首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The success of species invasions depends on both the characteristics of the invaded habitat and the traits of the invasive species. At local scales biodiversity may act as a barrier to invasion; however, the mechanism by which biodiversity confers invasion resistance to a community has been the subject of considerable debate. The purpose of this study was to test the hypothesis that productivity and diversity affected the ability of a regionally available species to colonize communities from which it is absent. We hypothesized that the invasibility of rock pool invertebrate communities would increase with increasing nutrients and decrease with increasing diversity. We tested this possibility using naturally invaded outdoor aquatic microcosms. We demonstrated that the invasibility of an experimental multi-trophic aquatic community by a competitive native midge species (Ceratopogonidae: Dasyhelea sp.) was determined by an interaction between resource availability, diversity, and the densities of two competitive ostracods species. Nutrient enrichment increased invasion success; however, within nutrient-enriched microcosms, invasion success was highest in the low-diversity treatments. Our results suggest that resource availability may in fact be the principal mechanism determining invasibility at local scales in multi-trophic rock pool communities; however resource availability can be determined by both nutrient input as well as by the diversity of the biotic community.  相似文献   

2.
The impact of invasion on diversity varies widely and remains elusive. Despite the considerable attempts to understand mechanisms of biological invasion, it is largely unknown whether some communities’ characteristics promote biological invasion, or whether some inherent characteristics of invaders enable them to invade other communities. Our aims were to assess the impact of one of the massive plant invaders of Scandinavia on vascular plant species diversity, disentangle attributes of invasible and noninvasible communities, and evaluate the relationship between invasibility and genetic diversity of a dominant invader. We studied 56 pairs of Heracleum persicum Desf. ex Fisch.‐invaded and noninvaded plots from 12 locations in northern Norway. There was lower native cover, evenness, taxonomic diversity, native biomass, and species richness in the invaded plots than in the noninvaded plots. The invaded plots had nearly two native species fewer than the noninvaded plots on average. Within the invaded plots, cover of H. persicum had a strong negative effect on the native cover, evenness, and native biomass, and a positive association with the height of the native plants. Plant communities containing only native species appeared more invasible than those that included exotic species, particularly H. persicum. Genetic diversity of H. persicum was positively correlated with invasibility but not with community diversity. The invasion of a plant community by H. persicum exerts consistent negative pressure on vascular plant diversity. The lack of positive correlation between impacts and genetic diversity of H. persicum indicates that even a small founder population may cause high impact. We highlight community stability or saturation as an important determinant of invasibility. While the invasion by H. persicum may decrease susceptibility of a plant community to further invasion, it severely reduces the abundance of native species and makes them more vulnerable to competitive exclusion.  相似文献   

3.
We present results from an ongoing field study conducted in Kansas grassland to examine correlates of invasibility and community stability along a natural gradient of plant diversity. Invasibility was evaluated by sowing seeds of 34 plant species into 40 experimental plots and then measuring colonization success after two growing seasons. Compositional stability, defined as resistance to change in species relative abundances over two growing seasons and in response to experimental disturbance, was measured in a separate set of 40 plots.
We found that community susceptibility to invasion was greatest in high diversity microsites within this grassland. Multiple regression analyses suggested that the positive correlation between invasibility and plant diversity was due to the direct influences of the extrinsic factors that contribute to spatial variation in diversity (soil disturbances; light availability), not to any direct impact of diversity. In addition, we found that compositional stability in response to disturbance was greatest within low diversity microsites and was strongly related to the dominance (evenness) component of diversity.  相似文献   

