首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The seed germination and seedling growth of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee cv. Hanxiao) were not significantly inhibited until the concentration of NaCl was increased to 150 mmol/L. Treatment of pakchoi seeds with exogenous 5-aminolevulinic acid (ALA), at concentrations ranging from 0.01 to 10.00 mg/L, promoted seed germination when seeds were stressed by salinity, whereas levulinic acid (LA), an inhibitor of ALA dehydrase, significantly inhibited seed germination and seedling growth, suggesting that metabolism of ALA into porphyrin compounds was necessary for seed germination and seedling growth. Determination of respiratory rate during seed germination showed that ALA increased seed respiration under both normal conditions and salt stress. Furthermore, salt stress decreased levels of endogenous ALA, as well as heme, in etiolated seedlings. More salt-tolerant cultivars of pakchoi contained higher relative levels of endogenous ALA and heme under conditions of salt stress. These results indicate that salt stress may inhibit the biosynthesis of endogenous ALA and then heme, which is necessary for seed germination, and treatment of seeds with exogenous ALA prior to germination may be associated with the biosynthesis of heme.  相似文献   

2.
The halophyte Salicornia europaea L. is a widely distributed salt-tolerant plant species that produces numerous dimorphic seeds. We studied germination and recovery in dimorphic seeds of Central Asian S. europaea under various salinity conditions. We also tested the effects of various salts on Natand Ktaccumulation during plant development from germination to anthesis under greenhouse conditions. We found good germination(close to control) of large seeds under Na Cl between 0.5 and 2%, Na2SO4and 2 Na Cl t KCl t Ca Cl between 0.5 and 3%, and 2Na2SO4t K2SO4t Mg SO4 between 0.5 and 5%. For the small seeds, we found stimulating effects of chloride salts(both pure and mixed) under 0.5e1% concentrations, and sulfate salts under 0.5e3%. Both types of seeds showed high germination recovery potential. Salt tolerance limits of the two seed types during germination and at the later stages of development were very similar(4e5%). During plant growth the optimal concentrations of mixed chloride and sulfate salts ranged from 0.5 to 2%. The mechanisms of salt tolerance in the two seed types of S. europaea appear to differ, but complement each other, improving overall adaptation of this species to high salinity.  相似文献   

3.
Soil samples were collected from 7 sites in the up-, mid- and down-reach along and nearby the wastewater irrigation channel, western Shenyang of China. The concentrations of selected pollutants (mineral oil, PAHs - polycycle aromatic hydrocarbons and Cd) were determined by UV spectrometer, HPLC and AAS (atomic adsorption spectrometer) spectrometer, respectively. Toxicity effects of soils were evaluated by seedling emergence test with root length of wheat as the end-point and by earthworms test with the mortality rate and inhibition rates of body weight as endpoints. Results showed accumulation of pollutants for most soils with concentration of 200.2 mg·kg-1-1600 mg·kg-1 for mineral oil, 0.33 mg·kg-1-1.81 mg·kg-1 for Cd and 900.16 mg·kg-1 -2737.91 mg·kg-1 for PAHs. The inhibition rates of root elongation were from -20% up to 40 %, and mortality rates of earthworms ranged from 0%-40% from the exposure period of two weeks to eight weeks by sampling interval of two weeks, the inhibition rates of earthw  相似文献   

4.
In the present paper, an experiment was conducted to study the effects of soil moisture content on dry nursery seedling quality in Guangzhou in 1995. Through comparing the difference of dry nursery seedlings and wet nursery seedlings, we found a close relationship between soil moisture content and seedling growth. The seedling emergence of dry nursery seedling was more even, tidy and faster, and the survival rate was higher than that of wet nursery seedling. Dry nursery seedlings had small plant stature, slow leaf stretching speed and low individual seedling dry weight, but had high dry/fresh weight ratio. This was abeneficial factor for seedlings to recover from transplanting shock more quickly. As com-pared with the wet nursery seedlings, dry nursery seedlings had poor rooting ability,but had more vigorous white roots and fewer rust roots. It was the possibly important reasonfor dry nursery seedlings to form strong“explosive force”.  相似文献   

