首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cis-diamminedichloro platinum (II) (cis-DDP) and cis-diamminediaquo platinum (II) nitrate (cis-aq) were demonstrated to form complexes with dextran (dex) substituted with carboxymethyl (CM) groups at an average substitution ratio of 1 mole CM per 2 mole glucose units of dextran. The complexes were formed by reacting each of the two platinum (II) derivatives with carboxymethyl-dextran (CM-dex) at room temperature (RT) or at 37 degrees C in an aqueous solution. The complexing rate depended on temperature, ratio of platinum (II) compounds to CM-dex in the reaction mixture, and time of reaction. Experiments were performed with two CM-dex preparations, derived from dex T-10 (Mr-10,000) and from dex T-40 (Mr-40,000). Soluble cis-DDP and cis-aq complexes formed with CM-dex T-10 and CM-dex T-40 could carry up to 15 mole or 60 mole of the platinum (II) compounds per 1 mole CM-dex, respectively but higher complexing ratios resulted in complex precipitation. Reactivity of cis-aq with CM-dex was higher than that of cis-DDP. NaCl interfered with complex formation, but did not cause dissociation of already formed complexes. The binding of cis-DDP and cis-aq to CM-dex is, however, reversible since the drugs could be exchanged by other acceptors of higher affinity to platinum (II) such as O-phyenlenediamine, or DNA.  相似文献   

2.
B E Bowler  S J Lippard 《Biochemistry》1986,25(10):3031-3038
We report the DNA binding site preferences of the novel molecule AO-Pt, in which the anticancer drug dichloro(ethylenediamine)platinum(II) is linked by a hexamethylene chain to acridine orange. The sequence specificity of platinum binding was mapped by exonuclease III digestion of 165 and 335 base pair restriction fragments from pBR322 DNA. Parallel studies were carried out with the unmodified anticancer drugs cis-diamminedichloroplatinum(II) (cis-DDP) and dichloro(ethylenediamine)platinum(II), [Pt(en)Cl2]. Oligo(dG) sequences are the most prevalent binding sites for AO-Pt, with secondary binding occurring mainly at d(AG) sites. cis-DDP and [Pt(en)Cl2] bind less readily to the secondary sequences, with cis-DDP showing greater binding site selectivity than [Pt(en)Cl2]. The DNA intercalator ethidium bromide promotes binding of [Pt(en)Cl2] and cis-DDP to many sites containing d(CGG) and, to a lesser extent, d(AG) sequences. AO-Pt exhibits enhanced binding to these sequences without the need for an external intercalator. Unlinked acridine orange, however, does not promote binding of [Pt(en)Cl2] and cis-DDP to d(CGG) and d(AG) sequences. These results are discussed in terms of the sequence preferences, stereochemistry, and relative residence times of the intercalators at their DNA binding sites. By modulating local structure in a sequence-dependent manner, both linked and, in the case of ethidium, free intercalators can influence the regioselectivity of covalent modification of DNA by platinum antitumor drugs.  相似文献   

3.
Summary Cis-diamminedichloroplatinum (II) (cis-DDP) and its structural analogue cis-diamminediaquoplatinum(II) nitrate (cis-aq) were complexed via an intermediate dextran carrier to antibodies specifically reactive with B lymphoma cells (38C-13). The potential use of these drugs in site-directed immunotargeting was evaluated. The two platinum(II) compounds were previously shown to form pharmacologically active complexes with carboxymethyl dextran (CM-dex). For the purpose of preparing drug-antibody complexes, CM-dex was first conjugated to idiotypic antibodies that recognize a specific membrane IgM on the B lymphoma cells. The conjugates were prepared by a modified water-soluble carbodiimide method in which N-hydroxysuccinimide was used to enhance the coupling reaction. The conjugation was followed by separation of the CM-dex-IgG conjugates from unconjugated CM-dex or IgG. The platinum(II) compounds were then complexed to the CM-dex-IgG resulting in complexes carrying up to 50 mole drug/mole IgG. Both cis-DDP and cis-aq complexes of CM-dex-antibody conjugates maintained most of the original cell-binding activity of the antibodies. An in vitro assay was used to demonstrate selective binding to tumor cells in which the target cells were treated with specific immune complexes and washed before culture. In this assay the specific complexes showed preferential cytotoxicity for the B lymphoma cells in comparison to the free drugs, drug CM-dex, or nonspecific immune complexes.  相似文献   

