首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vinculin is an essential protein involved in linking the actin cytoskeleton to sites of cell-cell and cell-matrix adhesion. Here we report the majority of the backbone 1HN, 15N, 13Cα, 13CO, and side chain 13Cβ NMR resonance assignments of the actin binding tail domain of vinculin (Vt).  相似文献   

2.
Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U–13C,15N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the 13C–13C and 13C–1H spin coupling networks (Kainosho et al. in Nature 440:52–57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [ζ2,ζ3-2H2; δ1,ε3,η2-13C3; ε1-15N]-indole ring ([12Cγ, 12Cε2] SAIL-Trp), which provides a more robust way to correlate the 1Hβ, 1Hα, and 1HN to the 1Hδ1 and 1Hε3 through the intra-residue NOEs. The assignment of the 1Hδ1/13Cδ1 and 1Hε3/13Cε3 signals can thus be transferred to the 1Hε1/15Nε1 and 1Hη2/13Cη2 signals, as with the previous type of SAIL-Trp, which has an extra 13C at the Cγ of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral β-methylene protons, which was 1Hβ2 in this experiment, one can determine the side-chain conformation of the Trp residue including the χ2 angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [12Cγ,12Cε2] SAIL-Trp for the 12 kDa DNA binding domain of mouse c-Myb protein (Myb-R2R3), which contains six Trp residues.  相似文献   

3.
The C isotope composition of leaf dark-respired CO213Cl) integrates short-term metabolic responses to environmental change and is potentially recorded in the isotopic signature of ecosystem-level respiration. Species differences in photosynthetic pathway, resource acquisition and allocation patterns, and associated isotopic fractionations at metabolic branch points can influence δ13Cl, and differences are likely to be modified by seasonal variation in drought intensity. We measured δ13Cl in two deep-rooted C3 trees (Prosopis velutina and Celtis reticulata), and two relatively shallow-rooted perennial herbs (a C3 dicot Viguiera dentata and a C4 grass Sporobolus wrightii) in a floodplain savanna ecosystem in southeastern Arizona, USA during the dry pre-monsoon and wet monsoon seasons. δ13Cl decreased during the nighttime and reached minimum values at pre-dawn in all species. The magnitude of nocturnal shift in δ13Cl differed among species and between pre-monsoon and monsoon seasons. During the pre-monsoon season, the magnitude of the nocturnal shift in δ13Cl in the deep-rooted C3 trees P. velutina (2.8 ± 0.4‰) and C. reticulata (2.9 ± 0.2‰) was greater than in the C3 herb V. dentata (1.8 ± 0.4‰) and C4 grass S. wrightii (2.2 ± 0.4‰). The nocturnal shift in δ13Cl in V. dentata and S. wrightii increased to 3.2 ± 0.1‰ and 4.6 ± 0.6‰, respectively, during the monsoon season, but in C3 trees did not change significantly from pre-monsoon values. Cumulative daytime net CO2 uptake was positively correlated with the magnitude of the nocturnal decline in δ13Cl across all species, suggesting that nocturnal δ13Cl may be controlled by 13C/12C fractionations associated with C substrate availability and C metabolite partitioning. Nocturnal patterns of δ13Cl in dominant plant species in the semiarid savanna apparently have predictable responses to seasonal changes in water availability, which is important for interpreting and modeling the C isotope signature of ecosystem-respired CO2.  相似文献   

4.
Gu B  Schelske CL  Waters MN 《Oecologia》2011,165(4):1083-1094
Carbon stable isotopes (δ13C) of particulate organic matter (POM) have been used as indicators for energy flow, primary productivity and carbon dioxide concentration in individual lakes. Here, we provide a synthesis of literature data from 32 freshwater lakes around the world to assess the variability of δ13CPOM along latitudinal, morphometric and biogeochemical gradients. Seasonal mean δ13CPOM, a temporally integrated measure of the δ13CPOM, displayed weak relationships with all trophic state indices [total phosphorus (TP), total nitrogen (TN), and chlorophyll a (Chl a)], but decreased significantly with the increase in latitude, presumably in response to the corresponding decrease in water temperature and increase in CO2 concentration. The seasonal minimum δ13CPOM also correlated negatively with latitude while seasonal maximum δ13CPOM correlated positively with all trophic state indices, pH, and δ13C of dissolved inorganic carbon (DIC). Seasonal amplitude of δ13CPOM (the difference between seasonal maximum and minimum values) correlated significantly with pH, TP and Chl a concentrations and displayed small variations in oligotrophic, mesotrophic and low latitude eutrophic lakes, which is attributed to low primary productivity and abundant non-living POM in the low trophic state lakes and relatively stable environmental conditions in the subtropics. Seasonal amplitude of δ13CPOM was the greatest in high latitude eutrophic lakes. Greater seasonal changes in solar energy and light regime may be responsible for the large seasonal variability in high latitude productive lakes. This synthesis provides new insights on the factors controlling variations in stable carbon isotopes of POM among lakes on the global scale.  相似文献   