5.
Chinese farmers frequently use a wheat–potato cropping system. The land area planted to transgenic potatoes is increasing because transgenic potatoes have greater resistance to pests and diseases. However, little is known about the bio-compatibility of transgenic potatoes with wheat straw. The objective of this tissue culture study was to determine the allelopathic effects of wheat straw on transgenic potato seedlings. Seedlings were cultured on normal MS medium (normal treatment) and nutrient-deficient MS medium (acclimated treatment) and then transferred to MS medium, which contained wheat straw powder. Wheat straw powder inhibited potato seedling growth in both treatments. Among the parameters analyzed in this study, inhibition was greatest for plant fresh weight and least for plant height. The inhibitive effects of wheat straw were greater for seedling roots compared to shoots. Resistance to allelopathic pressure from wheat straw was greater in acclimated seedlings compared to normal seedlings. This suggested that previous pressure may have induced tolerance in the transgenic potato seedlings. Furthermore, growth inhibition of potato seedlings from the normal treatment increased as the amount of wheat straw powder in the culture medium increased. Calculations indicated that the presence of wheat straw would lead to a 55% reduction in the total biomass of normal potato seedlings compared to a 39% reduction for acclimated seedlings. Parameters such as net photosynthesis rate (Pn) and quantum yield (Y(II)) changed as the nutrient content of the culture medium increased or decreased, but the changes in the parameters were smaller for acclimated seedlings compared to normal seedlings. This suggests that nutrient status during the culture period could help transgenic potato seedlings adapt and compensate for energy loss from seedlings in defending against allelopathic pressure. In summary, the results show that previous exposure to pressures such as nutrient deficiency may increase the allelopathic pressure resistance of transgenic potato seedlings.  相似文献   

6.
Current global warming is particularly pronounced in the Arctic and arthropods are expected to respond rapidly to these changes. Long-term studies of individual arthropod species from the Arctic are, however, virtually absent. We examined butterfly specimens collected from yellow pitfall traps over 14 years (1996-2009) at Zackenberg in high-arctic, north-east Greenland. Specimens were previously sorted to the family level. We identified them to the species level and examined long-term species-specific phenological responses to recent summer wanning. Two species were rare in the samples (Polaris fritillary Boloria polaris and Arctic blue Plebejus glandon) and statistical analyses of phenological responses were therefore restricted to the two most abundant species (Arctic fritillary, B. chariclea and Northern clouded yellow Colias hecla). Our analyses demonstrated a trend towards earlier flight seasons in B. chariclea, but not in C. hecla. The timing of onset, peak and end of the flight season in B. chariclea were closely related to snowmelt, July temperature and their interaction, whereas onset, peak and end of the flight season in C. hecla were only related to timing of snowmelt. The duration of the butterfly flight season was significantly positively related to the temporal overlap with floral resources in both butterfly species. We further demonstrate that yellow pitfall traps are a useful alternative to transect walks for butterfly recording in tundra habitats. More phenological studies of Arctic arthropods should be carded out at the species level and ideally be analysed in context with interacting species to assess how ongoing climate change will affect Arctic biodiversity in the near future [Current Zoology 60 (2): 243-251, 2014].  相似文献   

7.
Arabinans are found in the pectic network of many cell walls, where, along with galactan, they are present as side chains of Rhamnogalacturonan I. Whilst arabinans have been reported to be abundant polymers in the cell walls of seeds from a range of plant species, their proposed role as a storage reserve has not been thoroughly investigated. In the cell walls of Arabidopsis seeds, arabinose accounts for approximately 40% of the monosaccharide composition of non- cellulosic polysaccharides of embryos. Arabinose levels decline to -15% during seedling establishment, indicating that cell wall arabinans may be mobilized during germination. Immunolocalization of arabinan in embryos, seeds, and seedlings reveals that arabinans accumulate in developing and mature embryos, but disappear during germination and seedling establishment. Experiments using 14C-arabinose show that it is readily incorporated and metabolized in growing seedlings, indicating an active catabolic pathway for this sugar. We found that depleting arabinans in seeds using a fungal arabinanase causes delayed seedling growth, lending support to the hypothesis that these polymers may help fuel early seedling growth.  相似文献   