4.
cis-Diamminedichloroplatinum(II) (cis-DDP) is one of the most widely administrated antitumor drugs. However, the use of cis-DDP is severely limited because of its toxic side effects. Therefore, efforts are concentrated on the development of improved platinum compounds with a broader activity spectrum and effectiveness in chemotherapy, but lower toxicity. Beneficial properties of flavonoids, e.g. their antitumor activity, encouraged scientists to synthesize cis-bis(3-aminoflavone)dichloroplatinum(II). Abilities of these compounds to induce apoptosis and necrosis were compared by use of trypan blue, fluorochrome staining (Hoechst 33258/propidium iodide double staining) and TUNEL assays. The cytotoxicity was evaluated by MTT. The results obtained show that the cis-Pt(II) complex of 3-aminoflavone is less toxic than cis-DDP. However, the former compound has a faster rate of apoptosis induction in lymphocytes than the latter. The cis-Pt(II) complex of 3-aminoflavone induces apoptosis in normal lymphocytes to a lesser degree and could be a potential antitumor drug.  相似文献   

5.
Cis-diamminedichloro platinum (II) (cis-DDP) and cis-diamminediaquo platinum (II) nitrate (cis-aq) were complexed to a macromolecular carrier carboxymethyl dextran (CM-dex). Two carriers were used in this study, one derived from dex-T-10 (Mr-10000) and the other from dex-T-40 (Mr-40000). The two platinum (II) drugs formed soluble complexes with both carriers. Uncomplexed and complexed drugs were tested and found to be cytotoxic in vitro against 5 murine and 2 human derived tumor cell lines. The two free platinum (II) drugs were cytotoxic against these cells to a similar extent. In comparison to the free drugs the complexes were somewhat less active, up to 3 fold, against murine 38C-13, L1210, EL-4 and RDM-4 leukemias, as well as against human HeLa and osteogenic sarcoma, and as active as the free drugs against murine F9 embryonal carcinoma. There were no major differences in the in vitro cytotoxic activity between CM-dex T-10 and CM-dex T-40 complexes. Differences due to the molecular size of the carrier were observed in vivo: The CM-dex T-10 complexes were significantly less toxic than the free drugs, whereas the reduction of toxicity by complexing to CM-dex T-40 was less profound. As for the efficacy, when tested in vivo against a cis-DDP sensitive tumor (F9) the T-40 complexes were equally or even more effective than the respective free drugs. The T-10 complexes were less effective than the free drugs at equal drug doses but their effectivity increased at increasing drug levels. These complexes were, however, very effective in inhibiting tumor growth upon repeated injections, leading to 100% survival.  相似文献   

6.
The integrity of the double-stranded complex polyriboguanylic.polyribocytidylic acid [poly(rG).poly(rC)] modified by antitumour cis-diamminedichloroplatinum(II)(cis-DDP) was studied with the aid of differential pulse polarography and terbium fluorescence measurement. The modification was made to level corresponding to rb = 0.05 (rb is defined as the number of platinum atoms covalently bound per one nucleotide residue). Two modes of the modification of the polynucleotide complex were employed: The action of cis-DDP on poly(G) before formation of the complex with poly(C) and on the complex already formed from non-modified polynucleotides. It was shown that in the latter case modification disordered the integrity of the complex only negligibly. while in the former case the modification resulted in a noticeably more extensive disturbance of the double-stranded polynucleotide complex. Moreover, the modification of the complex (after its formation) at rb = 0.02 led to improved interferon-inducing and antiviral activity of poly(rG).poly(rC) tested on mice infected by influenza virus. It was suggested that the combined effects of interferon-inducing and antiviral activities of poly(rG).poly(rC) and antiviral activity of cis-DDP may result in an increased effect over and above what may be expected from the actions of the two modalities separately.  相似文献   