5.
Family Chenopodiaceae is an intriguing lineage, having the largest number of C4 species among dicots, including a number of anatomical variants of Kranz anatomy and three single-cell C4 functioning species. In some previous studies, during the culture of Bienertia cycloptera Bunge ex Boiss., carbon isotope values (δ13C values) of leaves deviated from C4 to C3−C4 intermediate type, raising questions as to its mode of photosynthesis during growth in natural environments. This species usually co-occurs with several Kranz type C4 annuals. The development of B. cycloptera morphologically and δ13C values derived from plant samples (cotyledons, leaves, bracts, shoots) were analyzed over a complete growing season in a salt flat in north central Iran, along with eight Kranz type C4 species and one C3 species. For a number of species, plants were greenhouse-grown from seeds collected from the site, in order to examine leaf anatomy and C4 biochemical subtype. Among the nine C4 species, the cotyledons of B. cycloptera, and of the Suaeda spp. have the same respective forms of C4 anatomy occurring in leaves, while cotyledons of members of tribe Caroxyloneae lack Kranz anatomy, which is reflected in the δ13C values found in plants grown in the natural habitat. The nine C4 species had average seasonal δ13C values of −13.9‰ (with a range between species from −11.3 to −15.9‰). The measurements of δ13C values over a complete growing season show that B. cycloptera performs C4 photosynthesis during its life cycle in nature, similar to Kranz type species, with a seasonal average δ13C value of −15.2‰. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
We present 1HN, 15N, 13Cα, 13Cβ and 13C′ assignments and 15N transverse relaxation rates (R2) of a Parkinson’s disease-related intrinsically disordered protein, α-synuclein, in the presence of 2 M (360 g/l) glucose solution.  相似文献   

7.
Foliar δ13C values of Calligogum kozlovi and Haloxylon ammodendron ranged from −13.13 to −15.11 ‰, while those of the rest 11 species were in the range of −22.22 to −27.73 ‰. This indicates that two of 13 dominant plant species in the Qaidam Basin possess a C4 photosynthetic pathway. Significant differences were observed for the average foliar δ13C values between C3 or C4 plant communities, between grass and shrub communities, even between the same species derived from different sites. Precipitation accounted for the major part of the differences.  相似文献   

8.
G-matrix FT projection NMR spectroscopy was employed for resonance assignment of the 79-residue subunit c of the Escherichia coli F1F0 ATP synthase embedded in micelles formed by lyso palmitoyl phosphatidyl glycerol (LPPG). Five GFT NMR experiments, that is, (3,2)D HNNCO, L-(4,3)D HNNC αβ C α, L-(4,3)D HNN(CO)C αβ C α, (4,2)D HACA(CO)NHN and (4,3)D HCCH, were acquired along with simultaneous 3D 15N, 13Caliphatic, 13Caromatic-resolved [1H,1H]-NOESY with a total measurement time of ∼43 h. Data analysis resulted in sequence specific assignments for all routinely measured backbone and 13Cβ shifts, and for 97% of the side chain shifts. Moreover, the use of two G2FT NMR experiments, that is, (5,3)D HN{N,CO}{C αβ C α} and (5,3)D {C αβ C α}{CON}HN, was explored to break the very high chemical shift degeneracy typically encountered for membrane proteins. It is shown that the 4D and 5D spectral information obtained rapidly from GFT and G2FT NMR experiments enables one to efficiently obtain (nearly) complete resonance assignments of membrane proteins. Qi Zhang, Hanudatta S. Atreya, Douglas E. Kamen, Mark E. Girvin and Thomas Szyperski—New York Consortium on Membrane Protein Structure.  相似文献   