4.
Models predict that community invasibility generally declines with species diversity, a prediction confirmed by small‐scale experiments. Large‐scale observations and experiments, however, find that diverse communities tend to be more heavily invaded than simple communities. One hypothesis states that large‐scale environmental heterogeneity, which similarly influences native and invasive species, can cause a positive correlation between diversity and invasibility, overriding the local negative effects of diversity on invasibility. We tested this hypothesis using aquatic microbial communities consisting of protists and rotifers consuming bacteria and nanoflagellates. We constructed a productivity gradient to simulate large‐scale environmental heterogeneity, started communities with the same number of species along this gradient, and subjected equilibrial communities to invasion by non‐resident consumer species. Both invaders and most resident species increased their abundances with resource enrichment, resulting in a positive correlation between diversity and invasibility. Intraspecific interference competition within resident species and the positive effect of enrichment on the number of available resources probably accounted for the higher invasibility with enrichment. Our results provide direct experimental evidence that environmental heterogeneity in productivity can cause a positive diversity–invasibility relationship.  相似文献   

5.
Understanding the resistance of plant communities to invasion is urgent in times of changes in the physical environment due to climate change and changes in the resident communities due to biodiversity loss. Here, we test the interaction between repeated drought or heavy rainfall events and functional diversity of grassland and heath communities on invasibility, measured as the number of plant individuals invading from the matrix vegetation. Invasibility of experimental plant communities was influenced by extreme weather events, although no change in above‐ground productivity of the resident communities was observed. Drought decreased invasibility while heavy rainfall increased invasibility, a pattern that is consistent with the fluctuating resource hypothesis. Higher community diversity generally decreased invasibility, which can be explained by a combination of the fluctuating resource hypothesis and niche theory. The effects of the physical environment (extreme weather events) and diversity resistance (community composition) were additive, as they were independent from each other. Differences in the composition of invading species sets were found, and Indicator Species Analysis revealed several invading species with significant affinity to one particular extreme weather event or community composition. This finding supports niche theory and contradicts neutral species assembly. Our data supports theories which predict decreased resistance of plant communities due to both increased climate variability and biodiversity loss. The effects of these two factors, however, appear to be independent from each other.  相似文献   

6.
Although many studies have investigated how community characteristics such as diversity and disturbance relate to invasibility, the mechanisms underlying biotic resistance to introduced species are not well understood. I manipulated the functional group composition of native algal communities and invaded them with the introduced, Japanese seaweed Sargassum muticum to understand how individual functional groups contributed to overall invasion resistance. The results suggested that space preemption by crustose and turfy algae inhibited S. muticum recruitment and that light preemption by canopy and understory algae reduced S. muticum survivorship. However, other mechanisms I did not investigate could have contributed to these two results. In this marine community the sequential preemption of key resources by different functional groups in different stages of the invasion generated resistance to invasion by S. muticum . Rather than acting collectively on a single resource the functional groups in this system were important for preempting either space or light, but not both resources. My experiment has important implications for diversity–invasibility studies, which typically look for an effect of diversity on individual resources. Overall invasion resistance will be due to the additive effects of individual functional groups (or species) summed over an invader's life cycle. Therefore, the cumulative effect of multiple functional groups (or species) acting on multiple resources is an alternative mechanism that could generate negative relationships between diversity and invasibility in a variety of biological systems.  相似文献   

7.
The relationship between diversity and productivity of plant community under plant invasion has been not well known up to now. Here, we investigated the relationship between diversity and productivity under plant invasion and studied the response of species level plant mass to species richness in native and invaded communities. A field experiment from 2008 to 2013 and a pot experiment in 2014 were conducted to study the effects of plant invasion on the relationship between diversity and productivity and the response of species level plant mass to species richness in native and invaded communities. The community level biomass was negatively correlated to plant species richness in invaded communities while the same relationship was positive in native communities. The species level plant mass of individual species responded differently to overall plant species richness in the native and invaded communities, namely, most of the species’ plant mass increased in native communities, but decreased in invaded communities with increasing species richness. The complementarity or selection effects might dominate in native communities while competition effects might dominate in invaded communities. Accordingly, the negative relationship between diversity and productivity under plant invasion is highlighted in our experiments.  相似文献   

