首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The foraging behavior of the subterranean mole rat Spalax ehrenbergi (Rodentia, Spalacidae) was tested according to the framework of optimal foraging theory. We compared the frequencies of food species hoarded in storage chambers of mole rats with the frequencies of these species occurring in the vicinity of the mole rats' nest mounds during the winter and spring seasons. In addition, we examined the food composition of several summer nest mounds. Laboratory observations were conducted in order to test the foraging behavior of mole rats under simulated subterranean conditions. The mole rat is a generalist and collects a variety of food species. Out of 33 plant species that were hoarded by mole rats in the 21 studied nest mounds, 61% (n=20) were geophytes, 21% (n=7) perennial herbs, 15% (n=5) annual herbs and 3% (n=1) dwarf shrubs. The frequency of each collected species in the 16 winter and spring nest mounds is in general accordance with its frequency in the mole rat's territory. This implies that the mole rat randomly samples the food reserve of its territory without special preference or directed search for a particular species. The collection or avoidance of any food item is not dependent on the presence or absence of any other food item. We suggest that the foragin generalism of the mole rat is a product of the constraints of a subterranean niche — the necessity to hoard food as much as possible in a limited time period and the high energetic investment of tunneling to the food items.  相似文献   

2.
Mound fields are a common landscape throughout the world and much of the evidence for their origin has been of a circumstantial nature. It has been hypothesized that earth mounds emerge over grasslands by termite activity; alternatively, they might be formed after erosion. We tested whether a mound field in central Brazil was generated by termite activity or erosion. We used soil organic matter isotopic composition, soil chemical, physical and floristic composition to determine the origin of a mound field. If the mounds emerged by termite activity in an established grassland the soil organic matter below the mound should have the isotopic signature of C4 dominated grassland, which contrasts with savanna C3 + C4 signature. Additionally, soil traits should resemble those of the grassland. All markers indicate that the mounds were formed by erosion. The soil isotopic composition, chemical traits and texture below the mound resembled those of the savanna and not those of the grassland. Moreover, most of the species present in the mound were typical of savanna. Concrete evidence is provided that mound fields in the studied area were produced by erosion of a savanna ecosystem and not termite activity. The use of the techniques applied here would improve the assessments of whether analogous landscapes are of a biogenic nature or not.  相似文献   

3.
Bowé (hardened ferricrete soils formed by erosion, drought or deforestation) are often associated with termite mounds, but little is known about these mounds and their role in the restoration of soils and plant biodiversity on bowé. This study examined termite mounds on bowé and their effects on soil depth and plant richness. Sixty-four sampling plots were laid out randomly on bowé sites with mounds and on adjacent bowé sites without mounds. The height and circumference of each mound were measured. Species inventories were made and soil depth measured in each plot. Linear mixed effects and generalised mixed effects models with Poisson error distribution were used to assess the variation in soil depth and plant species richness in mound and nonmound microsites. Two types of mounds (small vs. large) associated with different termite species were observed on bowé, with the small mounds being most common. Plots with either large or small mounds had deeper soils and higher plant richness than the adjacent plots without mounds. Conservation of termite mounds is important for restoring soils and plant richness on bowé, and termite mounds should be taken into consideration in biodiversity and soil management strategies for bowé.  相似文献   

4.
African savanna termite mounds function as nutrient‐rich foraging hotspots for different herbivore species, but little is known about their effects on the interaction between domestic and wild herbivores. Understanding such effects is important for better management of these herbivore guilds in landscapes where they share habitats. Working in a central Kenyan savanna ecosystem, we compared selection of termite mound patches by cattle between areas cattle accessed exclusively and areas they shared with wild herbivores. Termite mound selection index was significantly lower in the shared areas than in areas cattle accessed exclusively. Furthermore, cattle used termite mounds in proportion to their availability when they were the only herbivores present, but used them less than their availability when they shared foraging areas with wild herbivores. These patterns were associated with reduced herbage cover on termite mounds in the shared foraging areas, partly indicating that cattle and wild herbivores compete for termite mound forage. However, reduced selection of termite mound patches was also reinforced by higher leafiness of Brachiaria lachnantha (the principal cattle diet forage species) off termite mounds in shared than in unshared areas. Taken together, these findings suggest that during wet periods, cattle can overcome competition for termite mounds by taking advantage of wildlife‐mediated increased forage leafiness in the matrix surrounding termite mounds. However, this advantage is likely to dissipate during dry periods when forage conditions deteriorate across the landscape and the importance of termite mounds as nutrient hotspots increases for both cattle and wild herbivores. Therefore, we suggest that those managing for both livestock production and wildlife conservation in such savanna landscapes should adopt grazing strategies that could lessen competition for forage on termite mounds, such as strategically decreasing stock numbers during dry periods.  相似文献   

