首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This study examines the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], two vitamin D analogues (KH 1060 and EB 1089, which are 20-epi-22-oxa and 22,24-diene-analogues, respectively), 9-cis retinoic acid and all-trans retinoic acid on proliferation of SH-SY5Y human neuroblastoma cells, after treatment for 7 days. Cell number did not change when the cells were incubated with 1, 10 or 100 nM 1,25(OH)2D3 or its derivatives, but significantly decreased in the presence of the two retinoids (0.001–10 μM final concentration). A synergistic inhibition was observed, when SH-SY5Y cells were treated combining 0.1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM KH 1060, and 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089. Acetylcholinesterase activity showed a significant increase, in comparison with controls, after treatment of the cells for 7 days with 0.1 or 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. This increase was synergistic, combining 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or EB 1089. The levels of the c-myc encoded protein remarkably decreased after treatment of SH-SY5Y cells for 1, 3, 7 days with 0.1 and 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. In particular, the association of 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089 resulted in a synergistic c-myc inhibition, in comparison with that obtained in the presence of the retinoid alone. These findings may have therapeutic implications in human neuroblastoma.  相似文献   

2.
Stio M  Celli A  Treves C 《IUBMB life》2002,53(3):175-181
The response of C2C12 myoblasts to 1 nM 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], two vitamin D analogues (KH 1060 and EB 1089, which are 20-epi-22-oxa and 22,24-diene-analogues, respectively), 100 nM retinoids (9-cis retinoic acid, all-trans retinoic acid) and to combination treatments, after 72 h incubation, was studied. The incubation with 1,25(OH)2D3 was ineffective on either cell proliferation or [3H]thymidine incorporation (expressed as DPM per cell) or protein content per cell. On the contrary, all the other treatments inhibited cell proliferation, this inhibition being synergistic when the vitamin D derivatives were combined with 9-cis or all-trans retinoic acid, and increased [3H]thymidine incorporation and protein content per cell. The levels of the VDR protein remarkably increased in comparison with control cells, except for the incubation with 9-cis retinoic acid. This increase was particularly accentuated in C2C12 cells treated with KH 1060 and 9-cis retinoic acid in combination. These results, taken together, suggest a role for vitamin D derivatives and retinoids on C2C12 cells.  相似文献   

3.
The covalent incorporation of [3H]all-trans-retinoic acid into proteins has been studied in tumoural Leydig (MLTC-1) cells. The maximum retinoylation activity of MLTC-1 cell proteins was 710 ± 29 mean ± SD) fmoles/8 × 104 cells at 37 °C. About 90% of [3H]retinoic acid was trichloroacetic acid-soluble after proteinase-K digestion and about 65–75% after hydrolysis with hydroxylamine. Thus, retinoic acid is most probably linked to proteins as a thiol ester. The retinoylation reaction was inhibited by 13-cis-retinoic acid and 9-cis-retinoic acid with IC50 values of 0.9 μM and 0.65 μM, respectively. Retinoylation was not inhibited by high concentrations of palmitic or myristic acids (250 μM); but there was an increase of the binding activity of about 25% and 130%, respectively. On the other hand, the retinoylation reaction was inhibited (about 40%) by 250 μM lauric acid. After pre-incubation of the cells with different concentrations of unlabeled RA, the retinoylation reaction with 100 nM [3H]RA involved first an increase at 100 nM RA and then a decrease of retinoylation activity between 200 and 600 nM RA. After cycloheximide treatment of the tumoural Leydig cells the binding activity of [3H]RA was about the same as that in the control, suggesting that the bond occurred on proteins in pre-existing cells. (Mol Cell Biochem 276: 55–60, 2005)This paper is dedicated to the memory of Prof. E. Quagliariello.  相似文献   