8.
Productivity influences the availability of resources for colonizing species. Biodiversity may also influence invasibility of communities because of more complete use of resource types with increasing species richness. We hypothesized that communities with higher environmental productivity and lower species richness should be more invasible by a competitor than those where productivity is low or where richness is high. We experimentally examined the invasion resistance of herbivorous meiofauna of Jamaican rock pools by a competitor crustacean (Ostracoda: Potamocypris sp. (Brady)) by contrasting three levels of nutrient input and four levels of species richness. Although relative abundance (dominance) of the invasive was largely unaffected by resource availability, increasing resources did increase the success rate of establishment. Effects of species richness on dominance were more pronounced with a trend towards the lowest species richness treatment of 2 resident species being more invasible than those with 4, 6, or 7 species. These results can be attributed to a ‘sampling effect associated with the introduction of Alona davidii (Richard) into the higher biodiversity treatments. Alona dominated the communities where it established and precluded dominance by the introduced ostracod. Our experimental study supports the idea that niche availability and community interactions define community invasibility and does not support the application of a neutral community model for local food web management where predictions of exotic species impacts are needed.  相似文献   

9.
Dominant species are known to exert strong influence over community dynamics, although little work has addressed how they affect invasibility. In this study, we examined whether dominant species identity and abundance affected invasibility of old-field plant communities. To quantify invasibility, we added seeds of 19 plant species into plots dominated by one of four different herbaceous perennial species ( Andropogon virginicus , Bromus inermis , Centaurea maculosa , or Solidago canadensis ) . We found that, independent of species richness and abiotic variables, plots dominated by Andropogon were the least invasible, while Bromus and Centaurea plots had the highest invasibility. We examined several potential mechanisms by which these dominant species might influence invasibility, and found invasion to increase with decreasing litter biomass and increasing community species richness. The abundance of the dominant species was not a significant predictor of invasion. These results indicate that dominant species identity plays an important role in determining invasibility of plant communities, though exact mechanisms underlying these effects still need to be explored.  相似文献   

10.
植物群落的生物多样性及其可入侵性关系的实验研究   总被引:16,自引:1,他引:16       下载免费PDF全文
 生物入侵已经成为一个普遍性的环境问题,并为许多学者所关注。尽管一些理论研究和观察表明生物多样性丰富的群落不容易受到外来种的入侵,但后来有些实验研究并没能证实两者的负相关性,多样性 可入侵性假说仍然是入侵生态学领域争论比较多的一个焦点。人为构建不同物种多样性和物种功能群多样性(C3 禾本科植物、C4植物、非禾本科草本植物和豆科植物)梯度的小尺度群落,把其它影响可入侵性的外在因子和多样性效应隔离开来,研究入侵种喜旱莲子草(Alternanthera philoxeroides)在不同群落里的入侵过程来验证多样性 可入侵性及其相关假说。研究结果显示,物种功能群丰富的群落可入侵程度较低,功能群数目相同而物种多样性不同的群落可入侵性没有显著性差异,功能群特征不同的群落也表现出可入侵性的差异,生活史周期短的单一物种群落和有着生物固氮功能的豆科植物群落可入侵程度较高,与喜旱莲子草属于同一功能群且有着相似生态位的土著种莲子草(A. sessilis)对入侵的抵抗力最强。实验结果表明,物种多样性和群落可入侵性并没有很显著的负相关,而是与物种特性基础上的物种功能群多样性呈负相关,群落中留给入侵种生态位的机会很可能是决定群落可入侵性的一个关键因子。  相似文献   

11.
群落可侵入性及其影响因素   总被引:25,自引:1,他引:25       下载免费PDF全文
 可侵入性用于评价群落易遭受生物入侵的程度,受外来种死亡率、区域气候、干扰水平、生态系统抵抗入侵的能力、本地种竞争和抗干扰能力等因素的影响。当前对群落或区域间可侵入性的比较常以外来种数量或丰度为据,然而这两者仅代表了群落内单一的动态过程,不足以作为衡量群落可侵入性的广泛标准。借助一个描述外来种数量的简单模型阐明,由于影响可侵入性因素的复杂性,各地之间的可侵入性几乎不可比较。并从入侵过程、入侵种特性及本地种、本地群落对入侵的抵抗性几方面对群落可侵入性进行了阐述分析,其中着重介绍入侵生态中几个重要的概念,如可侵  相似文献   