9.
Ketopantoate reductase is an essential enzyme for pantothenate (vitamin B5) synthesis and a potential antibiotic target. Here we report the 15N and 1HN, 13C′, 13Cα and 13Cβ chemical shift assignments of the 34 kDa ketopantoate reductase in its apo state.  相似文献   

10.
The dynamics of the nucleobase and the ribose moieties in a 14-nt RNA cUUCGg hairpin-loop uniformly labeled with 13C and 15N were studied by 13C spin relaxation experiments. R1, R and the 13C-{1H} steady-state NOE of C6 and C1′ in pyrimidine and C8 and C1′ in purine residues were obtained at 298 K. The relaxation data were analyzed by the model-free formalism to yield dynamic information on timescales of pico-, nano- and milli-seconds. An axially symmetric diffusion tensor with an overall rotational correlation time τc of 2.31±0.13 ns and an axial ratio of 1.35±0.02 were determined. Both findings are in agreement with hydrodynamic calculations. For the nucleobase carbons, the validity of different reported 13C chemical shift anisotropy values (Stueber, D. and Grant, D. M., 2002 J. Am. Chem. Soc. 124, 10539–10551; Fiala et al., 2000 J. Biomol. NMR 16, 291–302; Sitkoff, D. and Case, D. A., 1998 Prog. NMR Spectroscopy 32, 165–190) is discussed. The resulting dynamics are in agreement with the structural features of the cUUCGg motif in that all residues are mostly rigid (0.82 < S2 < 0.96) in both the nucleobase and the ribose moiety except for the nucleobase of U7, which is protruding into solution (S2 = 0.76). In general, ribose mobility follows nucleobase dynamics, but is less pronounced. Nucleobase dynamics resulting from the analysis of 13C relaxation rates were found to be in agreement with 15N relaxation data derived dynamic information (Akke et al., 1997 RNA 3, 702–709). Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

11.
In an attempt to determine the trophic history of the Myall Lakes complex (New South Wales, Australia) δ13Corg, δ15N and Corg:N profiles were determined for bulk organic matter of two short sediment cores from Bombah Broadwater and Myall Lake. 210Pb profiles and sediment types indicate significantly different trophic trajectories during the time periods examined. δ13Corg and Corg:N indicate Bombah Broadwater has been dominated by increasing inputs of terrestrial organic material over the last century, thought to be related to watershed disturbance including agricultural activity. Primary production appears to be dominated by phytoplankton. δ15N remained relatively stable at around 1‰ until the mid–1970s when there was a sharp increase to 4.7‰, interpreted as an influx of sewage-derived material. These observations offer an insight into the recent trophic changes at the site. Sedimentation rates are noticeably lower in Myall Lake and the most recent sediment is a flocculent organic rich deposit overlying mineral clay. δ13Corg and Corg:N values indicate a transition from plankton to macrophyte dominated primary production around 1800AD. δ15N values become increasingly negative from approximately 1900AD. This is interpreted as being due to increasing reliance by macrophytes on nitrogen recycled from decomposing sediments driven by natural infilling and eutrophication in this basin. The contrasting sedimentation rates, sediment types and geochemical profiles suggest the different basins of this water body are subject to substantially different internal and external influences which should be considered in management decisions.  相似文献   

12.
Corals rely on stored energy reserves (i.e., lipids, carbohydrates, and protein) to survive bleaching events. To better understand the physiological implications of coral bleaching on lipid catabolism and/or synthesis, we measured the δ13C of coral total lipids (δ13CTL) in experimentally bleached (treatment) and non-bleached (control) Porites compressa and Montipora capitata corals immediately after bleaching and after 1.5 and 4 months of recovery on the reef. Overall δ13CTL values in treatment corals were significantly lower than in control corals because of a 1.9 and 3.4‰ decrease in δ13CTL immediately after bleaching in P. compressa and M. capitata, respectively. The decrease in δ13CTL coincided with decreases in total lipid concentration, indicating that corals catabolized δ13C-enriched lipids. Since storage lipids are primarily depleted during bleaching, we hypothesize that they are isotopically enriched relative to other lipid classes. This work further helps clarify our understanding of changes to coral metabolism and biogeochemistry when bleached and helps elucidate how lipid classes may influence recovery from bleaching and ultimately coral survival.  相似文献   

