共查询到20条相似文献,搜索用时 0 毫秒
1.
C. P. H. Mulder E. Bazeley-White P. G. Dimitrakopoulos A. Hector M. Scherer-Lorenzen B. Schmid 《Oikos》2004,107(1):50-63
In nature, plant biomass is not evenly distributed across species, and naturally uncommon species may differ from common species in the probability of loss from the community. Understanding relationships between evenness and productivity is therefore critical to understanding changes in ecosystem functioning as species are lost from communities. We examined data from a large multi-site grassland experiment (BIODEPTH) for relationships between evenness of species composition (proportional abundance of biomass) and total biomass of communities. For plots which started with the same and even species composition, but which diverged in evenness over time, those with lower evenness had a significantly greater biomass. The relationship between evenness and biomass across all plots was also negative. However, for communities where the most common species represented one of the three largest species in monoculture at that site (inclusion of a large dominant species), the relationship was neutral. Path analyses indicated that three paths contributed to this negative relationship. First, higher species richness decreased evenness, but increased biomass (primarily through an increase in maximum plant size). Contrary to predictions, maximum plant size had either no effect on evenness, or a positive effect (in year 3 plots with a large dominant species), thereby reducing this relationship. In year 2, large variation among species in plant size (as measured in monoculture) both decreased evenness and increased biomass, thus increasing the strength of the negative relationship between evenness and biomass. However, the former effect was only found in plots with a large dominant species, the latter only in plots without a large dominant species. When species richness, maximum plant size, and variation in size were accounted for, in year 2 evenness positively affected biomass in plots that included a large dominant species. Our results are consistent with the view that naturally uncommon species may be unaffected by (or even benefit from) the presence of a large naturally common species, and that uncommon plants may have little ability to increase productivity in the absence of such a species. We conclude that the observed negative relationship between evenness and biomass resulted from multiple direct and indirect effects, the relative strength of which depended in part on the presence of large dominant species. 相似文献
2.
Previous experiments that tested whether diverse plant communities have lower invasibility have all varied species richness. We experimentally varied evenness of four grassland species (three grasses and one forb) by planting a field experiment in Texas, and monitored the number of unplanted dicot and monocot species that invaded plots for two growing seasons. By varying evenness, we eliminated any sampling effect in our diversity treatment, because all plots contained the same plant species. Experimentally reducing evenness led to a greater number of dicot invaders, which emerged in plots throughout the growing season, but had less of an effect on monocot invaders, which emerged in flushes when experimental plants were semi‐dormant. Frequency of Solidago canadensis (altissima) stems with spittle bugs significantly increased with reductions in evenness during the first year, apparently because the greater number of Solidago stems in high evenness plots diluted the spittle‐bug effect. These results support the view that higher diversity plant communities are more resistant to dicot invaders and insect herbivores. 相似文献
3.
4.
Ecosystems provide multiple services upon which humans depend. Understanding the drivers of the ecosystem functions that support these services is therefore important. Much research has investigated how species richness influences functioning, but we lack knowledge of how other community attributes affect ecosystem functioning. Species evenness, species spatial arrangement, and the identity of dominant species are three attributes that could affect ecosystem functioning, by altering the relative abundance of functional traits and the probability of synergistic species interactions such as facilitation and complementary resource use. We tested the effect of these three community attributes and their interactions on ecosystem functions over a growing season, using model grassland communities consisting of three plant species from three functional groups: a grass (Anthoxanthum odoratum), a forb (Plantago lanceolata), and a N-fixing forb (Lotus corniculatus). We measured multiple ecosystem functions that support ecosystem services, including ecosystem gas exchange, water retention, C and N loss in leachates, and plant biomass production. Species evenness and dominant species identity strongly influenced the ecosystem functions measured, but spatial arrangement had few effects. By the end of the growing season, evenness consistently enhanced ecosystem functioning and this effect occurred regardless of dominant species identity. The identity of the dominant species under which the highest level of functioning was attained varied across the growing season. Spatial arrangement had the weakest effect on functioning, but interacted with dominant species identity to affect some functions. Our results highlight the importance of understanding the role of multiple community attributes in driving ecosystem functioning. 相似文献
5.
6.
