / Accepted: 20 September 1999  相似文献   

3.
A method for regeneration of plants from tuber explants of a Zantedeschia hybrid via somatic embryogenesis was developed. In vitro cultures were initiated starting from both anthers and tubers. Somatic embryogenesis was only achieved from tuber explants. 6-Benzyladenine (BA) at 0.6 or 2 mg l−1 in combination with 2 mg l−1 α-naphthaleneacetic acid (NAA) yielded the highest number of embryos per explant. The somatic embryos converted into plantlets on Murashige and Skoog basal medium supplemented with vitamins, micro- and macronutrients, 1 mg l−1 6-τ-τ-(dimethylallylamino)-purine (2iP), 3% sucrose and 0.7% agar. This is the first report on induction of somatic embryogenesis in Zantedeschia.  相似文献   

4.
A new and simple protocol has been developed and standardized for direct somatic embryogenesis and plant regeneration from aseptic seedlings derived from immature Brassica juncea seeds. Depending on the age of immature seeds and nutrient media, in vitro occurrence of embryogenesis and the number of embryos from each seedling have varied greatly. The largest number of somatic embryos, producing 12.7 embryos per seedlings, have been developed by seedlings obtained from immature seeds collected after 21 days of pollination (DAP). Effect of different nutrient media [Gamborg (B5), Murashige and Skoog (MS) and Linsmaier and Skoog (SH)] and carbon sources (fructose, glucose, maltose and sucrose) were assessed to induce somatic embryos and the maximum response were achieved on Nitsch culture medium fortified with sucrose (3% w/v) followed by fructose and maltose. The somatic embryo converted into complete plantlets within 04-weeks of culture on Nitsch medium containing half-strength of micro and macro salts. The regenerated plantlets were successfully established in soil with 90% survival rate. The acclimated plants were subsequently transferred to field condition where they grew normally without any phenotypic differences. Genetic stability of B. juncea plants regenerated from somatic embryos were confirmed by inter-simple sequence repeat (ISSR)-PCR analysis and flow cytometry. No significant difference in ploidy level and ISSR banding pattern were documented between somatic embryo’s plants and control plants grown ex vitro.  相似文献   

5.
A protocol has been developed for the induction of somatic embryogenesis from flower explants of chamomile (Chamomilla recutita L.). The effects of several plant growth regulators [α-naphthylacetic acid (NAA), 2,4-dichlorophenoxyacetic acid, 6-benzyladenine (BA) and kinetin (Kin), alone or in combination] and the flower type (disk or ray flower) were investigated. Both types of flowers responded to the callus and shoot induction treatments, but formation of globular somatic embryos took place only on disk-flower-derived explants after 2–4 weeks of culture on a Murashige and Skoog (MS) medium supplemented either with 8.87 μm BA and 1.07 μm NAA or with 26.8 μm NAA and 11.5 μm Kin. However, fully developed, cotyledonary-stage somatic embryos could be induced only on the NAA/Kin medium, 10 weeks after culture initiation. Germination of the embryos and plant regeneration took place after subculture for 4–5 weeks onto medium of the same composition. Plantlets regenerated from embryos flowered in vitro on a MS medium supplemented with 8.87 μm BA and 1.07 μm NAA. The significance of the results with respect to chamomile micropropagation and the utilization of wild populations in breeding programs is discussed. Received: 6 April 1998 / Revision received: 12 October 1998 / Accepted: 28 October 1998  相似文献   

6.
 Segments taken from young leaves of an orchid (Oncidium Gower Ramsey) produced clusters of somatic embryos directly from epidermal and mesophyll cells of leaf tips and wound surfaces without an intervening callus within 1 month when cultured on a GelriteTM-gelled 1/2-MS basal medium supplemented with a low dosage (0.3–1 mg/l) of thidiazuron. Subculturing of these embryo clusters produced more embryos and subsequent plantlet formation on the same medium. The high-frequency embryogenesis of these leaf cells in this orchid is strong evidence of their totipotency, and further modification of the protocol for plant formation could be useful for the mass propagation and transformation of selected elite lines. Received: 16 September 1998 / Revision received: 16 February 1999 / Accepted: 26 February 1999  相似文献   

7.
A simple protocol has been developed for high frequency protoplast regeneration via somatic embryogenesis in B. napus. Protoplasts isolated from hypocotyl tissue of 8–12 day old seedlings of Brassica napus ISN706 (AACC) when cultured in KM(A) medium resulted in divisions with a, frequency ranging from 30–35%. Regeneration of plantlets was possible by both organogenesis and embryogenesis. Nearly 80% of the call transferred on to MS medium supplemented with 5.0 mg l-1 2iP, 0.1 mg l-1 NAA, 0.001 mg l-1 GA3, 0.5 g l-1 PVP and 0.5 g l-1 MES displayed somatic embryogenesis. The somatic embryos developed into normal plantlets, and also displayed secondary, repetitive embryogenesis.  相似文献   