13.
In semi-arid regions, where plants using both C3 and C4 photosynthetic pathways are common, the stable C isotope ratio (δ13C) of ecosystem respiration (δ13CR) is strongly variable seasonally and inter-annually. Improved understanding of physiological and environmental controls over these variations will improve C cycle models that rely on the isotopic composition of atmospheric CO2. We hypothesized that timing of precipitation events and antecedent moisture interact with activity of C3 and C4 grasses to determine net ecosystem CO2 exchange (NEE) and δ13CR. Field measurements included CO2 and δ13C fluxes from the whole ecosystem and from patches of different plant communities, biomass and δ13C of plants and soils over the 2000 and 2001 growing seasons. NEE shifted from C source to sink in response to rainfall events, but this shift occurred after a time lag of up to 2 weeks if a dry period preceded the rainfall. The seasonal average of δ13CR was higher in 2000 (−16‰) than 2001 (20‰), probably due to drier conditions during the 2000 growing season (79.7 mm of precipitation from April up to and including July) than in 2001 (189 mm). During moist conditions, δ13C averaged −22‰ from C3 patches, −16‰ from C4 patches, and −19‰ from mixed C3 and C4 patches. However, during dry conditions the apparent spatial differences were not obvious, suggesting reduced autotrophic activity in C4 grasses with shallow rooting depth, soon after the onset of dry conditions. Air and soil temperatures were negatively correlated with δ13CR; vapor pressure deficit was a poor predictor of δ13CR, in contrast to more mesic ecosystems. Responses of respiration components to precipitation pulses were explained by differences in soil moisture thresholds between C3 and C4 species. Stable isotopic composition of respiration in semi-arid ecosystems is more temporally and spatially variable than in mesic ecosystems owing to dynamic aspects of pulse precipitation episodes and biological drivers.  相似文献   

14.
We analysed the stable carbon isotope ratio in exhaled CO213Cbreath) of free-ranging vampires to assess the type of metabolized substrate (endogenous or exogenous substrate) and its origin, i.e. whether the carbon atoms came from a C4 food web (grass and cattle) or the C3 food web in which they were captured (a rainforest remnant and its mammals). For an improved understanding of factors influencing the δ13Cbreath of vampires, we conducted feeding experiments with captive animals. The mean δ13Cbreath of starved bats was depleted in 13C in relation to the diet by 4.6‰ (n = 10). Once fed with blood, δ13Cbreath levelled off within a short time approximately 2.2‰ above the stable carbon isotope signature of the diet. The median time required to exchange 50% of the carbon atoms in exhaled CO2 with carbon atoms from the ingested blood was 18.6 min (mean 29.5 ± 19.0 min, n = 5). The average δ13C of wing membrane and fur in free-ranging vampire bats suggested that bats almost exclusively foraged for cattle blood during the past weeks. The δ13Cbreath of the same bats averaged −19.1‰. Given that all free-ranging vampires were starving and that the δ13C of cattle was more in enriched in 13C by 5–6‰ than the δ13Cbreath of vampires, we conclude that the vampire bats of our study metabolised fat that was predominantly built from carbon atoms originating from cattle blood. Since δ13C of wing membrane and fur integrates over weeks and months respectively and δ13Cbreath over hours and days, we also conclude that vampire bats of the studied population consistently ignored rainforest mammals and chose cattle as their prey during and prior to our study.  相似文献   

15.
The dependence of the 13C chemical shift on side-chain orientation was investigated at the density functional level for a two-strand antiparallel β-sheet model peptide represented by the amino acid sequence Ac-(Ala)3-X-(Ala)12-NH2 where X represents any of the 17 naturally occurring amino acids, i.e., not including alanine, glycine and proline. The dihedral angles adopted for the backbone were taken from, and fixed at, observed experimental values of an antiparallel β-sheet. We carried out a cluster analysis of the ensembles of conformations generated by considering the side-chain dihedral angles for each residue X as variables, and use them to compute the 13C chemical shifts at the density functional theory level. It is shown that the adoption of the locally-dense basis set approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 17 naturally occurring amino acids in an antiparallel β-sheet, there is (i) good agreement between computed and observed 13Cα and 13Cβ chemical shifts, with correlation coefficients of 0.95 and 0.99, respectively; (ii) significant variability of the computed 13Cα and 13Cβ chemical shifts as a function of χ1 for all amino acid residues except Ser; and (iii) a smaller, although significant, dependence of the computed 13Cα chemical shifts on χξ (with ξ ≥ 2) compared to χ1 for eleven out of seventeen residues. Our results suggest that predicted 13Cα and 13Cβ chemical shifts, based only on backbone (φ,ψ) dihedral angles from high-resolution X-ray structure data or from NMR-derived models, may differ significantly from those observed in solution if the dihedral-angle preferences for the side chains are not taken into account. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