8.
Aims Dune building processes are affected by interactions between the growth of ecosystem engineering dune grasses and environmental factors associated with disturbance such as sand burial and sea spray. Research investigating how species interactions influence dune community structure and functional trait responses in high abiotic stress environments is minimal. We investigated how species interactions influence the functional trait responses of three dominant dune grasses to common abiotic stressors.Methods We performed a multi-factorial greenhouse experiment by planting three common dune grasses (Ammophila breviligulata Fern., Uniola paniculata L. and Spartina patens Muhl.) in different interspecific combinations, using sand burial and sea spray as abiotic stressors. Sand burial was applied once at the beginning of the study. Sea spray was applied three times per week using a calibrated spray bottle. Morphological functional trait measurements (leaf elongation, maximum root length, aboveground biomass and belowground biomass) were collected at the end of the study. The experiment continued from May 2015 to August 2015.Important findings Species interactions between A. breviligulata and U. paniculata negatively affected dune building function traits of A. breviligulata, indicating that interactions with U. paniculata could alter dune community structure. Furthermore, A. breviligulata had a negative interaction with S. patens, which decreased S. patens functional trait responses to abiotic stress. When all species occurred together, the interactions among species brought about coexistence of all three species. Our data suggest that species interactions can change traditional functional trait responses of dominant species to abiotic stress.  相似文献   

9.
Zuo S P  Li X W  Ma Y Q 《农业工程》2010,30(4):226-232
Chinese farmers frequently use a wheat–potato cropping system. The land area planted to transgenic potatoes is increasing because transgenic potatoes have greater resistance to pests and diseases. However, little is known about the bio-compatibility of transgenic potatoes with wheat straw. The objective of this tissue culture study was to determine the allelopathic effects of wheat straw on transgenic potato seedlings. Seedlings were cultured on normal MS medium (normal treatment) and nutrient-deficient MS medium (acclimated treatment) and then transferred to MS medium, which contained wheat straw powder. Wheat straw powder inhibited potato seedling growth in both treatments. Among the parameters analyzed in this study, inhibition was greatest for plant fresh weight and least for plant height. The inhibitive effects of wheat straw were greater for seedling roots compared to shoots. Resistance to allelopathic pressure from wheat straw was greater in acclimated seedlings compared to normal seedlings. This suggested that previous pressure may have induced tolerance in the transgenic potato seedlings. Furthermore, growth inhibition of potato seedlings from the normal treatment increased as the amount of wheat straw powder in the culture medium increased. Calculations indicated that the presence of wheat straw would lead to a 55% reduction in the total biomass of normal potato seedlings compared to a 39% reduction for acclimated seedlings. Parameters such as net photosynthesis rate (Pn) and quantum yield (Y(II)) changed as the nutrient content of the culture medium increased or decreased, but the changes in the parameters were smaller for acclimated seedlings compared to normal seedlings. This suggests that nutrient status during the culture period could help transgenic potato seedlings adapt and compensate for energy loss from seedlings in defending against allelopathic pressure. In summary, the results show that previous exposure to pressures such as nutrient deficiency may increase the allelopathic pressure resistance of transgenic potato seedlings.  相似文献   

10.
Spontaneous hybridization in ex situ facilities can undermine the genetic integrity of ex situ collections and potentially contaminate open-pollinated seeds or seedlings destined for the reintroduction of endangered plant species into the wild. In the present study, the potential risk of hybridization between two endangered Chinese endemic species, namely Sinojackia xylocarpa Hu and S. rehderiana Hu, which are naturally allopatric species but were conserved ex situ in Wuhan Botanical Garden (WBG), Wuhan, China, were investigated over three consecutive years from 2003 to 2005. The entire overlapping flowering period of the two species was 14-20 d and the two species shared the same pollinator insects during the entire flowering season in WBG. The floral isolation between the two species was not an issue in the ex sltu collection at WBG. The results suggest an opportunity for pollen transfer between species and a potential risk of genetic Introgression and loss of genetic identity of open-pollinated seeds produced in the ex sltu Collection of these two endangered species. An artificial reciprocal cross between S xylocarpa and S. rehderlana confirmed that the two congener species could readily set seeds, indicating no post-pollination barriers to hybridization and the importance of spatial isolation as a barrier to inter-specific crossing. Therefore, to manage these crossable species with overlapping flowering times and shared pollination vectors in ex situ facilities, spatial isolation should be carefully considered to minimize the possibility of spontaneous hybridization.  相似文献   