8.
Summary Diallel analyses of F1 and reciprocal crosses among five winter wheat lines show that additive, non-additive, and cytoplasmic genetic effects were significant in the genetic control of somatic embryogenesis, shoot, and root induction frequencies as well as in numbers of somatic embryos, shoots, and roots. However, additive genetic effect appears to be most important since, in most cases a larger portion of the cross variation was accounted for by general combining ability. The results suggest that somatic embryogenesis and organ regeneration in winter wheat can be improved through genetic manipulation. Due to the presence of maternal effects, it may be critical to use a suitable genotype as a female parent in a selection program.Contribution of the College of Agricultural Sciences, Texas Tech University, Journal No. T-4-266  相似文献   

9.
A method to obtain plants from embryogenic callus of Brassica nigra and protoplasts of hypocotyl expiants is described. Callus was initiated on Murashige and Skoog medium containing kinetin (kn) and 2,4-dichlorophenoxy acetic acid (2,4-D). Lowering of auxin induced embryo formation. Supplementation with gibberellic acid (GA3) enhanced embryogenic response tenfold. Passage through liquid medium devoid of growth regulators was essential for the growth of embryos. Secondary embryos were produced on transfer to solid basal medium. Embryogenic callus retained its morphogenic ability even after 12 subcultures. Both primary and secondary embryos produced fertile plants. Hypocotyl-derived protoplasts were also regenerated to plants following the same protocol. The survival of plants on transfer to soil was about 80%. The seeds from plants derived from callus and protoplasts were viable.Abbreviations 2,4-D 2,4-dichlorophenoxy acetic acid - NAA naphthalene acetic acid - IAA indole acetic acid - kn kinetin - GA3 gibberellic acid  相似文献   

10.
Embryogenic suspensions of grapevine (Vitis vinifera L.) were initiated from somatic embryos of `Thompson Seedless' and `Chardonnay'. Suspension cultures consisted of proembryonic masses (PEM) that proliferated without differentiation in a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D). `Chardonnay' somatic embryos developed fully from PEMs following subculture in medium without 2,4-D; however, somatic embryo development did not advance beyond the heart stage in `Thompson Seedless' suspension cultures. Highly synchronized development of somatic embryos was obtained by inoculating <960-μm PEMs into liquid medium without 2,4-D. Somatic embryos were also produced in large numbers from suspension-derived PEMs of both cultivars on semisolid medium lacking 2,4-D. Somatic embryos matured and regenerated into plants in MS basal medium containing 3% sucrose. Using this method more than 60% of the somatic embryos regenerated plants. More than 90% of the regenerated plants were successfully transferred to the greenhouse. Received: 27 July 1998 / Revision received: 15 October 1998 / Accepted: 27 October 1998  相似文献   

11.
研究了秋水仙碱不同浓度和处理时间对甘蓝型油菜23个基因型离体小孢子胚胎发生的影响.3个基因型的小孢子被10、50和100mg/L秋水仙碱处理24h或48h,胚产量是2.55~14.75胚/蕾,10~50mg/L处理72h则是0.94~2.43胚/蕾.这表明处理72h对小孢子胚发生有抑制作用.用200、400、500和800mg/L处理2个基因型小孢子16~48h,胚产量为0.6~1.33胚/蕾,未处理对照是6.25和9.36胚/蕾.可见200~800mg/L浓度对胚再生有不同程度的阻碍效应.结果还证明,小孢子对秋水仙碱的反应与其基因型有关.当用10、20、50和100mg/L处理48h时,22B5-6和903-3小孢子的胚产量为37.09~69.47胚/蕾,而F1-29、W592和SF10-12是0.28~1.45胚/蕾,相互之间差异很大.秋水仙碱处理小孢子的目的是使其再生植株的染色体高频率加倍,因此应根据胚产量和染色体加倍率来确定秋水仙碱浓度和处理时间.本试验中,采用10~50mg/L处理48h或者用100mg/L处理24h,约80%基因型的小孢子胚产量在5胚/蕾以上,约70%基因型的再生植株加倍率达60%以上,可有效地用于油菜遗传和育种研究等领域.  相似文献   