4.
Retinoids and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) induce differentiation of myeloid leukemia cells into granulocyte and macrophage lineages, respectively. All-trans retinoic acid (ATRA), which is effective in the treatment of acute promyelocytic leukemia, can induce differentiation of other types of myeloid leukemia cells, and combined treatment with retinoid and 1,25(OH)2D3 effectively enhances the differentiation of leukemia cells into macrophage-like cells. Recent work has classified macrophages into M1 and M2 types. In this study, we investigated the effect of combined treatment with retinoid and 1,25(OH)2D3 on differentiation of myeloid leukemia THP-1 and HL60 cells. 9-cis Retinoic acid (9cRA) plus 1,25(OH)2D3 inhibited proliferation of THP-1 and HL60 cells and increased myeloid differentiation markers including nitroblue tetrazolium reducing activity and expression of CD14 and CD11b. ATRA and the synthetic retinoic acid receptor agonist Am80 exhibited similar effects in combination with 1,25(OH)2D3 but less effectively than 9cRA, while the retinoid X receptor agonist HX630 was not effective. 9cRA plus 1,25(OH)2D3 effectively increased expression of M2 macrophage marker genes, such as CD163, ARG1 and IL10, increased surface CD163 expression, and induced interleukin-10 secretion in myeloid leukemia cells, while 9cRA alone had weaker effects on these phenotypes and 1,25(OH)2D3 was not effective. Taken together, our results demonstrate selective induction of M2 macrophage markers in human myeloid leukemia cells by combined treatment with 9cRA and 1,25(OH)2D3.  相似文献   

5.
In addition to classical roles in calcium homeostasis and bone development, 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] inhibits the growth of several cancer types, including breast cancer. Although cellular effects of 1,25(OH)2D3 traditionally have been attributed to activation of a nuclear vitamin D receptor (VDR), a novel receptor for 1,25(OH)2D3 called 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) protein was identified recently. The purpose of this study was to determine if the level of 1,25D3-MARRS expression modulates 1,25(OH)2D3 activity in breast cancer cells.Relative levels of 1,25D3-MARRS protein in MCF-7, MDA MB 231, and MCF-10A cells were estimated by real-time RT-PCR and Western blotting. To determine if 1,25D3-MARRS receptor was involved in the growth inhibitory effects of 1,25(OH)2D3 in MCF-7 cells, a ribozyme construct designed to knock down 1,25D3-MARRS mRNA was stably transfected into MCF-7 cells. MCF-7 clones in which 1,25D3-MARRS receptor expression was reduced showed increased sensitivity to 1,25(OH)2D3 ( IC50 56 ± 24 nM) compared to controls (319 ± 181 nM; P < 0.05). Reduction in 1,25D3-MARRS receptor lengthened the doubling time in transfectants treated with 1,25(OH)2D3. Knockdown of 1,25D3-MARRS receptor also increased the sensitivity of MCF-7 cells to the vitamin D analogs KH1060 and MC903, but not to unrelated agents (all-trans retinoic acid, paclitaxel, serum/glucose starvation, or the isoflavone, pomiferin). These results suggest that 1,25D3-MARRS receptor expression interferes with the growth inhibitory activity of 1,25(OH)2D3 in breast cancer cells, possibly through the nuclear VDR. Further research should examine the potential for pharmacological or natural agents that modify 1,25D3-MARRS expression or activity as anticancer agents.  相似文献   

6.
1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) is known to be involved in regulating the proliferation of parathyroid cells and PTH synthesis through reactions involving its nuclear receptor. We evaluated the effects of 1,25-(OH)2D3 and its hexafluorinated analog, 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (26,27-F6-1,25-(OH)2D3), on parathyroid cells. The 1,25-(OH)2D3 and 26,27-F6-1,25-(OH)2D3 each inhibited [3H]thymidine incorporation and ornithine decarboxylase (ODC) activity, which is important in cell proliferation, in primary cultured bovine parathyroid cells. The inhibitory effect of 26,27-F6-1,25-(OH)2D3 on PTH secretion from parathyroid cells was significantly more potent than that of 1,25-(OH)2D 3 between 10−11 M and 10−8 M. Study of 26,27-F6-1,25-(OH)2D3 metabolism in parathyroid cells in vitro elucidated its slower degradation than that of 1,25-(OH)2D3. After 48 h of incubation with [1β-3H]26,27-F6-1,25-(OH)2D3, two HPLC peaks, one for [1β-3H]26,27-F6-1,25-(OH)2D3, and a second larger peak for [1β-3H]26,27-F6-1,23(S),25-(OH)3D3, were detected. No metabolites were detected after the same period of incubation with 1,25-(OH)2[26,27-3H]D3. We observed that 26,27-F6-1,23(S),25-(OH)3D3 was as potent as 1,25-(OH)2D3 in inhibiting the proliferation of parathyroid cells.Data suggest that the greater biological activity of 26,27-F6-1,25-(OH)2D3 is explained by its slower metabolisms and by the retention of the biological potency of 26,27-F6-1,25-(OH)2D3 even after 23(S)-hydroxylation.  相似文献   