5.
Vast areas of the African savanna landscapes are characterized by tree‐covered Macrotermes termite mounds embedded within a relatively open savanna matrix. In concert with termites, large herbivores are important determinants of savanna woody vegetation cover. The relative cover of woody species has considerable effects on savanna function. Despite the potentially important ecological relationships between termite mounds, woody plants, large herbivores, and birds, these associations have previously received surprisingly little attention. We experimentally studied the effects of termites and large herbivores on the avian community in Lake Mburo National Park, Uganda, where woody vegetation is essentially limited to termite mounds. Our experiment comprised of four treatments in nine replicates; unfenced termite mounds, fenced mounds (excluding large mammals), unfenced adjacent savanna, and fenced savanna. We recorded species identity, abundance, and behavior of all birds observed on these plots over a two‐month period, from late dry until wet season. Birds used termite mounds almost exclusively, with only 3.5% of observations occurring in the treeless intermound savanna matrix. Mean abundance and species richness of birds doubled on fenced (large herbivores excluded) compared to unfenced mounds. Feeding behavior increased when large mammals were excluded from mounds, both in absolute number of observed individuals, and relative to other behaviors. This study documents the fundamental positive impact of Macrotermes termites on bird abundance and diversity in an African savanna. Birds play crucial functional roles in savanna ecosystems, for example, by dispersing fruits or regulating herbivorous insect populations. Thus, the role of birds in savanna dynamics depends on the distribution and abundance of termite mounds.  相似文献   

6.
Termites are pivotal ecosystem engineers in tropical and subtropical habitats, where they construct massive nests (‘mounds’) that substantially modify soil properties and promote nutrient cycling. Yet, little is known about the roles of termite nesting activity in regulating the spread of antimicrobial resistance (AMR), one of the major Global Health challenges. Here, we conducted a large-scale (> 1500 km) investigation in northern Australia and found distinct resistome profiles in termite mounds and bulk soils. By profiling a wide spectrum of ARGs, we found that the abundance and diversity of antibiotic resistance genes (ARGs) were significantly lower in termite mounds than in bulk soils (P < 0.001). The proportion of efflux pump ARGs was significantly lower in termite mound resistome than in bulk soil resistome (P < 0.001). The differences in resistome profiles between termite mounds and bulk soils may result from the changes in microbial interactions owing to the substantial increase in pH and nutrient availability induced by termite nesting activities. These findings advance our understanding of the profile of ARGs in termite mounds, which is a crucial step to evaluate the roles of soil faunal activity in regulating soil resistome under global environmental change.  相似文献   

7.
The diversity and abundance of epigeal termite mounds were investigated in response to controlled livestock grazing and annual prescribed fire in a Sudanian savannah-woodland in Tiogo State Forest. Sampling of termite mounds was carried out in 4×4 subplots of 0.25 ha in a split-plot experimental design during the rainy season in 2002. There were two main plots of which one was fenced to exclude livestock grazing and the second exposed to grazing. Each of the main plots included 4 subplots with annual prescribed fire since 1992 and 4 subplots without fire. Data were collected on the number and characteristics of termite mounds. A mean density of 698 mounds ha−1 was recorded. Mounds built by Trinervitermes spp. were the most abundant followed by Cubitermes spp., Macrotermes subhyalinus and M. bellicosus. The large mound-builders Macrotermes spp. dominated the community interms of basal area (96% of the total) and above-ground volume (99%). The diversity of mound types was notaffected by livestock grazing and annual early prescribed fire (P>0.05). There was no statistical effect of livestock grazing on mound density, whereas a strong depressive effect of annual fire was observed for Trinervitermes spp. mound density (P=0.012). In this ecosystem, annual prescribed fire appeared to be the major determinant for termite mound abundance. Received 2 February 2007; revised 23 October 2007 and 21 January 2008; accepted 22 Feburary 2008.  相似文献   

