首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An improved method for the isolation of plasma membrane from rat liver is presented.Gentle homogenization of perfused livers in buffered isotonic KCI, followed by direct flotation of a low-speed nuclear pellet through a discontinuous sucrose density gradient results in a 32% yield, and 25-fold enrichment for the plasma membrane marker, phosphodiesterase I, in a crude plasma membrane fraction. This fraction contains less than 1% of the mitochondria, and endoplasmic reticulum present in the original homogenate, but is more heavily contaminated with lysosomes and Golgi membrane.Vigorous mechanical disruption of this material, followed by a second discontinuous sucrose density gradient, gives a light plasma membrane fraction with an 80-fold purification and 20% yield of phosphodiesterase I over the original homogete (with further reduction of contaminants).  相似文献   

2.
We report a method for the isolation of enriched fractions of intact Golgi apparatus from neurons of 10- to 12-day-old rat brains. Neurons were prepared according to a modified method of Farooq and Norton [J. Neurochem. 31, 887-894 (1978)]. Golgi-enriched fractions were obtained after centrifugation of postmitochondrial supernatants in a discontinuous sucrose gradient. Golgi fractions 1 and 2, recovered at the interfaces of 28-34% and 34-36% sucrose densities, respectively, were examined with morphometric and enzymatic methods. Morphometric analyses showed that 21-34% of fraction 1 and 11-29% of fraction 2 consisted of intact Golgi apparatus. Lysosomes, mitochondria, ribosomes, and rough endoplasmic reticulum contaminated fraction 1 (6-10%) and fraction 2 (14-26%). Golgi fraction 1 showed a 25- to 65-fold enrichment over neurons of UDP Gal:GlcNAc galactosyltransferase, CMP-sialic acid:lactosylceramide sialyltransferase, and PAPS:cerebroside sulfotransferase activities. Golgi fraction 2 showed a 8- to 23-fold enrichment over neurons of the activities of the above glycolipid- and glycoprotein-synthesizing enzymes. The activities of the possible marker enzymes rotenone-insensitive NADH-cytochrome c reductase, succinate-cytochrome c reductase, and arylsulfatase were low or minimally elevated in the Golgi fractions. A sevenfold enrichment of Na+, K+-ATPase activities was found in the Golgi fractions. This is consistent either with significant plasma membrane contamination or with the presence of this enzyme in the neuronal Golgi apparatus.  相似文献   

3.
Mitochondria isolated from rapidly growing, poorly differentiated Morris hepatoma 3924A have been found to export the citrate they generate from pyruvate, at a rate greater than four times that of control liver preparations. These 3924A mitochondria fail to exhibit state 3 respiration when either pyruvate or citrate are supplied as respiratory fuels. Nevertheless, substrates that join the Krebs cycle beyond citrate (viz. isocitrate, glutamate, alpha-ketoglutarate, and succinate) are readily oxidized by tumor 3924A mitochondria. Blocking the tricarboxylate anion exchange carrier with the citrate transport inhibitor 1,2,3-benzenetricarboxylate restores the ability of tumor 3924A mitochondria to respire with pyruvate or citrate. Slowly growing, minimally deviated Morris hepatoma 16 possesses mitochondria that do not display discernably altered respiratory patterns with pyruvate or citrate, but they do exhibit a 30% increase in the rate of citrate export relative to control liver preparations. Paralleling the preferential citrate export from tumor mitochondria is a dramatic enrichment of the tumor mitochondrial membranes with cholesterol. Hepatoma 3924A mitochondria possess a more than 5-fold enrichment in cholesterol, and those from tumor 16 display a 2-fold enrichment. When normal mitochondria, isolated from ACI strain rat liver, were enriched with cholesterol in vitro via a solid-state molecule transfer method employing Sephadex G-10 beads coated with cholesterol, they exhibited altered patterns of Krebs cycle metabolism that were qualitatively identical to those obtained with isolated Morris hepatoma mitochondria (which become enriched in membrane cholesterol endogenously during tumorigenesis). The enrichment of mitochondrial membranes with cholesterol, either by experimental manipulation in vitro or during the proliferation of the tumor in the host animal, promotes these metabolic changes directly, apparently by effecting a functional alteration in the operation of the tricarboxylate (citrate) exchange carrier of the inner mitochondrial membrane. These results highlight two related but incompletely understood phenomena as follows: 1) a functionally truncated Krebs cycle in cholesterol-rich tumor mitochondria, and 2) a mechanism for providing higher cytoplasmic levels of precursor metabolite intermediates which help sustain deregulated cholesterogenesis in hepatomas and other malignant neoplasms.  相似文献   