7.
The reactions of cis- and trans-dichlorodiammineplatinum(II) (cis- and trans-DDP) with albumin and two plasma proteinase inhibitors were compared. Reaction with alpha 2-macroglobulin (alpha 2M) resulted in subunit crosslinking and loss of proteinase binding activity. The reaction also modified a receptor recognition site present on each alpha 2M subunit. While more trans-DDP was incorporated into alpha 2M than cis-DDP, cis-DDP was more effective at blocking receptor recognition, alpha 1-proteinase inhibitor was also inactivated by reaction with either cis- or trans-DDP. These reactions resulted in binding of platinum to methionine-358 at the reactive center of this inhibitor. Trans-DDP, however, was less selective and also bound to the single cysteine residue (Cys-232) of alpha 1PI. Reaction of albumin with cis-DDP resulted in incorporation of about 1 mol platinum per mol protein, and this platinum modified the single cysteine (Cys-34) in the molecule. Albumin incorporated twice as much trans-DDP, but the binding did not involve cysteine-34. In general, reactions of cis-DDP with proteins appear to be more selective than those observed for modification with the trans isomer.  相似文献   

8.
Six new steroidal-cis-platinum(II)-o-catecholato complexes (5–9 and 15) were prepared by treatment of either [4-(2-aminoethyl)1,2-benzenediolato(2-)-O, O′]-bis(triphenylphosphine)platinum(II) or [3,4-dihydroxybenzenepropionic acid (2-)-O3, O4]-bis-(triphenylphosphine)platinum(II) with appropriate functionalized steroids. The biological effect of the air-stable conjugates on a human breast tumor cell line, MCF-7, was compared with that of cis-dichloro-diaminoplatinum(II) (cis-DDP). The activity of the new compounds proved to be of the same order of magnitude as cis-DDP.  相似文献   

9.
cis-Dichlorodiammineplatinum(II) (cis-DDP) doubled the amount of metallothioneins (MTs) in the livers and kidneys of BALB/c mice when injected i.p. in a single high dose of 30 mumol/kg (9 mg/kg). Two such doses given 17 h apart increased hepatic MTs 5-fold and also increased the relative rate of incorporation of radiolabelled cyst(e)ine into hepatic MTs. Hydrolysed cis-DDP was more effective than cis-DDP, increasing MT-bound zinc 27-fold and [3H]cysteine incorporation 6-fold in liver while doubling each of these in kidney. The MTs from the livers of mice treated with cis-DDP bound zinc, copper and platinum in ratios of 5:1:0.3, respectively, similar to those in whole liver and its soluble fraction, indicating that MTs do not selectively sequester platinum under these circumstances. The effects of cis-DDP on zinc and copper levels in serum, liver and kidney suggest that induction of MTs by cis-DDP is not mediated by displacement of endogenous zinc. Indirect induction by corticosteroids secreted in a stress response to cis-DDP is also an unlikely cause. cis-DDP, probably in a hydrolysed form, can therefore induce and bind to MTs in normal tissues, particularly when given at repeated high dosage.  相似文献   

10.
The dynamic development of metal-containing anticancer drugs has started since the discovery of cis-diamminedichloroplatinum(II). For many years it was believed that trans platinum(II) compounds were non-active as antitumour agents because trans-diamminedichloroplatinum is biologically inactive although it binds to DNA and also forms monoadducts and cross-links. In the present work the ability of a novel platinum(II) compound trans-[PtCl(2)(4-pmOpe)(2)] to induce DNA damage in human non-small cell lung cancer cells A549 was examined using the alkaline comet assay. The obtained results revealed that the novel trans platinum(II) complex induced DNA strand breaks, which were effectively repaired during 2h of post-incubation, and cross-links which remained unrepaired under these test conditions. Apart from that, the modified comet assay with incubation with proteinase K was used to verify the ability of trans-[PtCl(2)(4-pmOpe)(2)] and cis-DDP to form DNA-protein cross-links. It has been proved that only trans-[PtCl(2)(4-pmOpe)(2)] complex exhibits the ability to induce DNA-protein cross-links. The results suggest a different mechanism of action of this compound in comparison to cis-DDP. It seems that trans geometry and the presence of two diethyl (pyridin-4-ylmethyl)phosphates as non-leaving ligands can determine dissimilar properties of the adducts formed on DNA and the different mechanism of action of trans-[PtCl(2)(4-pmOpe)(2)] and in consequence the efficacy in killing cancer cells.  相似文献   