16.
Carbon isotope ratios (δ13C) were studied in evergreen and deciduous forest ecosystems in semi-arid Utah (Pinus contorta, Populus tremuloides, Acer negundo and Acer grandidentatum). Measurements were taken in four to five stands of each forest ecosystem differing in overstory leaf area index (LAI) during two consecutive growing seasons. The δ13Cleaf (and carbon isotope discrimination) of understory vegetation in the evergreen stands (LAI 1.5–2.2) did not differ among canopies with increasing LAI, whereas understory in the deciduous stands (LAI 1.5–4.5) exhibited strongly decreasing δ13Cleaf values (increasing carbon isotope discrimination) with increasing LAI. The δ13C values of needles and leaves at the top of the canopy were relatively constant over the entire LAI range, indicating no change in intrinsic water-use efficiency with overstory LAI. In all canopies, δ13Cleaf decreased with decreasing height above the forest floor, primarily due to physiological changes affecting c i/c a (> 60%) and to a minor extent due to δ13C of canopy air (< 40%). This intra-canopy depletion of δ13Cleaf was lowest in the open stand (1‰) and greatest in the denser stands (4.5‰). Although overstory δ13Cleaf did not change with canopy LAI, δ13C of soil organic carbon increased with increasing LAI in Pinus contorta and Populus tremuloides ecosystems. In addition, δ13C of decomposing organic carbon became increasingly enriched over time (by 1.7–2.9‰) for all deciduous and evergreen dry temperate forests. The δ13Ccanopy of CO2 in canopy air varied temporally and spatially in all forest stands. Vertical canopy gradients of δ13Ccanopy, and [CO2]canopy were larger in the deciduous Populus tremuloides than in the evergreen Pinu contorta stands of similar LAI. In a very wet and cool year, ecosystem discrimination (Δe) was similar for both deciduous Populus tremulodies (18.0 ± 0.7‰) and evergreen Pinus contorta (18.3 ± 0.9‰) stands. Gradients of δ13Ccanopy and [CO2]canopy were larger in denser Acer spp. stands than those in the open stand. However, 13C enrichment above and photosynthetic draw-down of [CO2]canopy below tropospheric baseline values were larger in the open than in the dense stands, due to the presence of a vigorous understory vegetation. Seasonal patterns of the relationship δ13Ccanopy versus 1/[CO2]canopy were strongly influenced by precipitation and air temperature during the growing season. Estimates of Δe for Acer spp. did not show a significant effect of stand structure, and averaged 16.8 ± 0.5‰ in 1933 and 17.4 ± 0.7‰ in 1994. However, Δe varied seasonally with small fluctuations for the open stand (2‰), but more pronounced changes for the dense stand (5‰). Received: 15 April 1996 / Accepted: 19 October 1996  相似文献   

17.
Wooller MJ  Johnson BJ  Wilkie A  Fogel ML 《Oecologia》2005,145(1):100-112
The stable isotopic composition (δ13C) of sediments from lakes are frequently analyzed to reconstruct the proportion of the regional vegetation that used either the C3 or C4 photosynthetic pathways, often without conducting a detailed survey of the current local vegetation. We performed a study on the modern vegetation composition within the Wolfe Creek Meteorite Crater to complement our future paleoecological investigation of the crater. A bull’s-eye pattern exists where C4 grasses dominate an outer ring and salt tolerant species, including shrubs, herbs, chenopods, and halophytic algae, dominate the inner pan of the crater. The ecotone between the inner and outer zones is narrow and occupied by tall (>7 m) Acacia ampliceps, with some C4 grasses in the understory. Along with the highest water table and most saline soils the center of the crater has C3 plants present with the highest δ13C and δ15N values. The range of δ13C and δ15N values from the analysis of surface soil organic matter (OM) was much smaller compared with the range of values from plant materials implying that either: (1) the current plant OM has not yet been integrated into the soils, or (2) processes within the soil have acted to homogenize isotopic variability within the crater. The application of a two end member mixing model to calculate %C4 and %C3 biomass from the δ13C of surface soil OM was complicated by: (1) the crater containing both a dry habitat with C4 grasses and a central pan with C4 halophytic plants and, (2) the large variation in the δ13C of the plants and soil OM.  相似文献   