12.
Somatic embryos directly formed at cut edges or on the surface of leaf explants, around cut ends or along side surfaces of petiole and stem explants of Golden Pothos [Epipremnum aureum (Linden & Andre) Bunt.] on Murashige and Skoog (MS) medium supplemented with N-(2-chloro-4-pyridyl)-N-phenylurea (CPPU) or N-phenyl-N-1, 2, 3-thiadiazol-5-ylurea (TDZ) with -naphthalene acetic acid (NAA) and a medium called MK containing MS salts with Kaos vitamins, supplemented with 2.0 mg/l TDZ and 0.2 mg/l NAA. Somatic embryos were also produced on MS medium containing 2.0 mg/l kinetin (KN) and 0.5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) from leaf and petiole explants, MS medium supplemented with 2.0 mg/l CPPU and 0.5 mg/l 2,4-D from petiole and stem explants, and 2.0 mg/l TDZ and 0.2 mg/l or 0.5 mg/l 2,4-D from stem explants. In addition, somatic embryos occurred from stem explants on Chus N6 medium containing 2.0 mg/l CPPU and 0.2 mg/l NAA. Somatic embryos matured and grew into multiple buds, shoots, or even plantlets after 2–3 months on the initial culture medium. Germination was optimal on MS medium containing either 2 mg/l 6-benzylaminopurine (BA) and 0.2 mg/l NAA or 2 mg/l zeatin and 0.2 mg/l NAA. Shoots elongated better and roots developed well on MS medium with no growth regulators. Approximately 30–100 plantlets were regenerated from each explant. The regenerated plants grew vigorously after transplanting to a soil-less container substrate in a shaded greenhouse.  相似文献   

13.
Protoplasts derived from hypocotyls of seedlings grown on half-strength MS medium containing 1% sucrose were cultured at a density of 5×104 ml-1 in Kao's medium supplemented with 1.0 mgl-12,4-D, 0.1 mgl-1 NAA and 0.5 mgl-1 zeatin riboside. After three days of culture in darkness at 25±1°C, cultures were transferred to light (70 Em-2s-1) in a 16/8 h ligø ht/dark cycle. Cultures were diluted on the 7th, 10th and 13th day with Kao's medium containing 3.4% sucrose, 0.1 mgl-1 2,4-dichlorophenoxyacetic acid and 1.0 mgl-1 benzyladenine. On the fifteenth day, microcalli were plated on K3 medium gelled with 0.5% agarose (Type 1, low EEO, Sigma). After a further period of two weeks, transfers were made to specific media to achieve either organogenesis or somatic embryogenesis. Time taken from plating protoplasts to obtaining plantlets is 8–10 weeks. Using this procedure, several hundred regenerated plants have been hardened in a growth chamber and transferred to soil.  相似文献   

14.
An efficient protocol of direct somatic embryogenesis (without involving intermediate callus) has been developed from stem segments and shoot tips of Capsicum annuum L. Explants were cultured on Murashige and Skoog (MS) medium supplemented with thidiazuron (TDZ). Among the various concentration of TDZ tested, 0.5 μM was proved to be best for induction of somatic embryos. Induction, maturation and germination were achieved on the same medium. The shoots developed from somatic embryos were transferred for rooting to MS medium supplemented with indole-3-butyric acid (IBA). All the regenerated plants with 85 % survival rate were normal with respect to morphology and growth characteristics.  相似文献   

15.
16.
Regeneration of Acacia mangium through somatic embryogenesis   总被引:2,自引:0,他引:2  
 Somatic embryogenesis and whole plant regeneration were achieved in callus cultures derived from immature zygotic embryos of Acacia mangium. Embryogenic callus was induced on MS medium containing combinations of TDZ (1–2 mg/l), IAA (0.25–2 mg/l) and a mixture of amino acids. Globular embryos developed on embryogenic callus cultured on the induction medium. Nearly 42% of embryogenic cultures with globular embryos produced torpedo- and cotyledonary-stage embryos by a two-step maturation phase. The first stage occurred on 1/2-strength MS basal medium containing 30 g/l sucrose and 5 mg/l GA3 followed by the second stage on 1/2-strength MS basal medium containing 50 g/l sucrose. Of the cotyledonary-stage somatic embryos, 11% germinated into seedlings that could be successfully transferred to pots. Light- and scanning electron microscopy showed that the somatic embryos originated from single cells of the embryogenic callus. Further, a single cell layer could be detected beneath the developing somatic embryos that appeared to be a demarcation layer isolating the somatic proembryonic structure from the rest of the maternal callus. A suspensor-like structure connected the globular embryos to the demarcation layer. This is the first successful report of plant regeneration through somatic embryogenesis for this economically important tropical forest species. Received: 20 January 2000 / Revision received: 28 September 2000 / Accepted: 29 September  相似文献   