11.
The interaction of DNA modified by the binding of various platinum compounds with an electrically charged mercury surface was studied by means of linear sweep voltammetry. It was found that DNA and its adducts with antitumour active cis-diammine-dichloroplatinum(II) (cis-DDP) on the one hand and antitumour inactive trans-diamminedichloroplatinum(II) (trans-DDP) and diethylenetriaminechloroplatinum(II) chloride (dien-Pt) on the other were unwound due to their adsorption on the negatively charged mercury surface polarized to the potentials of a narrow region around -1.2 V (vs. saturated calomel electrode). The modification of DNA by bifunctional platinum compounds (cis- and trans-DDP) resulted in a substantial lowering of the extent of this interfacial conformational rearrangement, the modification by trans-DDP being more effective. The modification of DNA by monofunctional dien-Pt influenced the unwinding of DNA on the mercury surface only negligibly. It has been concluded that in particular interstrand cross-links induced by platinum compounds in DNA are responsible for the effect of these drugs on the extent of the interfacial unwinding of DNA. This conclusion is in good agreement with the view that among the lesions induced in DNA by platinum compounds, the interstrand cross-links are of less significance from the point of view of the antitumour efficacy of these inorganic drugs.  相似文献   

12.
Cis-diamminedichloroplatinum(II) (cis-DDP) is one of the most often used anticancer drugs. It is generally accepted that the antitumor activity of the drug results from its interactions with DNA. Trans-diamminedichloroplatinum(II) (trans-DDP) also binds to DNA effectively, but is clinically ineffective. In the present work the lymphocyte nuclear proteins that participate in DNA-protein cross-links induced by cis- and trans-DDP are investigated. In lymphocytes which are incubated without platinum compounds there are DNA-binding proteins in the range of 45-71 kDa. It is shown that additional proteins of 28, 30, 34.5, 45 and 120 kDa are cross-linked with DNA in lymphocytes after 2-h incubation with cis-DDP at concentrations of 0.1 and 0.5 mM. Trans-DDP does not bind additional proteins to DNA after the same incubation time. Electrophoretic analysis shows that trans-DDP binds much more of the same nuclear proteins to DNA than cis-DDP after 12-h incubation. In this study a test for the identification of 34.5 kDa protein is also undertaken. This protein appears in the samples obtained after 12-h incubation of lymphocytes with cis- and trans-DDP at 0.5 and 1 mM, especially. The protein of 34.5 kDa from cross-links induced by 1 mM trans-DDP is recognized by antibodies against the protein of the same molecular weight from the nuclear matrix of the lymphocytes. The results obtained here are discussed in relation to the biological activity of diamminedichloroplatinum isomers.  相似文献   