7.
This study examines the effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on SH-SY5Y human neuroblastoma cells cultured in the presence of medium containing varying concentrations of calcium (0.1, 0.9, 1.4, 1.8 mM). Pyruvate kinase activity was assayed in SH-SY5Y cells incubated in variable calcium medium with or without 1, 10 or 100 nM 1,25(OH)2D3 for 48 h. The enzyme levels showed a significant increase in comparison with control, when the cells were incubated with 100 nM hormone in the presence of 0.1 mM calcium, while pyruvate kinase activity decreased, when the cells were treated with 100 nM 1,25(OH)2D3 in the presence of 1.8 mM calcium. The proliferative activity of SH-SY5Y was dependent on the extracellular concentration of calcium, being the highest at 1.8 mM calcium and completely absent at 0.1 mM calcium. In the presence of 1,25(OH)2D3, at the three concentrations used and after 48 h incubation, a significant decrease in cell number was always observed, without a direct correlation between 1,25(OH)2D3 effect and calcium concentration in the medium. [3H]Thymidine incorporation in SH-SY5Y cells significantly increased in comparison with control, when the 48 h incubation with 1, 10 or 100 nM 1,25(OH)2D3 was carried out in the presence of 0.1 mM calcium, while, at the other calcium concentrations, the hormone did not cause any significant change in this parameter. The treatment of SH-SY5Y cells with 1 nM 1,25(OH)2D3 for 48 h did not affect cell morphology, when 0.1 mM calcium was present, while, in the medium containing 1.8 mM calcium, the treated cells showed a slight trend to differentiation. The differentiating effect of 10 M all-trans retinoic acid, even if incomplete after 48 h treatment, was only observed in the cultures grown in 1.8 mM calcium, in comparison with those maintained in 0.1 mM calcium.  相似文献   

8.
Transglutaminase 1 (TG1) is an enzyme that is expressed at the late stage of terminal differentiation of keratinocytes and catalyzes the ε-(γ-glutamyl)lysine cross-linking reaction to form a highly insoluble cell envelope. To elucidate the mechanism of TG1 gene expression in keratinocytes, we examined the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA), dexamethasone, 1,25-dihydroxyvitamin D3, and retinoic acid on the levels of TG1 mRNA in cultured normal human epidermal keratinocytes (NHEK). Treatment of NHEK with TPA, Up to 10 nM, markedly increased the levels of TG1 mRNA in a dose-dependent manner. The effect by treatment with 1 nM TPA reached a peak after 16 h of incubation (20-fold above the basal level). In contrast, phorbol had no effect on TG1 gene expression. The induction of TG1 mRNA expression by TPA was inhibited by 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) and staurosporine. Dexamethasone at a concentration of 1 μM also increased the TG1 mRNA levels, but the maximum induction was observed (3-fold above the basal level) after 72 h of incubation. The effect of dexamethasone was not suppressed by H-7. Moreover, 1 μM of retinoic acid completely inhibited the induction of TG1 mRNA by both TPA and dexamethasone. 1,25-Dihydroxyvitamin D3 showed no effect on the TG1 mRNA levels. From these results, we suggest that the expression of TG1 gene may be upregulated by protein kinase C and glucocorticoid receptor systems and down-regulated by the retinoic acid receptor system.  相似文献   