4.
Li Z  Okamoto K  Hayashi Y  Sheng M 《Cell》2004,119(6):873-887
The proper intracellular distribution of mitochondria is assumed to be critical for normal physiology of neuronal cells, but direct evidence for this idea is lacking. Extension or movement of mitochondria into dendritic protrusions correlates with the development and morphological plasticity of spines. Molecular manipulations of dynamin-like GTPases Drp1 and OPA1 that reduce dendritic mitochondria content lead to loss of synapses and dendritic spines, whereas increasing dendritic mitochondrial content or mitochondrial activity enhances the number and plasticity of spines and synapses. Thus, the dendritic distribution of mitochondria is essential and limiting for the support of synapses. Reciprocally, synaptic activity modulates the motility and fusion/fission balance of mitochondria and controls mitochondrial distribution in dendrites.  相似文献   

5.
The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain.  相似文献   

6.
A novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single ∼33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 °C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 °C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions.  相似文献   

7.
A novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single approximately 33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 degrees C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 degrees C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions.  相似文献   

8.
Mitochondrial CyP-D (cyclophilin-D) catalyses formation of the PT (permeability transition) pore, a key lesion in the pathogenesis of I/R (ischaemia/reperfusion) injury. There is evidence [Malouitre, Dube, Selwood and Crompton (2010) Biochem. J. 425, 137-148] that cytoprotection by the CyP inhibitor CsA (cyclosporin A) is improved by selective targeting to mitochondria. To investigate this further, we have developed an improved mtCsA (mitochondrial-targeted CsA) by modifying the spacer linking the CsA to the TPP+ (triphenylphosphonium) (mitochondrial-targeting) cation. The new mtCsA exhibits an 18-fold increase in binding affinity for CyP-D over the prototype and a 12-fold increase in potency of inhibition of the PT in isolated mitochondria, owing to a marked decrease in non-specific binding. The cytoprotective capacity was assessed in isolated rat cardiomyocytes subjected to transient glucose and oxygen deprivation (pseudo-I/R). The new mtCsA was maximally effective at lower concentrations than CsA (3-15 nM compared with 50-100 nM) and yielded improved cytoprotection for up to 3 h following the pseudo-ischaemic insult (near complete compared with 40%). These data indicate the potential value of selective CyP-D inhibition in cytoprotection.  相似文献   

9.
Ca2+ and diacylglycerol-regulated protein kinase Cs (PKCs; conventional PKC isoforms, such as PKCgamma) are multifunctional signaling molecules that undergo reversible plasma membrane translocation as part of their mechanism of activation. In this article, we investigate PKCgamma translocation in hippocampal neurons and show that electrical or glutamate stimulation leads to a striking enrichment of PKCgamma in synaptic spines and dendritic branches. Translocation into spines and branches was delayed when compared with the soma plasma membrane, and PKCgamma remained in these structures for a prolonged period after the response in the soma ceased. We have developed a quantitative model for the translocation process by measuring the rate at which PKCgamma crossed the neck of spines, as well as cytosolic and membrane diffusion coefficients of PKCgamma. Our study suggests that neurons make use of a high surface-to-volume ratio of spines and branches to create a geometric attraction process for PKC that imposes a delayed enhancement of PKC action at synapses and in peripheral processes.  相似文献   