Lisa. R. Norton rew R. Mcleod† Peter D. Greenslade† Les. G. Firbank‡ Andrew R. Watkinson 《Global Change Biology》1999,5(5):601-608
Experimental grassland communities (turves) were exposed to supplemental levels of UV-B radiation (280–315 nm) at an outdoor facility, under treatment arrays of cellulose diacetate-filtered fluorescent lamps which also produce UV-A radiation (315–400 nm). Control treatments consisted of arrays of polyester-filtered lamps, which allowed for exposure to UV-A radiation alone, and arrays of unenergized lamps allowing for exposure to ambient levels of solar radiation. 相似文献
7.
Factors limiting tree invasion in the Inland Pampas of Argentina were studied by monitoring the establishment of four alien tree species in remnant grassland and cultivated forest stands. We tested whether disturbances facilitated tree seedling recruitment and survival once seeds of invaders were made available by hand sowing. Seed addition to grassland failed to produce seedlings of two study species, Ligustrum lucidum and Ulmus pumila, but did result in abundant recruitment of Gleditsia triacanthos and Prosopis caldenia. While emergence was sparse in intact grassland, seedling densities were significantly increased by canopy and soil disturbances. Longer-term surveys showed that only Gleditsia became successfully established in disturbed grassland. These results support the hypothesis that interference from herbaceous vegetation may play a significant role in slowing down tree invasion, whereas disturbances create microsites that can be exploited by invasive woody plants. Seed sowing in a Ligustrum forest promoted the emergence of all four study species in understorey and treefall gap conditions. Litter removal had species-specific effects on emergence and early seedling growth, but had little impact on survivorship. Seedlings emerging under the closed forest canopy died within a few months. In the treefall gap, recruits of Gleditsia and Prosopis survived the first year, but did not survive in the longer term after natural gap closure. The forest community thus appeared less susceptible to colonization by alien trees than the grassland. We conclude that tree invasion in this system is strongly limited by the availability of recruitment microsites and biotic interactions, as well as by dispersal from existing propagule sources. 相似文献
8.
9.
Andy Hector Kim Dobson Asher Minns Ellen Bazeley-White John Hartley Lawton 《Ecological Research》2001,16(5):819-831
The relationship between community diversity and invasion resistance in a grassland was examined using experimental plant assemblages that varied in species richness and composition. The assemblages were weeded for three seasons to remove unsown species and we used the number of weeded seedlings, their total biomass and the number of species removed as indicators of community resistance and susceptibility to invasion. In general, we found a positive relationship between invasion resistance and increasing community diversity. Similar patterns of establishment were observed at the end of the fourth field season after several months without weeding. Increased invasion resistance with higher diversity appears to come through reduced levels of several above- and belowground resources, although these did not fully explain the effects of species richness in the studys analyses. Experimental increases and reductions of litter biomass within the studys experimental plant assemblages did not modify these patterns significantly. A review of comparable studies of invasion across directly manipulated diversity gradients revealed similar patterns. Positive effects of species diversity on invasion resistance were found in experimental manipulations of plant diversity conducted in the field and in the glasshouse, from studies with aquatic microcosms and in a marine system. Although some exceptions to this pattern were found in both terrestrial plant systems and aquatic microcosms, it was concluded that in biodiversity manipulation experiments more diverse communities are generally more resistant to invasion. 相似文献
10.
Species richness and evenness are the two major components of biodiversity, but the way in which they are interrelated is a subject of contention. We found a negative relationship between the two variables for bird communities at 92 woodland sites across Australia and sought an explanation. Actual evapotranspiration (AET) was by far the best predictor of species richness. When AET was controlled for, the relationship between richness and evenness became nonsignificant. Richness is greater at sites with higher AET because such sites support a greater number of individuals. However, such sites have a greater number of rare species, resulting in lower evenness. A complicating factor is that evenness is best predicted by degree of vegetation cover, with sparsely vegetated sites having significantly lower evenness. We conclude that there are two competing ecological processes, related to energy and water availability, that determine richness and evenness. The first drives total abundance (leading to high richness, low evenness), while the second drives productivity and niche availability (leading to high richness, high evenness). The relative strength of these two processes and the observed relationship between richness and evenness are likely to depend on the scale of the analysis and the species and range of habitats studied. 相似文献
11.
12.