9.
1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] and all-trans retinoic acid (RA), the active metabolites of vitamins D and A respectively, regulate the proliferation and differentiation of keratinocytes. Both the vitamin D receptor (VDR) and the retinoic acid receptor family (RAR) bind to DNA response elements as heterodimers with the retinoic X receptor (RXR), suggesting that there are pathways of action that are shared by both compounds. Therefore, we examined the interactions of 1,25(OH)2D3 and RA upon the proliferation and differentiation of normal human keratinocytes (NHK) and of a squamous cell carcinoma cell line, SCC4. Although both 1,25(OH)2D3 and RA were each able to inhibit NHK proliferation in a dose-dependent manner, when they were administered in combination, proliferation was stimulated, suggesting mutual antagonism. In contrast, SCC4 cells proved insensitive in terms of proliferation to 1,25(OH)2D3 and to all but the highest concentration (10−6 M) of RA. 1,25(OH)2D3 exerted a biphasic effect on transglutaminase (TGase) and involucrin (INV) mRNA levels, with maximal stimulation at 10−9 M. RA inhibited TGase and INV mRNA levels and antagonized the stimulation by 1,25(OH)2D3. A similar pattern was observed for TGase protein, but, RA, which, by itself, reduced INV, markedly enhanced the ability of 1,25(OH)2D3 to raise INV levels, possibly by inhibiting 1,25(OH)2D3-stimulated TGase activity and cross-linking of soluble INV into the insoluble cornified envelope (CE). Thus, in NHK cells, RA antagonizes the antiproliferative prodifferentiating actions of 1,25(OH)2D3, but assessment of a single marker, such as INV protein, may be misleading. J. Cell. Physiol. 174:1–8, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Summary An effect of the hormone, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] on hormone secretion by normal rat pituitary cells was investigated in vitro. Based on previous findings using GH4C1 cells, dispersed anterior pituitary cell cultures were prepared and maintained in serum-free conditions for up to 6 d. Under these circumstances, there was no effect of 1,25(OH)2D3 to alter medium or cell-associated levels of thyrotropin (TSH), prolactin (PRL), or growth hormone (GH). Cultures maintained under these conditions had lower medium and cell-associated hormone levels and lesser responses to agonists than cultures maintained in serum-supplemented medium. In the presence of 10% charcoal-treated fetal bovine serum, treatment with 10−8 M 1,25(OH)2D3 for 24 h selectively increased TRH (10−10 to 10−7 M)-induced TSH secretion (P<0.001), with maximal enhancement observed at 10−9 M TSH-releasing hormone (TRH). Enhancement of TSH secretion by 1,25(OH)2D3 was detected after 15 min exposure to TRH. There was no effect on agonist-induced PRL or GH secretion or on cell-associated hormone levels. The effect was evident after 24 h treatment with 1,25(OH)2D3, and decreased thereafter. Several other steroid hormones had no effect on 10−9 M TRH-induced TSH secretion. These data contrast with the effect of 1,25(OH)2D3 in GH cells. They suggest that 1,25(OH)2D3 may act selectively in the normal pituitary to modulate TSH secretion.  相似文献   

11.
We investigate the effect of the prostaglandin D2 metabolite Δ12−PGD2 (9−Deoxy−Δ9, Δ12−13,14-dihydroprostaglandin D2) on collagen synthesis in human osteoblast. Δ12-PGJ2 at 10−5M enhanced collagen synthesis in the presence of 2 mM α-glycerophosphate-2Na. The stimulative effect appeared as early as 3 days after addition and continued until 22 days. The enhancement of type I collagen synthesis was confirmed by polyacrylamide gel electrophoresis. The potency was the same as 101t-8M 1 α, 25 dihydroxy vitamine D3 (1,25(OH)2D3). Northern blot analysis showed that 10−5M Δ 12-PGD2 and 10−8M 1,25(OH)2D3 enhanced the transcribtion of type 1 procollagen (α1) mRNA levels in osteoblasts.  相似文献   

12.
The effects of treatment with the osteotropic steroids 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), 17β-estradiol, or dexamethasone on [1-14C]arachidonic acid (AA) uptake and distribution into glycerophospholipid classes by normal adult human osteoblast-like (hOB) cells were investigated. Total uptake of [1-14C]AA was decreased in cells treated with dexamethasone when assayed after a 24-, 48-, or 96-h exposure to the hormone. Specific radiolabel incorporation into phosphatidylcholine was reduced by a 48-h treatment with dexamethasone with a concurrent increase in the radiolabeling of phosphatidylethanolamine. However, these changes were transient, and by 96 h of dexamethasone treatment the distribution of the radiolabeled fatty acid had reequilibrated to resemble the pattern found for vehicle treated samples. Total uptake of [1-14C]AA was diminished by 96-h treatment with 1,25(OH)2D3 (79 ± 3% of control, P < 0.01); at that time point, a significant decrease in the proportional radiolabeling of the phosphatidylinositol pool was identified (92 ± 2% of control, P < 0.05). The 1,25(OH)2D3-dependent decrease in total uptake and in phosphatidylinositol incorporation of [1-14C]AA were found to be hormone dose dependent. Treatment with 24,25(OH)2D3 was without effect on either total [1-14C]AA uptake or the specific [1-14C]AA radiolabeling of the phosphatidylinositol pool. 1,25(OH)2D3 treatment decreased hOB cell uptake of [1-14C]oleic acid and decreased its proportional incorporation into the phosphatidylinositol pool. Gas chromatographic analyses revealed no 1,25(OH)2D3-dependent effects on total phosphatidylinositol lipid mass or on the mole percent of arachidonic acid within the phosphatidylinositol pool, leaving the mechanism of the effects of the secosteroid on hOB cell AA metabolism unexplained. 17β-Estradiol had no effects on the parameters of AA metabolism measured. As a consequence of their modulation of arachidonic acid uptake and its distribution into hOB cellular phospholipids, steroids might alter the biological effects of other hormones whose actions include the stimulated production of bioactive AA metabolites, such as prostaglandins or the various lipoxygenase products.  相似文献   