8.
Summary Termite mound densities in typical guinea savanna, Detarium, and grassland (boval) habitats in northern guinea savanna were determined by random quadratting of 2–3 sites in each habitat (100, 10x10 m quadrats per habitat). Dominant species in guinea savanna were T. geminatus (46 mounds ha-1) and T. oeconomus (21 mounds ha-1), in Detarium T. geminatus (59 mounds ha-1) and C. curtatus (45 mounds ha-1) and in boval C. curtatus (72 mounds ha-1) and T. geminatus (22 mounds ha-1). Only C. curtatus densities and total densities differed significantly between sites within habitats, but all species differed significantly in abundance between habitats. The composition of each community was related to general environment but no particular environmental variable was shown to be a major determinant of termite distribution. Evidence for the limitation of termite populations was obtained from indirect evidence of competition between colonies in Detarium, and by experimental manipulation of fire regimes in the typical guinea savanna habitat. Harvester termites increased four-five fold over two years in fire-protected plots as a result of increased food supplies. Total termite densities in the fire-protected community equilibrated to the new population density (100 mounds ha-1) after only two-three years.  相似文献   

9.
Herbivores do not forage uniformly across landscapes, but select for patches of higher nutrition and lower predation risk. Macrotermes mounds contain higher concentrations of soil nutrients and support grasses of higher nutritional value than the surrounding savanna matrix, attracting mammalian grazers that preferentially forage on termite mound vegetation. However, little is known about the spatial extent of such termite influence on grazing patterns and how it might differ in time and space. We measured grazing intensity in three African savanna types differing in rainfall and foliar nutrients and predicted that the functional importance of mounds for grazing herbivores would increase as the difference in foliar nutrient levels between mound and savanna matrix grasses increases and the mounds become more attractive. We expected this to occur in nutrient‐poor areas and during the dry season when savanna matrix grass nutrient levels are lower. Tuft use and grass N and P content were measured along transects away from termite mounds, enabling calculation of the spatial extent of termite influence on mammalian grazing. Using termite mound densities estimated from airborne light detection and ranging (LiDAR), we further upscaled field‐based results to determine the percentage of the landscape influenced by termite activity. Grasses in close proximity to termite mounds were preferentially grazed at all sites and in both seasons, but the strength of mound influence varied between savanna types and seasons. In the wet season, mounds had a relatively larger effect on grazers at the landscape scale in the nutrient‐poor, wetter savanna, whereas in the dry season the pattern was reversed with more of the landscape influenced at the nutrient‐rich, driest site. Our results reveal that termite mounds enhance the value of savanna landscapes for herbivores, but that their functional importance varies across savanna types and seasons.  相似文献   

10.
Termites are a highly uncertain component in the global source budgets of CH4 and CO2. Large seasonal variations in termite mound fluxes of CH4 and CO2 have been reported in tropical savannas but the reason for this is largely unknown. This paper investigated the processes that govern these seasonal variations in CH4 and CO2 fluxes from the mounds of Microcerotermes nervosus Hill (Termitidae), a common termite species in Australian tropical savannas. Fluxes of CH4 and CO2 of termite mounds were 3.5-fold greater in the wet season as compared to the dry season and were a direct function of termite biomass. Termite biomass in mound samples was tenfold greater in the wet season compared to the dry season. When expressed per unit termite biomass, termite fluxes were only 1.2 (CH4) and 1.4 (CO2)-fold greater in the wet season as compared to the dry season and could not explain the large seasonal variations in mound fluxes of CH4 and CO2. Seasonal variation in both gas diffusivity through mound walls and CH4 oxidation by mound material was negligible. These results highlight for the first time that seasonal termite population dynamics are the main driver for the observed seasonal differences in mound fluxes of CH4 and CO2. These findings highlight the need to combine measurements of gas fluxes from termite mounds with detailed studies of termite population dynamics to reduce the uncertainty in quantifying seasonal variations in termite mound fluxes of CH4 and CO2.  相似文献   