10.
Conflict between the sexes over mating decision may result in antagonistic coevolution in structures that increase control over copulation. In Aquarius paludum both females and males have long abdominal spines. We tested the hypothesis that abdominal spines increase female ability to resist male mating attempts and reduce the costs of mating in A. paludum. We manipulated female spine length and observed female mating and egg-production rate in two different studies. We found that females with intact spines succeeded to reject male mating attempt more often than females with removed spines. Intact females also mated less often than females with removed or shortened spines. Male presence and mating rate increased female egg number. Our results thus support the hypothesis that abdominal spines help female to reject male mating attempts but contrary to predictions, we found that A. paludum females somehow benefit from multiple matings in spite of the sexual conflict.  相似文献   

11.
Dendritic spines are actin-rich membrane protrusions that are the major sites of excitatory synaptic input in the mammalian brain, and their morphological plasticity provides structural basis for learning and memory. Here we report that endophilin A1, with a well-established role in clathrin-mediated synaptic vesicle endocytosis at the presynaptic terminal, also localizes to dendritic spines and is required for spine morphogenesis, synapse formation and synaptic function. We identify p140Cap, a regulator of cytoskeleton reorganization, as a downstream effector of endophilin A1 and demonstrate that disruption of their interaction impairs spine formation and maturation. Moreover, we demonstrate that knockdown of endophilin A1 or p140Cap impairs spine stabilization and synaptic function. We further show that endophilin A1 regulates the distribution of p140Cap and its downstream effector, the F-actin-binding protein cortactin as well as F-actin enrichment in dendritic spines. Together, these results reveal a novel function of postsynaptic endophilin A1 in spine morphogenesis, stabilization and synaptic function through the regulation of p140Cap.  相似文献   

12.
Even proteins that fold well in bacteria are frequently displayed poorly on filamentous phages. Low protein presentation on phage might be caused by premature cytoplasmic folding, leading to inefficient translocation into the periplasm. As translocation is an intermediate step in phage assembly, we tested the display levels of a range of proteins using different translocation pathways by employing different signal sequences. Directing proteins to the cotranslational signal recognition particle (SRP) translocation pathway resulted in much higher display levels than directing them to the conventional post-translational Sec translocation pathway. For example, the display levels of designed ankyrin-repeat proteins (DARPins) were improved up to 700-fold by simply exchanging Sec- for SRP-dependent signal sequences. In model experiments this exchange of signal sequences improved phage display from tenfold enrichment to >1,000-fold enrichment per phage display selection round. We named this method 'SRP phage display' and envision broad applicability, especially when displaying cDNA libraries or very stable and fast-folding proteins from libraries of alternative scaffolds.  相似文献   

13.
Biomonitoring surveys make use of metabarcoding tools to describe the community composition. These studies match their sequencing results against public genomic databases to identify the species. However, mitochondrial genomic reference data are yet incomplete, only a few genes may be available, or the suitability of existing sequence data is suboptimal for species level resolution. Here, we present a dedicated and cost-effective workflow with no DNA amplification for generating complete fish mitogenomes for the purpose of strengthening fish mitochondrial databases. Two different strategies using long fragment sequencing with Oxford Nanopore technology coupled with mitochondrial DNA enrichment were used. One where the enrichment is achieved by preferential isolation of mitochondria followed by DNA extraction and nuclear DNA depletion (“mitoenrichment”). A second enrichment approach takes advantage of the CRISPR Cas9 targeted scission on previously dephosphorylated DNA (“targeted mitosequencing”). The sequencing results varied between tissue, species, and integrity of the DNA. The mitoenrichment method yielded 0.17%–12.33% of sequences on target and a mean coverage ranging from 74.9 to 805-fold. The targeted mitosequencing experiment from native genomic DNA yielded 1.83%–55% of sequences on target and a 38 to 2123-fold mean coverage. These produced complete mitogenomes of species with homopolymeric regions, tandem repeats, and gene rearrangements. We demonstrate that deep sequencing of long fragments of native fish DNA can be achieved with low computational resources in a cost-effective manner, opening the discovery of mitogenomes of nonmodel or understudied fish taxa to a broad range of laboratories worldwide.  相似文献   