12.
Understanding the factors that affect establishment success of new species in established communities requires the study of both the ability of new species to establish and community resistance. Spatial pattern of species within a community can affect plant performance by changing the outcome of inter-specific competition, and consequently community invasibility. We studied the effects of spatial pattern of resident plant communities on fitness of genotypes from the native and introduced ranges of two worldwide invasive species, Centaurea stoebe and Senecio inaequidens, during their establishment stage. We experimentally established artificial plant mixtures with 4 or 8 resident species in intra-specifically aggregated or random spatial patterns, and added seedlings of genotypes from the native and introduced ranges of the two target species. Early growth of both S. inaequidens and C. stoebe was higher in aggregated than randomly assembled mixtures. However, a species-specific interaction between invasiveness and invasibility highlighted more complex patterns. Genotypes from native and introduced ranges of S. inaequidens showed the same responses to spatial pattern. By contrast, genotypes from the introduced range of C. stoebe did not respond to spatial pattern whereas native ones did. Based on phenotypic plasticity, we argue that the two target species adopted different strategies to deal with the spatial pattern of the resident plant community. We show that effects of spatial pattern of the resident community on the fitness of establishing species may depend on the diversity of the recipient community. Our results highlight the need to consider the interaction between invasiveness and invasibility in order to increase our understanding of invasion success.  相似文献   

13.
Understanding the factors that encourage or inhibit plant invasions is vital to focusing limited invasive control efforts within areas where they are most practical and cost-effective. To extend the range of contexts in which invasibility is studied and aid the development of practical strategies to limit damaging plant invasions, we set out to test the relative importance of native species richness, native seedling density, and invasive propagule pressure, on the invasibility of artificial assemblages of naturally occurring tropical woody seedling communities. Our greenhouse mesocosms included a species pool of twelve trees and woody shrubs native to South Florida's tropical hardwood hammocks, and an increasingly prevalent noxious woody invader of this system, Ardisia elliptica. We found that invader propagule pressure was the single most important factor determining community invasibility. We also revealed a positive relationship between invasibility and native species richness in our polyculture mesocosms. Because A. elliptica biomass production significantly differed among different native monocultures and was not related to overyielding in native polycultures, we suggest that the effect of species richness on invasibility in this experiment was the result of sampling effects rather than a true effect of diversity.Three broad findings hold potential for application in preventing and controlling plant invasions, especially in the seedling layers of tropical dry forests: (1) effective invasive control efforts will likely benefit from measures to minimize propagule pressure; (2) managers might do well to prioritize invasive monitoring and removal efforts on the most diverse habitats within a management region; and (3) while more data are necessary to further understand our finding of a lack of association between productivity and invasibility, management regimes aimed at maximizing primary productivity might not increase invasibility, and in fact, strategies for controlling invasive plants via the management of ecosystem productivity may be ineffective.  相似文献   

14.
Invasibility depends on the interaction of the introduced species with the abiotic and biotic factors of the recipient community. In particular, the biotic resistance posed by native herbivores has been claimed to be of great importance in controlling plant invasion. We investigated fruit and seed predation of two exotic Opuntia species within and between Mediterranean communities in order to determine how patterns of predation matched patterns of invasion. Predators were small mammals, presumably mice, which could consume more than 50% of the seeds produced. Predators could be equally effective in consuming fruit and single seeds. O. maxima fruits were slightly preferred to O. stricta fruits, but predators did not distinguish between seeds. Seed predation was more intense in invaded than in non-invaded communities. However, there was a high spatial variation in seed predation that did not always match patterns of invasion, suggesting that seed predation alone is not a good predictor of community invasibility to Opuntia. According to these results invasibility to Opuntia is limited in some (but not all) communities by native mice. Seed losses by predation were high for both species. However, we estimated that more than 75% of seeds dispersed by birds to non-invaded areas are not predated.  相似文献   