11.
In many ant–plant mutualisms, ants establish colonies in hollow thorns, leaf pouches, or other specialized structures on their host plants, which they then defend from herbivores. Resource heterogeneity could affect the maintenance of these mutualisms if it leads to one or both partners altering their investment in the interaction. Such a phenomenon may be especially pertinent to the Acacia–ant mutualism found in East African savannas, where termite mounds have a profound effect on the spatial structuring of resources used by both plants and ants. Here, we examined whether the proximity to termite mounds of Acacia drepanolobium trees is associated with variation in the behavior of one of their ant associates, Crematogaster nigriceps. We found that ant colonies near termite mounds had decreased aggressive responses to simulated herbivory as well as increased off‐tree movement. We hypothesize that these changes are the result of resident ant colonies near termite mounds shifting investment from defense of their host plant to foraging for nearby resources.  相似文献   

12.
Knowledge of the distribution and nutrient values of key resources supporting the survival of wildlife species is integral for an effective conservation planning and management of the species. In the Miombo ecosystem of the Ugalla Game Reserve, African elephants (Loxodonta africana Blumenbach 1797), eat soil, that is geophagy, from certain termite mounds. We mapped that all the geophagic termite mounds are exclusively situated in the flood plain. To understand why soils from some termite mounds are eaten, we collected and analysed soil samples from 10 geophagic termite mounds, seven nongeophagic termite mounds and 13 samples from the surrounding flood plain. Percentage of clay content did not differ significantly among the soil samples. Soils from geophagic termite mounds were richer in mineral elements compared with other soil samples. The results demonstrate that the driver for geophagic behaviour is related to rich mineral element contents found in geophagic termite mounds made of the mineral‐enriching termites (Macrotermes). Thus, geophagic termite mounds play a role in elephant's dietary needs and possibly influence their movement patterns in Ugalla, as the elephants cannot obtain enough minerals from their feeds. Geophagic termite mounds should be protected from potential destructive land uses, such as airstrip construction.  相似文献   

13.
This study investigated the effect of land-use on density and distribution patterns of termite mounds. A total area of 12 ha was investigated using four 1 ha plots from each of three land-use types (mango orchards, maize fields and communal rangelands). A total of 297 mounds from four termite species were recorded. Plotted GIS coordinates for each mound in ArcMap showed a random distribution pattern in all land-use types. The mean number of mounds per hectare was significantly higher (p < 0.001) in communal rangelands (52.5 ± 1.21), than in maize fields (14.75 ± 3.15) and mango orchards (7.5 ± 0.87), and dominated by small-sized mounds of Trinervitermes sp. Few mounds of Odontotermes sp. were found. Mounds of the edible termites, Macrotermes natalensis and M. falciger, were found in all land-use types, with the highest density for both species being in maize fields. Although the mound height for both species was similar, mound circumference for M. falciger was significantly larger (p < 0.001) which may limit land available for agricultural use. Density of mounds was influenced by land-use which may lead to changes in termite ecosystem functioning and availability of termites as a free source of protein.  相似文献   

14.
The role of soil modification by the mound-building termite,Drepanotermes tamminensis (Hill), was studied during 1991 in the Durokoppin Nature Reserve, Western Australia. Soil chemical parameters were quantified for ‘soils’ in nests and for surrounding soil in both a Wandoo (Eucalyptus capillosa) woodland and a Casuarina (Allocasuarina campestris) shrubland plot. All ‘soils’ in nests were more acidic than the surrounding soil within each study plot. Generally, nutrient levels in the nested soils were higher than the un-nested soil within each study plot and were also higher in the woodland than in the shrubland plot. Depending on the nuttient concerned, the nested soil contained between 0.3 and 21.9% of the total nutrient load per hectare within each study plot. The quantities of nutrients per hectare in termite mounds were higher in the woodland than in the shrubland plot. It is concluded that mounds of this species of termite form a significant bank of nutrients, although time for release of such nutrients depends on the degree of erosion and on the longevity of mounds.  相似文献   