13.
 The sterol 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] can inhibit T cell activation as well as restore the functional competence of suppressed T cells. The present studies determined whether 1,25(OH)2D3 had a differential effect on the activation of normal T cells or of suppressed T cells from mice bearing Lewis lung carcinoma tumors. Normal spleen cell proliferation in response to immobilized anti-CD3 was unaffected by the lower doses of 0.1 – 10 nM 1,25(OH)2D3, and was inhibited by the higher dose of 100 nM 1,25(OH)2D3. In contrast, 1,25(OH)2D3 increased proliferation and interferon γ secretion by T cells of tumor bearers in response to stimulation through T cell receptor/CD3. Assessment of mechanisms associated with the 1,25(OH)2D3 stimulation of tumor-bearer T cells implicated protein phosphatase 2A (PP-2A). First, PP-2A activity of spleen cells from tumor bearers was reduced compared to that of normal spleen cells but was increased by 1,25(OH)2D3. Second, 1,25(OH)2D3 stimulation of tumor-bearer T cell proliferation was dependent on this PP-2A activity as it was blocked by doses of okadaic acid that selectively inhibit PP-2A. These results suggest that 1,25(OH)2D3 preferentially enhances the responsiveness of immunosuppressed T cells from tumor bearers to TCR/CD3 stimulation by restoring PP-2A activity. Received: 7 November 1996 / Accepted: 2 January 1997  相似文献   

14.
The aim of this study was to investigate effects of 1,25(OH)(2)D(3) (calcitriol), 25OHD(3), and EB1089 on cell growth and on Vitamin D receptor (VDR) mRNA and 1alpha-hydroxylase (1alpha-OHase) mRNA expression in normal canine prostatic primary cultures. Canine prostatic epithelial cells were isolated, cultured, and treated with vehicle (ethanol), calcitriol, 25OHD(3), and EB1089 at 10(-9) and 10(-7)M. The VDR was present in epithelial and stromal cells of the canine prostate gland. 1,25(OH)(2)D(3), 25OHD(3), and EB1089 inhibited epithelial cell growth at 10(-7)M compared to vehicle-treated controls [calcitriol (P < 0.01), EB1089 (P < 0.01), and 25OHD(3) (P < 0.05)]. Epithelial cells treated with calcitriol and EB1089 at 10(-7)M had slightly increased VDR mRNA expression (0.2-0.3-fold) at 6 and 12h compared to controls. There was no difference in 1alpha-OHase mRNA expression in epithelial cells treated with these three compounds. 1,25(OH)(2)D(3) and its analogs may be effective antiproliferative agents of epithelial cells in certain types of prostate cancer.  相似文献   

15.
The effect of vitamin D metabolites on the growth of chick embryo chondrocytes in soft agar was examined. 1,25-Dihydroxyvitamin D3 [1,25(OH)2D3]at 10−8-10−7 M induced colony formation by chick embryo chondrocytes in soft agar in the presence of 10% fetal bovine serum. Furthermore, 1,25(OH)2D3 increased the number of colonies in the presence of a maximal dose of basic fibroblast growth factor, a potent mitogen for chondrocytes in soft agar. However, 24R,25 (OH)2D3 and other metabolites had little effect on the soft agar growth of chondrocytes in the presence or absence of basic fibroblast growth factor. These results suggest that 1,25(OH)2D3 is an active metabolite which may be involved in supporting cartilage growth.  相似文献   

16.
WEHI-3B D cells differentiate in response to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) but not to all-trans-retinoic acid (RA) or other inducing agents. Combinations of RA with 1,25-(OH)2D3 interact to produce synergistic differentiation of WEHI-3B D cells. To determine factors involved in the synergistic interaction, expression of the 1,25-(OH)2D3 receptor (VDR) and retinoid receptors, RARα and RXRα, was measured. No VDR was detected in untreated WEHI-3B D cells; however, RA and 1,25-(OH)2D3 when used as single agents caused a slight induction of the VDR and in combination produced a marked increase in the VDR. In contrast, no changes in RARα and RXRα were initiated by these compounds. An RAR-selective agonist combined with 1,25-(OH)2D3 produced synergistic differentiation of WEHI-3B D cells, whereas an RXR-selective agonist did not. To gain information on the role of the VDR in the synergistic interaction, the VDR gene was transferred into WEHI-3B D+ cells, in which no VDR was detected and no synergism was produced. Expression of the VDR conferred differentiation responsiveness to 1,25-(OH)2D3 in WEHI-3B D+ cells. These findings suggest that (a) induction of VDR expression is a key component in the synergistic differentiation induced by 1,25-(OH)2D3 and RA and (b) RAR and not RXR must be activated for enhanced induction of the VDR and for the synergistic differentiation produced by RA and 1,25-(OH)2D3.  相似文献   