15.
Resident diversity and resource enrichment are both recognized as potentially important determinants of community invasibility, but the effects of these biotic and abiotic factors on invasions are often investigated separately, and little work has been done to directly compare their relative effects or to examine their potential interactions. Here, we evaluate the individual and interactive effects of resident diversity and resource enrichment on plant community resistance to invasion. We factorially manipulated plant diversity and the enrichment of belowground (soil nitrogen) and aboveground (light) resources in low-fertility grassland communities invaded by Lolium arundinaceum, the most abundant invasive grass in eastern North America. Soil nitrogen enrichment enhanced L. arundinaceum performance, but increased resident diversity dampened this effect of nitrogen enrichment. Increased light availability (via clipping of aboveground vegetation) had a negligible effect on community invasibility. These results demonstrate that a community’s susceptibility to invasion can be contingent upon the type of resource pulse and the diversity of resident species. In order to assess the generality of these results, future studies that test the effects of resident diversity and resource enrichment against a range of invasive species and in other environmental contexts (e.g., sites differing in soil fertility and light regimes) are needed. Such studies may help to resolve conflicting interpretations of the diversity–invasibility relationship and provide direction for management strategies.  相似文献   

16.
Immigration rates of species into communities are widely understood to influence community diversity, which in turn is widely expected to influence the susceptibility of ecosystems to species invasion. For a given community, however, immigration processes may impact diversity by means of two separable components: the number of species represented in seed inputs and the density of seed per species. The independent effects of these components on plant species diversity and consequent rates of invasion are poorly understood. We constructed experimental plant communities through repeated seed additions to independently measure the effects of seed richness and seed density on the trajectory of species diversity during the development of annual plant communities. Because we sowed species not found in the immediate study area, we were able to assess the invasibility of the resulting communities by recording the rate of establishment of species from adjacent vegetation. Early in community development when species only weakly interacted, seed richness had a strong effect on community diversity whereas seed density had little effect. After the plants became established, the effect of seed richness on measured diversity strongly depended on seed density, and disappeared at the highest level of seed density. The ability of surrounding vegetation to invade the experimental communities was decreased by seed density but not by seed richness, primarily because the individual effects of a few sown species could explain the observed invasion rates. These results suggest that seed density is just as important as seed richness in the control of species diversity, and perhaps a more important determinant of community invasibility than seed richness in dynamic plant assemblages.  相似文献   

17.
To resist establishment by an invasive plant, a community may require one or more species functionally similar to the invader in their resource acquisition pattern. In this study, communities consisting of native winter annual forbs, non‐native annual grasses, native perennials, or a combination of the two native communities were established with and without Centaurea solstitialis to determine the effect of soil moisture and light availability on plant community invasion resistance. The annual plant communities were unable to resist invasion by C. solstitialis. In the native winter annual forb community, senescence in late spring increased light penetration (>75%) to the soil surface, allowing seeded C. solstitialis to quickly establish and dominate the plots. In addition, native annual forbs utilized only shallow soil moisture, whereas C. solstitialis used shallow and deep soil moisture. In communities containing native perennials, only Elymus glaucus established well and eventually dominated the plots. During the first 2 years of establishment, water use pattern of perennial communities was similar to native annual forbs and resistance to invasion was associated with reduced light availability during the critical stages of C. solstitialis establishment. In later years, however, water use pattern of perennial grass communities was similar or greater than C. solstitialis‐dominated plots. These results show that Central Valley grasslands that include E. glaucus resist C. solstitialis invasion by a combination of light suppression and soil water competition. Spatiotemporal resource utilization patterns, and not just functional similarity, should be considered when developing restoration strategies to resist invasion by many non‐native species.  相似文献   