15.
We analysed microhabitat use by the rodents Calomys tener, Necromys lasiurus and Thalpomys lasiotis and the factors that may influence their abundances in “murundu” grasslands (open fields with termite mounds) at Aguas Emendadas Ecological Station, Planaltina, Federal District, Brazil. Two grids with 100 sampling points were established and traps were placed at each intersection of the grid, where five microhabitat variables were also measured. Rodents were trapped from June through October 2008. Microhabitat explained 21% of the variation in community structure, with grass density and the number of termite mounds explaining most of the variation. Necromys lasiurus was most often captured in areas with dense grasses, whereas T. lasiotis and C. tener were most often in areas less dense with grasses.  相似文献   

16.
A survey of the distribution and density of mounds of the harvester termite,Drepanotermes tamminensis (Hill), was carried out in the Durokoppin Nature Reserve, Western Australia in 1990. Vegetation and, to a lesser extent, soil type, appear to be important factors in determining density and distribution of termite mounds within the Reserve. A more detailed study of mounds in Wandoo (Eucalyptus capillosa) woodland and Casuarina (Allocasuarina campestris) shrubland indicated that the total number and size of mounds were significantly higher in the woodland than in the shrubland. The total wet weight biomass ofD. tamminensis was calculated as 3.74 gm−2 (37.4 kg ha−1) in the woodland and 1.69 gm−2 (16.9 kg ha−1) in the shrubland. Thus, of the two favored habitats, Wandoo woodland appears to be more optimal for this termite species than the Casuarina shrubland.  相似文献   

17.
The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites (Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 m). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2–20 m fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

18.
This article provides a meta-analysis of quantitative data available in literature regarding the relation between termite numbers and the volume of their mounds for 24 species belonging to 13 genera. The leading question behind this analysis is: “how do the respiratory gas exchanges regulate the size of termite mounds?” This question is answered through the analysis of the log–log regression between the volume of the mound and the number of inhabitants. The most confident data support the hypothesis of a respiratory regulation that can be achieved through a relation between the termite numbers and (1) the volume of their mounds (slope of the regression near 1, Noditermes), (2) the surface of the outer walls of their mounds (slope of the regression near 0.67, Termitinae and Nasutitermes) or (3) a compromise between the surface of the outer walls of their mounds and some linear structures of their nests (slope of the regression between 0.67 and 0.33, Trinervitermes and Macrotermes). The way this is achieved is linked with the architecture of the mound. A confident relation was found between the number of individuals and the epigeal volume of their mounds for 18 species for which the most reliable data were provided. Three more accurate models are proposed for estimating the termite population based on the nest material and architecture and on the size of the termites.  相似文献   

19.
In the semi-arid woodland of eastern Australia, soil mounds are often associated with fallen mulga (Acacia aneura) trees. Measurements of the physical and chemical properties of the soils in these mounds compared with surrounding soils, together with differences in herbage growth responses, indicate that these mounds are fertile patches, with possible importance as habitats for soil fauna and as refugia for a range of organisms during drought. The mound soil material may accumulate by fluvial, aeolian or rain-splash deposition about the fallen log, however, some of the mound material was derived from termite feeding gallery structures. The surface feeding gallery material may be comprised of soil particles from within the mound or from tunnels and storage galleries below the mound, and probably depends on the termite species.  相似文献   

20.
Stingless bees are key insects in the tropics, both as pollinators of crops and as contributors to the maintenance of floral diversity through pollination of wild plants. This study investigated the nesting ecology and threats to three stingless bee species: Meliponula bocandei (Spinola), Meliponula ferruginea (Lepeletier) and Dactylurina staudingeri (Gribodo) in three landscapes characterized as forest with logging and wild honey hunting; farmlands that experience annual wild fires and a national park. The study was carried out in July 2011 and February 2012. A total of 93 stingless bee nests were found in 48 ha (density 1.9 nests per ha), 81% in tree cavities and 19% in deserted termite mounds and in the ground. M. ferruginea was the only species using deserted termite mounds (seventeen nests) and in the ground (1 nest). Although tree size (diameter at breast height, DBH >15 cm) and density of large tree were important for nest site selection, there was no influence of tree species. M. bocandei may be restricted in choice of nest site in farmland areas by the absence of trees. Reduced availability of trees in agricultural landscape together with bush burning and wild honey collecting is the main threats to stingless bees survival and abundance which need to be addressed for their successful conservation in Ghana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号