17.
The ingestion of Solanum glaucophyllum (SG) causes a calcinosis of cattle named Enteque Seco (ES). The toxic principle is the 1,25-(OH)2D3, mainly conjugated as glycoside. This study aims to validate a simple novel method of evaluation of the VDA of SG leaves. Aqueous extracts of SG were purified using C18 minicolumns and assayed by RIA with an antibody raised in rabbits by injection of the acid—C22, 1α-(OH)Vitamin D3. Data were expresed as glycoside equivalent to 1,25-(OH)2D3 in ng/g of dry leaves. We compared this data with 1,25-(OH)2D3 levels measured, in the same samples, by liquid chromatography (HPLC) after enzyme cleavage. This procedure involved the incubation of SG leaves with rumen fluid, followed by C18-OH solid phase extraction. The 1,25-(OH)2D3 fraction was run by HPLC and detection was achieved using a photodiode array detector. Data were expressed as micrograms of 1,25-(OH)2D3/g dry leaves. A significant regression of 1,25-(OH)2D3 levels (Y) as a function of glycoside RIA 1,25-(OH)2D3 equivalents (X) was found: Y = 12.02 + 0.35X [R = 0.81; P = 0,0002; N = 15], allowing us to conclude that this novel assay could be used to estimate the amount of this active principle contained in SG leaves.  相似文献   

18.
The biological activity of various natural retinoids and the time "window" when vitamin A activity is required for normal cardiovascular development were examined in vitamin A-deprived Japanese quail embryos. The administration of 1 μg of retinol at the beginning of incubation resuited in normal cardiovascular development in 97% of embryos; retinoic acid was toxic at this dose level. Treatment of embryos with 0.1 μg of all-trans-retinol or 13-cis-retinoic acid at the beginning of incubation resulted in normal cardiovascular development in 47 and 12% of embryos, respectively; administration of these retinoids at other time points attenuated the percentage of embryos with normal cardiovascular development. Didehydroretinol, 0.1 μg, and 9-cis-retinoic acid, 0.1 μg, were inactive at all time points examined; 9-cis-retinoic acid did not enhance the biological activity of all-trans-retinoic acid. All-trans-retinoic acid, 0.1 μg, administered during 22-28 hr of incubation induced normal cardiovascular development in 20-34% of embryos; biological activity was optimal when it was administered at 24 hr. All retinoids tested were inactive in establishing normal cardiovascular development when administered at 36 hr of incubation or later. The studies suggest that all-trans-retinoic acid is the biologically active form of vitamin A required for normal cardiovascular development in the avian embryo. There is a critical time point within the first 22-28 hr of quail embryogenesis when all-trans-retinoic acid initiates events that lead to normal cardiovascular development.  相似文献   

19.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies.  相似文献   

20.
Experimental autoimmune encephalomyelitis (EAE) is an animal model to study multiple sclerosis (MS). Considering the tolerogenic effects of active vitamin D, we evaluated the therapeutic effect of myelin oligodendrocyte glycoprotein (MOG) associated with active vitamin D in EAE development. EAE was induced in female C57BL/6 mice by immunization with MOG emulsified with Complete Freund’s Adjuvant plus Mycobacterium tuberculosis. Animals also received two intraperitoneal doses of Bordetella pertussis toxin. One day after immunization, mice were treated with 0,1μg of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) every other day during 15 days (on days 1, 3, 5, 7, 9, 11, 13 and 15). MOG (150μg) was co-administered on days 3 and 11. The administration of 1,25(OH) 2D3 or MOG determined significant reduction in EAE incidence and in clinical scores. When MOG was associated with 1,25(OH) 2D3 the animals did not develop EAE. Spleen and central nervous system (CNS) cell cultures from this group produced less IL-6 and IL-17 upon stimulation with MOG in comparison to the EAE control group. In addition, this treatment inhibited dendritic cells maturation in the spleen and reduced inflammatory infiltration in the CNS. The association of MOG with 1,25(OH) 2D3 was able to control EAE development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号