17.
Immature seeds, as well as hypocotyls and cotyledons excised from seedlings of Myrtus communis L., were cultured on media containing half-strength Murashige and Skoog macronutrients (MS/2) with combinations of auxins and cytokinins, in order to study their morphogenetic competence. Somatic embryogenesis was obtained from cotyledons, hypocotyls and 2-month-old immature seeds with 0.1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D). The percentage of explants showing this primary somatic embryogenesis ranged from 4% for hypocotyls to 12% for 2-month-old immature seeds. In the latter, somatic embryogenesis was also obtained in media containing 2,4-D plus a cytokinin, and with only a cytokinin. Somatic embryos obtained from hypocotyls, cotyledons or immature seeds were able to develop on MS/2 medium without plant growth regulators. Subculture of primary somatic embryos obtained from immature seeds on MS/2 medium without plant growth regulators gave rise to clusters with secondary somatic embryos and embryogenic calli. These clusters were subcultured every 8 weeks, and they were the source of highly embryogenic cultures. An average of 10% of the secondary somatic embryos developed into plantlets in each subculture. Therefore, the same culture on MS/2 medium without growth regulators yielded both plantlets and de novo secondary embryos. Received: 6 April 1998 / Revision received: 10 July 1998 / Accepted: 21 July 1998  相似文献   

18.
Summary Seventeen cultivars of cotton (Gossypium hirsutum L.) were evaluated for callus initiation and maintenance using 3 initiation media and 3 maintenance media. After a series of transfers of a 3% glucose media, calli were placed on a 3% sucrose medium. After several weeks calli were observed for the presence of embryo-like structures. Cultivars Coker 201 and Coker 315 were identified as embryogenic. Embryogenic callus has since been routinely obtained within 6 weeks by initiating callus on glucose media for 3–4 weeks followed by transfer to sucrose media. Histological examination has shown that embryos are derived from isodiametric, densely cytoplasmic cells and follow predictable patterns of development. Upon maturity, transfer to auxin-free media with reduced sucrose levels results in embryo germination. Regenerated plants can be transferred to greenhouse within 90 days of callus initiation.The senior author is presently a Research Geneticist, USDA-ARS, and Assistant Professor Present address  相似文献   

19.
 An efficient plant regeneration procedure has been established from hypocotyl explants of the common ice plant, Mesembryanthemum crystallinum L, a halophytic leaf succulent that exhibits a stress-induced switch from C3 photosynthesis to crassulacean acid metabolism (CAM). Somatic embryos were initiated and developed up to globular and heart stages in Murashige and Skoog (MS) media supplemented with 3% sucrose, 0.6% bacto-agar, 80 mM NaCl, 5 μM 2,4-D and 1 μM kinetin. High frequency regeneration occurred when somatic embryos were germinated on media that lacked 2,4-D. High cytokinin treatment suppressed normal growth of embryos and favored abnormal embryo proliferation. Without growth regulators, regenerated plants rooted on MS medium with 100% efficiency. Mature, regenerated plants were fertile and morphologically identical to seed-derived plants. Received: 29 April 1999 / Revision received: 2 July 1999 · Accepted: 12 July 1999  相似文献   

20.
 The development of a rapid protocol for high-efficiency somatic embryogenesis and plant regeneration from seed-derived embryogenic callus cultures of California poppy (Eschscholzia californica Cham.) is reported. The optimized procedure required less than 13 weeks from the initiation of seed cultures to the recovery of plantlets and involved the sequential transfer of cultures onto solid Murashige and Skoog basal medium containing three different combinations of growth regulators. All steps were performed at 25  °C. Friable primary callus was induced from seeds of E. californica cultured on medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxyacetic acid. The primary callus was transferred to medium containing 1.0 mg l−1 1-naphthaleneacetic acid and 0.5 mg l−1 6-benzylaminopurine to establish embryogenic callus and promote somatic embryogenesis. Regenerated plantlets were recovered after the conversion of somatic embryos on medium containing 0.05 mg l−1 6-benzylaminopurine and showed normal development. Embryogenic callus was induced at a frequency of 85%, an average of 45 somatic embryos were produced per callus, 90% of the somatic embryos converted, and about 70% of the plantlets were recovered in soil. The growth rate of somatic embryo-derived shoots could be increased by gibberellic acid treatment, but the resulting plantlets were hyperhydritic. Received: 14 February 1999 / Revision received: 27 April 1999 / Accepted: 14 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号