18.
Theories and models attempt to explain how and why particular plant species grow together at particular sites or why invasive exotic species dominate plant communities. As local climates change and human‐use degrades and disturbs ecosystems, a better understanding of how plant communities assemble is pertinent, particularly when restoring grassland ecosystems that are frequently disturbed. One such community assembly theory is priority effects, which suggests that arrival order of species into a community alters plant–plant interactions and community assembly. Theoretically, priority effects can have lasting effects on ecosystems and will likely be altered as the risk of invasion by exotic species increases. It is difficult to predict how and when priority effects occur, as experimental reconstruction of arrival order is often difficult in adequate detail. As a result, limited experimental studies have explored priority effects on plant community assembly and plant invasions. To determine if and how priority effects affect the success of invasive species, we conducted a greenhouse study exploring how the arrival order of an invasive grass, Bromus tectorum, affects productivity and community composition when grown with native grasses. We found evidence for priority effects, as productivity was positively related to dominance of B. tectorum and was greater the earlier B. tectorum arrived. This suggests that priority effects could be important for plant communities as the early arrival of an invasive species drastically impacted the productivity and biodiversity of our system at the early establishment stages of plant community development.  相似文献   

19.
Ben Gooden  Kris French 《Oikos》2015,124(3):298-306
Alien plant invasion and nutrient enrichment as a result of anthropogenic landscape modification seriously threaten native plant community diversity. It is poorly understood, however, whether these two disturbances interact with the functional identity of recipient native plants to drive community change. We performed a mesocosm experiment to examine whether the interactive effects of invasion by a stoloniferous turf‐grass Stenotaphrum secundatum and nutrient enrichment vary across different plant growth forms of an endangered coastal plant community. Communities contained 18 species (drawn without replacement from a pool of 31 species) with either runner, tufted or woody growth forms. Species were well‐established and reproductively mature prior to S. secundatum introduction. Species growth (% cover), reproductive output, soil temperature and light availability were monitored for two growing seasons. Invasion and nutrient enrichment (two levels: ‘natural control’ and ‘enriched’) had no effect on species richness, community composition, reproductive output, soil temperature or light penetration. There was no interactive effect of nutrients and invasion on community productivity (i.e. final biomass), such that invasion caused a reduction in community biomass at both natural and enriched nutrient levels. This was driven only by reduced biomass of functionally‐similar native runner species, which share similar root morphologies and nutrient‐acquisition strategies with S. secundatum. Our study indicates that impacts of invasion are dependent upon the functional identity of species within recipient communities, not the availability of resources. This shows that management cannot buffer invader effects by manipulating resource availability. Revegetation strategies should target functionally‐similar natives for replacement following invader control.  相似文献   

20.
入侵植物的相对多度比群落系统发育均匀度更能解释湿地群落对不同入侵程度的响应 本地植物群落普遍受到入侵植物不同程度的入侵。然而,入侵植物相对多度与群落系统发育均匀度对不同入侵程度下湿地植物群落响应入侵的相对贡献尚不明确。此外,这种贡献是否随淹水等环境 条件的变化而变化也不清楚。为了探讨这些问题,我们选择空心莲子草(Alternanthera philoxeroides)作为入侵植物,通过改变植物群落物种组成,构建了4个不同的入侵程度,并且设置了水淹和无水淹两种处理。 改变群落入侵程度的同时改变了空心莲子草的相对多度和群落的系统发育均匀度。研究结果表明,不同的入侵程度显著影响了空心莲子草和一些本地物种的单株生物量。变异分割结果表明,无论淹水情况结果如何,空心莲子草相对多度对植物群落指标变异的贡献都大于系统发育均匀度。斯皮尔曼等级相关检验结果表明,空心莲子草的相对多度与空心莲子草和部分本地物种的单株生物量显著负相关;群落系统发育均匀度仅与少数本地种性状显著正相关。其相关强度和显著性均受特定的物种和水淹环境的影响。总之,这些研究结果表明:无论淹水情况如何,入侵植物(空心莲子草)的相对多度都比群落的系统发育均匀度更能有效地解释湿地植物群落对不同入侵程度的响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号