13.
We report the use of anti-nucleoside antibodies to probe for local denaturation of calf thymus DNA upon binding of the antitumor drug cis-diamminedichloroplatinum(II), cis-DDP, and the biologically inactive analogues trans-diamminedichloroplatinum(II), trans-DDP, and chloro(diethylenetriamine)platinum(II) chloride, [Pt(dien)Cl]Cl. These antibodies specifically recognize each of the four DNA nucleosides. They bind well to denatured DNA, but not to native DNA in which the bases are less accessible owing to Watson-Crick duplex structure. At relatively high levels of modification (D/N approximately 0.1), cis-DDP causes significant disruption of DNA base pairing as reflected by the increased binding of anti-cytidine, anti-adenosine, and anti-thymidine antibodies. At lower levels of platinum adduct formation, however, all four anti-nucleoside antibodies bind more to DNA modified with trans-DDP. This result indicates that adducts formed by trans-DDP disrupt the DNA structure to a greater extent than those formed by cis-DDP at low D/N ratios. Modification of DNA by the monofunctional complex [Pt(dien)Cl]Cl does not affect its recognition by anti-nucleoside antibodies, demonstrating that base pair disruption is a consequence of bifunctional binding. The relative anti-nucleoside antibody recognition of cis-DDP-modified DNA is anti-cytosine greater than anti-adenosine approximately anti-thymidine much greater than anti-guanosine, consistent with the major adduct being an intrastrand d(GpG) cross-link. These results reveal that base pair disruption in a naturally occurring DNA modified by either cis-DDP or trans-DDP is sufficient to be detected by protein (antibody) binding. The relevance of these findings to current ideas about the molecular mechanism of action of cis-DDP is discussed.  相似文献   

14.
The present work investigates the effect of cis-DDP (DDP, diamminedichloroplatinum(II)), trans-DDP, SPC (spermine platinum(II) complex), and K2PtCl4 on the activity of the CTP synthetase in the cytosol of Ehrlich ascites tumor cells. To study their in vitro effect, the platinum compounds were supplemented to the incubation mixture for the enzyme assay. A concentration dependent inhibition of the CTP synthetase was found which was strongest in the case of trans-DDP. When ascites cells collected from mice, pretreated in vivo with platinum compounds, were used, the enzyme assay showed that the inhibition is strongest in the case of cis-DDP and K2PtCl4 (about 90% inhibition). This distinct inhibitory effect of the platinum compounds in the present experiments may be explained with the metabolic conversions of the compounds in the organism to their more active forms and/or with the inhibition of the protein biosynthesis under their influence because the lifetime of the CTP synthetase is short. This last assertion is proved in this work by control experiments with the antibiotic cycloheximide, which is an inhibitor of the protein biosynthesis.  相似文献   

15.
We evaluated the cytotoxic and DNA cross-linking (CL) ability of four second generation platinum coordination complexes (TNO-6, JM-89, JM-8 and JM-9) delivered alone or in combination with 1-beta-D-arabinofuranosyl cytosine (ara-C) to human colon cancer cells (LoVo). Cell survival varied markedly as a function of the particular substitution moiety. JM-8 and JM-9 were virtually ineffective, even at concentrations as high as 50 micrograms/ml. At that concentration cis-diamminedichloroplatinum(II) (cis-DDP) killed greater than 99.99% of the cells. JM-82 was slightly more active while TNO-6 was the only derivative with appreciably higher cytotoxic activity due to an abrogation of the shoulder region of the type C survival curve. The highest CL effect was observed for cis-DDP followed closely by TNO-6. Very little CL effects were demonstrated for the other three analogs JM-82, JM-8 and JM-9 when measured 6 h after treatment. The combination of cis-DDP and ara-C augmented 10-fold the cytotoxic activity of cis-DDP alone, an effect accompanied by an almost 2-fold increase in CL; every other analog failed to interact in a potentiating manner (either cytotoxicity, or CL at 6 h) with the antimetabolite. Thus, it appears clear that the associated moieties of the Pt coordination complex play a fundamental role in reducing the interaction of the analogs with DNA (as reflected by the decreased CL and cytotoxic effects produced by each agent alone) and in totally preventing their interaction with ara-C to yield a potentiating lethal effect.  相似文献   