Species richness and evenness respond in a different manner to propagule density in developing prairie microcosm communities 总被引:1,自引:0,他引:1
Diversity has two basic components: richness, or number of species in a given area, and evenness, or how relative abundance
or biomass is distributed among species. Previously, we found that richness and evenness can be negatively related across
plant communities and that evenness can account for more variation in Shannon’s diversity index (H′) than richness, which suggests that relationships among diversity components can be complex. Non-positive relationships
between evenness and richness could arise due to the effects of migration rate or local species interactions, and relationships
could vary depending on how these two processes structure local communities. Here we test whether diversity components are
equally or differentially affected over time by changes in seed density (and associated effects on established plant density
and competition) in greenhouse communities during the very early stages of community establishment. In our greenhouse experiment,
we seeded prairie microcosms filled with bare field soil at three densities with draws from a mix of 22 grass and forb species
to test if increased competition intensity or seedling density would affect the relationships among diversity components during
early community establishment. Increased seed density treatments caused diversity components to respond in a different manner
and to have different relationships with time. Richness increased linearly with seed density early in the experiment when
seedling emergence was high, but was unrelated to density later in the experiment. Evenness decreased log-linearly with seed
densities on all sampling dates due to a greater dominance by Rudbeckia hirta with higher densities. Early in the experiment, diversity indices weakly reflected differences in richness, but later, after
the competitive effects of Rudbeckia hirta became more intense, diversity indices more strongly reflected differences in evenness. This suggests that species evenness
and diversity indices do not always positively covary with richness. Based on these results, we suggest that evenness and
richness can be influenced by different processes, with richness being more influenced by the number of emerging seedlings
and evenness more by species interactions like competition. These results suggest that both diversity components should be
measured in plant diversity studies whenever it is possible. 相似文献
13.
Lindsay A. Turnbull Jonathan M. Levine Alexander J. F. Fergus Jana S. Petermann 《Oikos》2010,119(6):1040-1046
The loss of natural enemies is thought to explain why certain invasive species are so spectacularly successful in their introduced range. However, if losing natural enemies leads to unregulated population growth, this implies that native species are themselves normally subject to natural enemy regulation. One possible widespread mechanism of natural enemy regulation is negative soil feedbacks, in which resident species growing on home soils are disadvantaged because of a build‐up of species‐specific soil pathogens. Here we construct simple models in which pathogens cause resident species to suffer reduced competitive ability on home soils and consider the consequences of such pathogen regulation for potential invading species. We show that the probability of successful invasion and its timescale depend strongly on the competitive ability of the invader on resident soils, but are unaffected by whether or not the invader also suffers reduced competitive ability on home soils (i.e. pathogen regulation). This is because, at the start of an invasion, the invader is rare and hence mostly encounters resident soils. However, the lack of pathogen regulation does allow the invader to achieve an unusually high population density. We also show that increasing resident species diversity in a pathogen‐regulated community increases invasion resistance by reducing the frequency of home‐site encounters. Diverse communities are more resistant to invasion than monocultures of the component species: they preclude a greater range of potential invaders, slow the timescale of invasion and reduce invader population size. Thus, widespread pathogen regulation of resident species is a potential explanation for the empirical observation that diverse communities are more invasion resistant. 相似文献
14.
Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant communities 总被引:4,自引:0,他引:4
Selene Báez Scott L. Collins William T. Pockman Jennifer E. Johnson Eric E. Small 《Oecologia》2013,172(4):1117-1127
Aridland ecosystems are predicted to be responsive to both increases and decreases in precipitation. In addition, chronic droughts may contribute to encroachment of native C3 shrubs into C4-dominated grasslands. We conducted a long-term rainfall manipulation experiment in native grassland, shrubland and the grass–shrub ecotone in the northern Chihuahuan Desert, USA. We evaluated the effects of 5 years of experimental drought and 4 years of water addition on plant community structure and dynamics. We assessed the effects of altered rainfall regimes on the abundance of dominant species as well as on species richness and subdominant grasses, forbs and shrubs. Nonmetric multidimensional scaling and MANOVA were used to quantify changes in species composition in response to chronic addition or reduction of rainfall. We found that drought consistently and strongly decreased cover of Bouteloua eriopoda, the dominant C4 grass in this system, whereas water addition slightly increased cover, with little variation between years. In contrast, neither chronic drought nor increased rainfall had consistent effects on the cover of Larrea tridentata, the dominant C3 shrub. Species richness declined in shrub-dominated vegetation in response to drought whereas richness increased or was unaffected by water addition or drought in mixed- and grass-dominated vegetation. Cover of subdominant shrubs, grasses and forbs changed significantly over time, primarily in response to interannual rainfall variability more so than to our experimental rainfall treatments. Nevertheless, drought and water addition shifted the species composition of plant communities in all three vegetation types. Overall, we found that B. eriopoda responded strongly to drought and less so to irrigation, whereas L. tridentata showed limited response to either treatment. The strong decline in grass cover and the resistance of shrub cover to rainfall reduction suggest that chronic drought may be a key factor promoting shrub dominance during encroachment into desert grassland. 相似文献
15.