11.
Responses of caryopsis germination, seedling emergence, and development of Agropyron cristatum (L.) Gaertn. (Gramineae) and Bromus inermis Leyss. (Gramineae), two dominant perennial grasses in the Otindag Sandland of China, to different sand water content (SWC; 1%, 2%, 3%, 4%, 6%, 8%, 12%,16%, and 20%) were studied comparatively. The results showed that the germination responses of the two grasses to SWC were similar (i.e. caryopses could not germinate when the SWC was below 3%; at SWC ranging from 3% to 12%, the higher the SWC, the higher the germination percentage; and at a SWC of 12 %, germination reached similarly high percentages). At a sand burial depth of 0.5 cm, the threshold of SWC for seedling emergence was 6% forA. cristatum and 8% forB. inermis; at 12%-20% SWC, the seedling emergence of both species reached similarly high percentages. The seedling growth responses of these two species to SWC gradients were different. For A. cristatum, the biomass of seedlings increased with SWC from 6% to 12%, and decreased with SWC from 12% to 20%. For B. inermis, the biomass of seedlings always increased with SWC from 8% to 20%. The results also showed that the seedlings of both species allocated more biomass to the roots with decreases in SWC. The SWC changes from April to October in natural microhabitats of both species suggested that the SWC may play an important role in caryopsis germination,seedling emergence, and the growth characteristics of the two grasses. The responses of caryopsis germination, seedling emergence, and the growth characteristics of these two species to SWC may determine their distribution patterns in the Otindag Sandland.  相似文献   

12.
研究了浑善达克沙地 4~ 10月份土壤含水量变动情况和冰草种子萌发、出苗和幼苗生长对土壤含水量的响应。结果表明 ,4月下旬至 5月上中旬的土壤含水量对冰草种子萌发、出苗和定居极为关键。控制条件下 ,冰草种子萌发和出苗的最适土壤含水量范围是 12 %~ 2 0 % ,幼苗生长的最适土壤含水量是 12 %。当土壤含水量低于 3% ,冰草种子不能萌发 ,土壤含水量低于 6 %时 ,幼苗不能出土并定居。当土壤含水量达到 16 %时 ,冰草幼苗生物量有所下降。在 6 %~ 8%的土壤含水量条件下 ,植株将更多的生物量投资于根的生长  相似文献   

13.
沙埋对无芒雀麦种子萌发和幼苗生长的影响   总被引:4,自引:0,他引:4  
研究了沙埋对浑善达克沙地植物群落中多年生禾草无芒雀麦种子萌发、出苗和幼苗生长的影响.结果表明:无芒雀麦种子能在深度≤12cm的沙埋中萌发,≤8cm的沙埋中出苗.在此范围内,随着沙埋深度的增加,无芒雀麦种子的萌发率和出苗率逐渐降低.沙埋深度在植株高度的33%时,无芒雀麦1周龄和2周龄幼苗均全部存活,且总生物量≥对照(未沙埋幼苗);当沙埋深度增至植株高度的66%时,1周龄和2周龄幼苗的存活率分别降至70%和25%,生长也受到抑制;而遭受全部沙埋时,1周龄和2周龄幼苗均不能存活.遭受沙埋后,无芒雀麦幼苗分配较多的生物量用于地上部分的生长,其生物量分配模式改变可能是无芒雀麦幼苗对沙埋环境的重要适应对策.  相似文献   