16.
17.
Drug-radiation interactions in haemopoietic tissue were assessed as the lethality of mice within 7-28 days after whole-body irradiation. The investigated drugs were adriamycin (ADM), bleomycin (BLM), cyclophosphamide (CTX), 5-fluorouracil (5-FU), methotrexate (MTX), mitomycin C (MM-C) and cis-diamminedichloroplatinum II (cis-DDP). The drugs were administered as single doses 15 min before graded doses of whole-body irradiation or at different intervals from 7 days before to 7 days after fixed radiation doses. ADM, CTX, 5-FU, MM-C and cis-DDP enhanced the radiation response when administered 15 min before irradiation. The dose effect factor (DEF) was 9.11 for 5-FU and in the range 1.25-1.59 for the other drugs. MTX administration 15 min before irradiation had no effect (DEF 1.00). However, MTX increased lethality if given 1-3 days after irradiation (DEF 1.21-1.76) and protected against lethality if given 1-3 days before irradiation (DEF 0.83). A similar time dependence was observed for ADM, CTX, 5-FU, MM-C and cis-DDP. Protection against lethality was not observed but in all these cases the lethality was significantly lower at administration 1-3 days before than 1-3 days after irradiation. A proper investigation of the effect of BLM was not possible as the combination of this drug and whole-body irradiation caused a high rate of gastrointestinal deaths.  相似文献   

18.
Cis-diamminedichloroplatinum(II) (cis-DDP) is one of the most successful antineoplastic drugs. However, besides effectiveness it gives many side effects. Therefore, current studies are concentrated on searching for new analogs equally effective in chemotherapy but less toxic. Comparison of genotoxic properties of cis-Pt(II) complex of 3-aminoflavone and cis-DDP in a comet assay with and without H2O2 application was performed in A549 cell line. The higher tail moment values were noticed for the former compound contrary to the latter one in both variants. It suggests mainly DNA breaks (besides cross-links) appearance after cis-Pt(II) complex of 3-aminoflavone application and might indicate DNA degradation in comparison with cis-DDP.  相似文献   

19.
Thermal denaturation of calf thymus DNA modified by antitumor cis-diamminedichloroplatinum(II) (cis-DDP) and by two related Pt(II) compounds which had been shown to be clinically inefective, viz. trans-diamminedichloroplatinum(II) (trans-DDP) or monodentate diethylenetriaminechloroplatinum(II) chloride {[Pt(dien)Cl)]Cl}, was studied by monitoring changes of absorbance at 260 nm. The melting of DNA platinated to different levels was investigated in neutral media containing varying concentrations of Na+. It has been shown that the ionic strength has a strong influence on the character and magnitude of changes in the melting temperature of DNA (Tm) induced by the platination. The modification of DNA by either platinum complex used in this work results in an increase of Tm if DNA melting is measured in media containing low Na+ concentrations (ca. 1 mM). This effect is reversed at higher Na+ concentrations. The concentration of Na+ at which this reversal occurs is, however, markedly lower for DNA modified by cis-DDP than for DNA modified by the other two platinum complexes. These results have been iterpreted to mean that at least three factors affect the thermal stability of DNA modified by the platinum(II) complexes: stabilization effects of the positive charge on the platinum moiety and of interstrand cross-links, and a destabilization effect of conformational distortions in DNA. Thus, in order to compare and interpret the melting behavior of DNA modified by different compounds, a great attention has to be paid to the composition of the medium in which the melting experiments are carried out.  相似文献   

20.
The present study demonstrates the activation of calpain I and calpain II by micromolar levels of terbium and has utilized the enhancement in the fluorescence of protein-bound terbium to study and compare the calcium binding sites of the two enzymes. Calpain I and calpain II were isolated from bovine erythrocytes and brain, respectively. While the rates of activation of calpain I by terbium and calcium are comparable, the rate of activation of calpain II was much greater in the presence of terbium than in the presence of calcium. Binding of terbium ions to calpains was monitored by the enhanced terbium fluorescence and by the changes in the intrinsic protein fluorescence of calpains. Stoichiometric titrations indicated that calpain I and calpain II bound four and six molar equivalents of terbium ion, respectively. During the titration, the intrinsic protein fluorescence of calpain II was successively quenched whereas that of calpain I showed an abrupt drop just prior to the saturation. The association constants (Ka) increased from 10(5) to 10(7) M-1 for calpain I and from 10(4) to 10(6) M-1 for calpain II with addition of increasing molar equivalents of terbium. Titration of enzymatic activities with calcium showed that the activation of calpain I required fewer molar equivalents of metal ions than were necessary for the activation of calpain II, in agreement with stoichiometric titration with terbium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号