18.
 The origin of carbon in the spores of arbuscular mycorrhizal (AM) fungi was quantified based on their obligate symbiosis with C3 and C4 plants showing clearly different δ13C values. The δ13C values of individual spores of the AM fungus Gigaspora margarita were analyzed. In monoculture pots of a C3 or a C4 plant species, spore δ13C values were ca. 3.5‰ lower than those of host roots. In coculture pots of a C3 and a C4 plant species, spore δ13C values varied between those of the roots of C3 and C4 plants, and increased linearly from the C3 to the proximity of the C4 plant (P<0.01). This reflects the higher δ13C values in C4 plants than in C3 plants. Thus the carbon origin of G. margarita spores changed with growth state and combination of host plants. In the presence of fresh plant residue instead of living host plants, spore δ13C values did not vary with distance from the residue. This finding supports the current view that AM fungi are obligate symbionts. Accepted: 12 February 1999  相似文献   

19.
Combining C flux measurements with information on their isotopic composition can yield a process-based understanding of ecosystem C dynamics. We studied the variations in both respiratory fluxes and their stable C isotopic compositions (δ13C) for all major components (trees, understory, roots and soil microorganisms) in a Mediterranean oak savannah during a period with increasing drought. We found large drought-induced and diurnal dynamics in isotopic compositions of soil, root and foliage respiration (δ13Cres). Soil respiration was the largest contributor to ecosystem respiration (R eco), exhibiting a depleted isotopic signature and no marked variations with increasing drought, similar to ecosystem respired δ13CO2, providing evidence for a stable C-source and minor influence of recent photosynthate from plants. Short-term and diurnal variations in δ13Cres of foliage and roots (up to 8 and 4‰, respectively) were in agreement with: (1) recent hypotheses on post-photosynthetic fractionation processes, (2) substrate changes with decreasing assimilation rates in combination with increased respiratory demand, and (3) decreased phosphoenolpyruvate carboxylase activity in drying roots, while altered photosynthetic discrimination was not responsible for the observed changes in δ13Cres. We applied a flux-based and an isotopic flux-based mass balance, yielding good agreement at the soil scale, while the isotopic mass balance at the ecosystem scale was not conserved. This was mainly caused by uncertainties in Keeling plot intercepts at the ecosystem scale due to small CO2 gradients and large differences in δ13Cres of the different component fluxes. Overall, stable isotopes provided valuable new insights into the drought-related variations of ecosystem C dynamics, encouraging future studies but also highlighting the need of improved methodology to disentangle short-term dynamics of isotopic composition of R eco.  相似文献   

20.
During microbial breakdown of leaf litter a fraction of the C lost by the litter is not released to the atmosphere as CO2 but remains in the soil as microbial byproducts. The amount of this fraction and the factors influencing its size are not yet clearly known. We performed a laboratory experiment to quantify the flow of C from decaying litter into the soil, by means of stable C isotopes, and tested its dependence on litter chemical properties. Three sets of 13C-depleted leaf litter (Liquidambar styraciflua L., Cercis canadensis L. and Pinus taeda L.) were incubated in the laboratory in jars containing 13C-enriched soil (i.e. formed C4 vegetation). Four jars containing soil only were used as a control. Litter chemical properties were measured using thermogravimetry (Tg) and pyrolysis–gas chromatography/mass spectrometry–combustion interface–isotope ratio mass spectrometry (Py–GC/MS–C–IRMS). The respiration rates and the δ13C of the respired CO2 were measured at regular intervals. After 8 months of incubation, soils incubated with both L. styraciflua and C. canadensis showed a significant change in δ13C (δ13Cfinal = −20.2 ± 0.4‰ and −19.5 ± 0.5‰, respectively) with respect to the initial value (δ13Cinitial = −17.7 ± 0.3‰); the same did not hold for soil incubated with P. taeda13Cfinal:−18.1 ± 0.5‰). The percentages of litter-derived C in soil over the total C loss were not statistically different from one litter species to another. This suggests that there is no dependence of the percentage of C input into the soil (over the total C loss) on litter quality and that the fractional loss of leaf litter C is dependent only on the microbial assimilation efficiency. The percentage of litter-derived C in soil was estimated to be 13 ± 3% of total C loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号