14.
Yang  Huiling  Huang  Zhenying  Baskin  Carol C.  Baskin  Jerry M.  Cao  Zhiping  Zhu  Xuanwei  Dong  Ming 《Plant and Soil》2009,316(1-2):265-275
Plant and Soil - Bromus inermis is a dominant rhizomatous grass in Otindag Sandland of North China, where soil salinization is increasing. We studied responses of caryopsis germination, early...  相似文献   

15.
Yajuan Zhu  Ming Dong  Zhenying Huang   《Flora》2007,202(3):249-257
Leymus secalinus (Georg.) Tzvel. (Poaceae) is a dominant sand dune grass inhabiting the Mu-Us Sandland, semiarid China. Freshly harvested caryopses (seeds) are in non-deep physiological dormancy (non-deep PD) because of low percentage and slow rate of germination. Experiments were conducted to examine the effects of temperature, cold stratification, caryopsis coat scarification or partial removal of endosperm and sand burial on caryopsis dormancy, germination and seedling emergence. Caryopsis germination was significantly influenced by duration of cold stratification, temperature and their interactions. After 8 weeks of cold stratification, caryopsis germination percentage at 30 °C reached to 90%, equally in light or darkness. Rate and percentages of germination were also hastened and increased by scarifying the caryopsis coat or by artificial removal of different proportions of the endosperm. However, seedling developmental characteristics were significantly influenced by the proportion of the endosperm that remained in the caryopses. Seedling emergence, caryopsis germination and enforced dormancy in sand were significantly affected by sand burial depth. As sand burial depth increased, caryopsis germination and seedling emergence decreased whereas caryopsis enforced dormancy increased. 1–2 cm was the optimal depths for caryopses germination and seedling emergence. Although there were still 30% caryopses germinated at 8 cm, the maximal burial depth for seedling emergence was only 4 cm. The partial germination strategy regulated by non-deep PD, temperature and sand burial ensures that only a few caryopses germinated each time and may reduce risks for seedling survival.  相似文献   

16.
沙埋对花棒种子萌发和幼苗生长的影响   总被引:1,自引:0,他引:1  
为探讨花棒(Hedysarum scopariium)种子萌发和幼苗生长对沙埋的响应,并为固沙造林、水土保持提供理论基础,研究了6种沙埋深度(0、1、2、3、4和5cm)对花棒种子萌发和幼苗生长的影响.结果表明,埋深对花棒幼苗出土率、首次出苗时间、单株叶片数、幼苗生长高度以及生物量的分配均有极显著影响(P<0.001).种子出苗率在2 cm沙埋下达到最高(95.6%),在5cm沙埋下最低(43.4%);幼苗最大高度(11.6cm)、绝对株高(13.9cm)和最大地上生物量(26.7mg)均出现在2cm的埋深,幼苗最小高度(3.3cm)、最小根长(4.3cm)和最小地上生物量(5.3mg)出现在5cm的埋深;生物量分配随沙埋深度增大而更多地分配给地下部分.2cm的沙埋是花棒种子萌发和幼苗生长的最佳深度.  相似文献   

17.
Abstract Exotic grasses are becoming increasingly abundant in Neotropical savannas, with Melinis minutiflora Beauv. being particularly invasive. To better understand the consequences for the native flora, we performed a field study to test the effect of this species on the establishment, survival and growth of seedlings of seven tree species native to the savannas and forests of the Cerrado region of Brazil. Seeds of the tree species were sown in 40 study plots, of which 20 were sites dominated by M. minutiflora, and 20 were dominated by native grasses. The exotic grass had no discernable effect on initial seedling emergence, as defined by the number of seedlings present at the end of the first growing season. Subsequent seedling survival in plots dominated by M. minutiflora was less than half that of plots dominated by native species. Consequently, at the end of the third growing season, invaded plots had only 44% as many seedlings as plots with native grasses. Above‐ground grass biomass of invaded plots was more than twice that of uninvaded plots, while seedling survival was negatively correlated with grass biomass, suggesting that competition for light may explain the low seedling survival where M. minutiflora is dominant. Soils of invaded plots had higher mean Ca, Mg and Zn, but these variables did not account for the higher grass biomass or the lower seedling survival in invaded plots. The results indicate that this exotic grass is having substantial effects on the dynamics of the tree community, with likely consequences for ecosystem structure and function.  相似文献   