Non-native grass invasion alters native plant composition in experimental communities 总被引:1,自引:0,他引:1
Invasions of non-native species are considered to have significant impacts on native species, but few studies have quantified
the direct effects of invasions on native community structure and composition. Many studies on the effects of invasions fail
to distinguish between (1) differential responses of native and non-native species to environmental conditions, and (2) direct
impacts of invasions on native communities. In particular, invasions may alter community assembly following disturbance and
prevent recolonization of native species. To determine if invasions directly impact native communities, we established 32
experimental plots (27.5 m2) and seeded them with 12 native species. Then, we added seed of a non-native invasive grass (Microstegium vimineum) to half of the plots and compared native plant community responses between control and invaded plots. Invasion reduced native
biomass by 46, 64, and 58%, respectively, over three growing seasons. After the second year of the experiment, invaded plots
had 43% lower species richness and 38% lower diversity as calculated from the Shannon index. Nonmetric multidimensional scaling
ordination showed a significant divergence in composition between invaded and control plots. Further, there was a strong negative
relationship between invader and native plant biomass, signifying that native plants are more strongly suppressed in densely
invaded areas. Our results show that a non-native invasive plant inhibits native species establishment and growth following
disturbance and that native species do not gain competitive dominance after multiple growing seasons. Thus, plant invaders
can alter the structure of native plant communities and reduce the success of restoration efforts. 相似文献
16.
Rapid decay of diversity-productivity relationships after invasion of experimental plant communities
Andrea Bettina Pfisterer Jasmin Joshi Bernhard Schmid Markus Fischer 《Basic and Applied Ecology》2004,5(1):5-14
So far, effects of species richness on ecosystem functioning have mainly been investigated in the short term in experimental communities from which invasion was prevented. We kept the local species pools of experimental grassland communities with 1, 2, 4, 8, and 32 species closed for five years and subsequently opened them for invasion by cessation of weeding. As long as communities were weeded, extinctions were rare but positively related to species richness, diversity-productivity relationships were positive, and more diverse systems had a greater temporal stability. Following cessation of weeding, species-poor communities were more prone to invasion. However, invasion increased extinction especially in species-rich communities. Within two years, differences in species richness and biomass production between sets of communities of different initial species richness disappeared and the positive diversity-productivity relationship was no longer detectable whereas species compositions remained distinct. This indicates that the positive diversity-productivity relationships during the weeding phase were mainly controlled by species richness.Bis anhin wurden die Effekte der Artenvielfalt auf das Funktionieren von Ökosystemen vor allem in kurzfristigen Experimenten untersucht, in denen die Einwanderung von Pflanzenarten in die bestehenden Gesellschaften verhindert wurde. Im vorliegenden Versuch wurden die lokalen Artenpools von 1, 2, 4, 8 und 32 Arten unserer experimentellen Graslandgesellschaften während 5 Jahren künstlich geschlossen gehalten und danach geöffnet indem nicht mehr gejätet wurde. Solange die Gesellschaften gejätet wurden, gab es wenige Aussterbeereignisse, die aber positiv mit der Artenvielfalt korreliert waren. Die Beziehung zwischen Diversität und Produktivität war positiv und Systeme höherer Diversität zeigten eine größere zeitliche Stabilität. Nach der Aufgabe des Jätens nahm die Einwanderung vor allem in artenarmen Gesellschaften zu. Die Einwanderung erhöhte jedoch besonders das Aussterben in ursprünglich artenreichen Gesellschaften. Innerhalb von zwei Jahren verschwanden die Unterschiede in der Artenzahl und Biomasseproduktion zwischen den verschiedenen Graslandgesellschaften und eine positive Beziehung zwischen Diversität und Produktivität war nicht mehr feststellbar. Die Artenzusammensetzung der Versuchsflächen blieb jedoch unterschiedlich. Das deutet darauf hin, daß die positive Beziehung zwischen Diversität und Produktivität während der ersten Phase des Experiments vor allem durch die Artenzahl und nicht durch die Artenzusammensetzung hervorgerufen wurde. 相似文献
17.