14.
Pancreas of the cat was fractionated into its subcellular components by centrifugation through an exponential ficoll-sucrose density gradient in a zonal rotor. This enables a preparation of four fractions enriched in plasma membranes, endoplasmic reticulum, mitochondria and zymogen granules, respectively. The first fraction, enriched by 9- to 15-fold in the plasma membrane marker enzymes, hormone-stimulated adenylate cyclase, (Na+K+)-ATPase, and 5'-nucleotidase, is contaminated by membranes derived from endoplasmic reticulum but is virtually free from mitochondrial and zymogen-granule contamination. The second fraction from the zonal gradient shows only moderate enrichment of the above marker enzymes but contains a considerable quantity of plasma membrane marker enzymes and represents mostly rough endoplasmic reticulum. The third fraction contains the bulk of mitochondria and the fourth mainly zymogen granules as assessed by electron microscopy and marker enzymes for both mitochondria and zymogen granules, namely succinic dehydrogenase, trypsin and amylase. Further purification of the plasma membrane fractions by differential and sucrose step-gradient centrifugation yields plasma membranes enriched 40-fold in basal and hormone-stimulated adenylate cyclase and (Na+K+)-ATPase.  相似文献   

15.
DNA methylation is an epigenetic mark that has a crucial role in many biological processes. To understand the functional consequences of DNA methylation on phenotypic plasticity, a genome-wide analysis should be embraced. This in turn requires a technique that balances accuracy, genome coverage, resolution and cost, yet is low in DNA input in order to minimize the drain on precious samples. Methylated DNA immunoprecipitation-sequencing (MeDIP-seq) fulfils these criteria, combining MeDIP with massively parallel DNA sequencing. Here we report an improved protocol using 100-fold less genomic DNA than that commonly used. We show comparable results for specificity (>97%) and enrichment (>100-fold) over a wide range of DNA concentrations (5,000-50 ng) and demonstrate the utility of the protocol for the generation of methylomes from rare bone marrow cells using 160-300 ng of starting DNA. The protocol described here, i.e., DNA extraction to generation of MeDIP-seq library, can be completed within 3-5 d.  相似文献   

16.
A general method to isolate and purify substantial numbers of viable cybrids from cultured mammalian cells immediately following cytoplast-cell fusion is described. This method uses cytoplasts whose mitochondria are selectively stained in vivo by the cationic fluorescent rhodamine dye, rhodamine 123. Large numbers of highly purified, rhodamine-stained cytoplasts are fused to appropriate recipient cell lines and then the fusion mixture is sorted based on forward angle scatter and fluorescence parameters. Plating the positively sorted population in culture for as short as 12 h eliminates contaminating cytoplasts which, lacking a nucleus, are unable to adhere or survive. The resultant population, based on an analysis of genetic markers, is 75-100% cybrids, an enrichment of 1000- to 10,000-fold over the initial fusion mixture. Cybrids purified by cell sorting may be useful for detailed molecular studies of mitochondrial DNA gene expression and in the specific induction of new mitochondrial DNA mutants.  相似文献   