18.
Seed germination and seedling growth, survivorship, and final biomass and their responses to watering interval were studied in two grass and six forb species to assess germination and seedling growth responses to increased soil moisture variability as might occur with future increases in precipitation variability. Seeds were planted in prairie soil and watered at 1, 2, 4, or 7 d intervals (I). Seed germination peaked at I = 4 d whereas leaf growth in grasses and forbs, and final biomass in grasses peaked at I = 7 d, suggesting that growth and biomass were favored at greater soil moisture variability than seed germination. Biomass responses to I were stronger than the germination responses, suggesting that soil moisture variability more strongly influenced post germination growth. Individual species responses to I fell into three groups; those with responses to I for: (1) seed germination and seedling survival, (2) biomass, or (3) both germination and biomass production. These species groups may be more useful than life form (i.e., grass/forb) for understanding seed germination and seedling dynamics in grasslands during periods of soil moisture variability. Seed germination and early growth may assume more importance in grassland plant community dynamics under more variable precipitation patterns.  相似文献   

19.
In this study we explored the regeneration niche of 18 alpine plant species by testing the germination responses and seedling growth to soil mixtures made with gypsum, ophiolite, and quartzite, and a control soil. We analyzed different phases of germination: time of radicle emergence, germination duration, and germination percentage, and thereafter seedling performance measured using seedling biomasses. Species were grouped as acidophilous, basophilous and neutrophilous according to their Ellenberg indicator values. Seeds were germinated on each soil mixture in a greenhouse, and then seedlings were selected and transplanted outdoors to grow for one season at 2,050 m a.s.l. The time of radicle emergence, length of germination, final germination percentage, seedling biomass and specific leaf area (SLA) varied according to the soil mixtures depending on the pH group. There were some consistencies between the Ellenberg groups, which were built for adult plant species, and the way these seedlings responded to a particular soil mixture. For instance, the group of species predominantly occurring in basic soils during their adult life (basophilous) had the highest germination percentage and the shortest emergence time on the soil mixture composed of gypsum, but a low germination percentage and the smallest seedling biomass on the other two soil mixtures. In addition, the decrease in SLA for seedlings of the basophilous group when they were cultivated on acidic soil (especially quartzite) seems to indicate a weaker functioning of the plants. Our results highlight, first, the significance of the regeneration niche in the establishment of plants in a given soil environment, especially by emphasizing the links between germination and soil chemistry, and secondly, the consideration that different germination phases add more information about the plant community assemblage with respect to the soil environment.  相似文献   

20.
Protocols are now available for seed harvest, storage and germination of several mesohaline and polyhaline species; however, low seedling survival rates point to the need for an increased understanding of factors affecting seedling establishment. Depth of seed burial in sediments and initial seedling growth rates are shown to be limiting factors for photosynthetic competency of Ruppia maritima and Potamogeton perfoliatus. Seedling emergence is inversely proportional to planting depth on sediments ranging in grain size from coarse sands (850 μm) to silt (63 μm). Less than 6% of the seeds of either species emerged when buried to a depth of 3 cm in test sediments. Germination was greatest for seeds placed on the surface of sediments; however, these seedlings were subject to displacement because of the weak and fragile roots produced during early growth. Fine sediments may be more favorable for R. maritima seedling establishment, because seedling emergence and height decreased with increasing sediment grain size. Potamogeton perfoliatus seedlings seem to be more tolerant of a wider range of sediment grain sizes than R. maritima as indicated by the lack of an effect of sediment grain size on P. perfoliatus seed emergence, seedling height, and biomass. Increasing nutrients stimulated seedlings of both species; however, even at the highest concentrations tested, growth, as determined by shoot elongation and leaf and root formation, slowed within 7–10 days. This suggests factors other than mineral nutrients and light limit growth or that growth shifts from aboveground biomass production to belowground vegetative spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号