The relationship between resident species diversity and invasion is generally negative in experimental studies but takes various forms in observational studies of natural communities. We hypothesized that stochastic species colonization, which applies to natural communities but not to experimental communities generally assembled through simultaneous species introduction, may lead to nonnegative diversity-invasion relationships via incurring priority effects. To test this hypothesis, we manipulated both resident species diversity and colonization history in sequentially assembled communities of bacterivorous protist species. We found that, despite a significant effect of assembly history on invader abundance, invader abundance decreased with diversity. This result was largely driven by positive selection effects associated with the dominant influence of an invasion-resistant species, which shared the most similar resource use pattern with the invader, and by the overall weak priority effects observed for the resident communities. Increasing species diversity, however, significantly strengthened priority effects, providing the first experimental support for the idea that larger species pools promote alternative community states. We suggest that elucidating mechanisms regulating the strength of priority effects may help in understanding variation in diversity-invasion relationships among natural communities. 相似文献
18.
This paper reports the findings of a short-term natural invasibility field study in constructed Mediterranean herbaceous communities of varying diversities, under a fire treatment. Three components of invasibility, i.e. species richness, density and biomass of invaders, have been monitored in burnt and unburnt experimental plots with resident diversity ranging from monocultures to 18-species mixtures. In general, species richness, density and biomass of invaders decreased significantly with the increase of resident species richness. Furthermore, the density and biomass of invading species were significantly influenced by the species composition of resident communities. Although aboveground biomass, leaf area index, canopy height and percent bare ground of the resident communities explained a significant part of the variation in the success of invading species, these covariates did not fully explain the effects of resident species richness. Fire mainly influenced invasibility via soil nutrient levels. The effect of fire on observed invasibility patterns seems to be less important than the effects of resident species richness. Our results demonstrate the importance of species richness and composition in controlling the initial stages of plant invasions in Mediterranean grasslands but that there was a lack of interaction with the effects of fire disturbance. 相似文献
19.
Abiotic and biotic resistance to grass invasion in serpentine annual plant communities 总被引:1,自引:0,他引:1
Biological invasions severely impact native plant communities, causing dramatic shifts in species composition and the restriction
of native species to spatially isolated refuges. Competition from resident species and the interaction between resource limitation
and competition have been overlooked as mechanisms of community resistance in refugia habitats. We examined the importance
of these factors in determining the resistance of California serpentine plant communities to invasion by three common European
grasses, Avena barbata, Bromus diandrus, and Hordeum murinum. We added seeds of each of these grasses to plots subjected to six levels of resource addition (N, P, Ca, H2O, all resources together, and a no-addition control) and two levels of competition (with resident community present or removed).
Resource limitation and competition had strong effects on the biomass and reproduction of the three invaders. The addition
of all resources together combined with the removal of the resident community yielded individual plants that were fourfold
to 20-fold larger and sixfold to 20-fold more fecund than plants from control plots. Competitor removal alone yielded invaders
that were twofold to sevenfold larger and twofold to ninefold more fecund. N addition alone or in combination with other resources
led to a twofold to ninefold increase in the biomass and fecundity of the invaders. No other resource alone significantly
affected native or invader performance, suggesting that N was the key limiting resource during our experiment. We found a
significant interaction between abiotic and biotic resistance for Bromus, which experienced increased competitive suppression in fertilized plots. The threefold increase in resident biomass with
N addition was likely responsible for this result. Our results confirm that serpentine plant communities are severely N limited,
which, in combination with competition from resident species, promotes the resistance of these systems to invasions. Our work
suggests that better understanding the relative sensitivities of invaders and residents to the physical environment is critical
to predicting how abiotic and biotic factors interact to determine community resistance. 相似文献