17.
In mid-fifth-instar larvae of the southern armyworm, Spodoptera eridania, the subcellular distribution of four antioxidant enzymes—superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPOX), and glutathione reductase (GR)—were examined. Two-thirds (4.26 units ·mg protein?1) of the SOD activity was found in the cytosol, and one-thirds (2.13 units ·mg protein?1) in the mitochondria. CAT activity was unusually high and not restricted to the microsomal fraction where peroxisomes are usually isolated. The activity was distributed as follows: cytosol (163 units) mitochondria (125 units) and microsomes (119 units). Similar to CAT, the subcellular compartmentalization of both GPOX and GR was unusual. No activity was detected in the cytosol, but in mitochondria and microsomes, GR levels were 5.49 and 3.09 units. Although GPOX activity exhibited 14–16-fold enrichment in mitochondria and microsomes, respectively, over the 850g crude homogenate, the level was negligible (mitochondria = 1.4 × 10?3 units; microsomes = 1.6 × 10?3 units), indicating that this enzyme is absent. The unusual distribution of CAT has apparently evolved as an evolutionary answer to the absence of GR from the cytosol, and the lack of GPOX activity.  相似文献   

18.
The subcellular distribution of carnitine acetyl-, octanoyl-, and palmitoyltransferase in the livers of normal and clofibrate-treated male rats was studied with isopycnic sucrose density gradient fraction.In normal liver 48% of total carnitine acetyltransferase activity was peroxisomal, 36% of the activity located in mitochondria and 16% in a membranous fraction containing microsomes. Carnitine octanoyltransferase and carnitine palmitoyltransferase were confined almost totally (77–81%) to mitochondria in normal liver.Clofibrate treatment increased the total activity of carnitine acetyltransferase over 30 times, whereas the total activities of the other two transferases were increased only 5-fold.From the three different subcellular carnitine acetyltransferases the mitochondrial one was not responsive to clofibrate treatment, i.e. the rise in mitochondrial activity was over 70-fold as contrasted to the 6- and 14-fold rises in peroxisomal and microsomal activities, respectively. After treatment mitochondria contained 79% of total activity.It is concluded that the clofibrate-induced increase of carnitine acetyltransferase activity is not due to the peroxisomal proliferation that occurs during clofibrate treatment. The rise in peroxisomal activity contributed only 8% to the total increase.After clofibrate treatment the greatest part of carnitine octanoyl- and palmitoyltrnasferase activities were located in mitochondria but a considerable amount of both activities was found also in the soluble fraction of liver.  相似文献   

19.
Predator–prey interactions may be responsible for enormous morphological diversity in prey species. We performed predation experiments with morphological manipulations (ablation) to investigate the defensive function of dorsal spines and explanate margins in Cassidinae leaf beetles against three types of predators: assassin bugs (stinger), crab spiders (biter), and tree frogs (swallower). There was mixed support for the importance of primary defense mechanisms (i.e., preventing detection or identification). Intact spined prey possessing dorsal spines were more likely to be attacked by assassin bugs and tree frogs, while intact armored prey possessing explanate margins were likely to avoid attack by assassin bugs. In support of the secondary defense mechanisms (i.e., preventing subjugation), dorsal spines had a significant physical defensive function against tree frogs, and explanate margins protected against assassin bugs and crab spiders. Our results suggest a trade‐off between primary and secondary defenses. Dorsal spines improved the secondary defense but weakened the primary defense against tree frogs. We also detected a trade‐off in which dorsal spines and explanate margins improved secondary defenses against mutually exclusive predator types. Adaptation to different predatory regimes and functional trade‐offs may mediate the diversification of external morphological defenses in Cassidinae leaf beetles.  相似文献   

20.
Extensive sonication of formaldehyde-crosslinked chromatin can generate DNA fragments averaging 200 bp in length (range 75–300 bp). Fragmentation is largely random with respect to genomic region and nucleosome position. ChIP experiments employing such extensively fragmented samples show 2- to 4-fold increased enrichment of protein binding sites over control genomic regions, when compared to samples sonicated to a more conventional size range (300–500 bp). The basis of improved fold enrichments is that immunoprecipitation of protein-bound regions is unaffected by fragment size, whereas immunoprecipitation of control genomic regions decreases progressively along with reduced fragment size due to fewer nonspecific binding sites. The use of extensively sonicated samples improves mapping of protein binding sites, and it extends the dynamic range for quantitative measurements of histone density. We show that many yeast promoter regions are virtually devoid of histones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号