首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hybridization between different species plays an important role in plant genome evolution, as well as is a widely used approach for crop improvement. McClintock has predicted that plant wide hybridization constitutes a "genomic shock" whereby cryptic transposable elements may be activated. However, direct experimental evidence showing a causal relationship between plant wide hybridization and transposon mobilization has not yet been reported. The miniature-Ping (mPing) is a recently isolated active miniature inverted-repeat transposable element transposon from rice, which is mobilized by tissue culture and gamma-ray irradiation. We show herein that mPing, together with its putative transposase-encoding partner, Pong, is mobilized in three homologous recombinant inbred lines (RILs), derived from hybridization between rice (cultivar Matsumae) and wild rice (Zizania latifolia Griseb.), harboring introgressed genomic DNA from wild rice. In contrast, both elements remain immobile in two lines sharing the same parentage to the RILs but possessing no introgressed DNA. Thus, we have presented direct evidence that is consistent with McClintock's insight by demonstrating a causal link between wide hybridization and transposon mobilization in rice. In addition, we report an atypical behavior of mPing/Pong mobilization in these lines, i.e., the exclusive absence of footprints after excision.  相似文献   

2.
ABSTRACT: BACKGROUND: Etoposide (epipodophyllotoxin) is a chemical commonly used as an anti-cancer drug which inhibits DNA synthesis by blocking topoisomerase II activity. Previous studies in animal cells have demonstrated that etoposide constitutes a genotoxic stress which may induce genomic instability including mobilization of normally quiescent transposable elements (TEs). However, it remained unknown whether similar genetically mutagenic effects could be imposed by etoposide in plant cells. Also, no information is available with regard to whether the drug may cause a perturbation of epigenetic stability in any organism. RESULTS: To investigate whether etoposide could generate genetic and/or epigenetic instability in plant cells, we applied etoposide to germinating seeds of six cultivated rice (Oryza sativa L.) genotypes including both subspecies, japonica and indica. Based on the methylation-sensitive gel-blotting results, epigenetic changes in DNA methylation of three TEs (Tos17, Osr23 and Osr36) and two protein-encoding genes (Homeobox and CDPK-related genes) were detected in the etoposide-treated plants (S0 generation) in four of the six studied japonica cultivars, Nipponbare, RZ1, RZ2, and RZ35, but not in the rest japonica cultivar (Matsumae) and the indica cultivar (93-11). DNA methylation changes in the etoposide-treated S0 rice plants were validated by bisulfite sequencing at both of two analyzed loci (Tos17 and Osr36). Transpositional activity was tested for eight TEs endogenous to the rice genome in both the S0 plants and their selfed progenies (S1 and S2) of one of the cultivars, RZ1, which manifested heritable phenotypic variations. Results indicated that no transposition occurred in the etoposide-treated S0 plants for any of the TEs. Nonetheless, a MITE transposon, mPing, showed rampant mobilization in the S1 and S2 progenies descended from the drug-treated S0 plants. CONCLUSIONS: Our results demonstrate that etoposide imposes a similar genotoxic stress on plant cells as it does on animal and human cells, which may induce transgenerational genomic instability by instigating transpositional activation of otherwise dormant TEs. In addition, we show for the first time that etoposide may induce epigenetic instability in the form of altered DNA methylation patterns in eukaryotes. However, penetration of the genotoxic effects of etoposide on plant cells, as being reflected as genetic and epigenetic instability, appears to be in a strictly genotype- and/or generation-dependent manner.  相似文献   

3.
4.
Insertional mutagenesis of legume genomes such as soybean (Glycine max) should aid in identifying genes responsible for key traits such as nitrogen fixation and seed quality. The relatively low throughput of soybean transformation necessitates the use of a transposon-tagging strategy where a single transformation event will produce many mutations over a number of generations. However, existing transposon-tagging tools being used in legumes are of limited utility because of restricted transposition (Ac/Ds: soybean) or the requirement for tissue culture activation (Tnt1: Medicago truncatula). A recently discovered transposable element from rice (Oryza sativa), mPing, and the genes required for its mobilization, were transferred to soybean to determine if it will be an improvement over the other available transposon-tagging tools. Stable transformation events in soybean were tested for mPing transposition. Analysis of mPing excision at early and late embryo developmental stages revealed increased excision during late development in most transgenic lines, suggesting that transposition is developmentally regulated. Transgenic lines that produced heritable mPing insertions were identified, with the plants from the highest activity line producing at least one new insertion per generation. Analysis of the mPing insertion sites in the soybean genome revealed that features displayed in rice were retained including transposition to unlinked sites and a preference for insertion within 2.5 kb of a gene. Taken together these findings indicate that mPing has the characteristics necessary for an effective transposon-tagging resource.  相似文献   

5.
mPing是水稻中第一个被鉴定出的有活性的MITE类转座子,为了探索mPing在水稻粳稻品种日本晴和籼稻品种93-11基因组中的分布差异,本研究首先运用Southern杂交的方法初步检测m Ping在两个亚种中拷贝数的差异,然后通过同源性探寻方法发现,m Ping在水稻亚种日本晴和93-11基因组中拷贝数分别为52和14,并且日本晴基因组中的m Ping均为m Ping-1,93-11中m Ping-1的拷贝数为3,m Ping-2的拷贝数为11。通过分析m Ping上下游5 kb侧翼序列发现m Ping在日本晴和93-11中分别与23和3个已知基因相关联。本研究为阐明以m Ping的分布多样性为主要原因的粳稻和籼稻之间的遗传差异提供初步理论基础。  相似文献   

6.
Tomita M  Tanisaka T 《Hereditas》2010,147(6):256-263
Development of semidwarf rice cultivars contributed to the epoch of high yielding crops called the 'Green Revolution'. However, over-reliance on semidwarf rice also has intrinsic limitations to supply food for an ever expanding world population. As a solution to the food supply problem, we propose the development of 'tall dwarf' rice cultivars that are characterized by increased biomass with long culms or large grains. However, genetic studies on the elongation of rice culms have remained scarce. This study seeks to analyze mutant genes involved in culm elongation in long-culm mutants induced by the MITE transposon mPing, which has been shown to be active in the japonica cultivar Gimbozu. Through analysis of the experimental results, we have confirmed that the three mutant long-culm genes exhibit genetic dominance. These represent rare cases of artificially induced dominant mutations. It is very likely that the mPing transposons played an important role in inducing the dominant mutations and also play an evolutionary interesting role.  相似文献   

7.
Intrinsic DNA methylation pattern is an integral component of the epigenetic network in many eukaryotes. Exploring the extent to which DNA methylation patterns can be altered under a specific condition is important for elucidating the biological functions of this epigenetic modification. This is of added significance in plants wherein the newly acquired methylation patterns can be inherited through organismal generations. We report here that DNA methylation patterns of mobile elements but not of cellular genes were specifically altered in rice plants following hydrostatic pressurization. This was evidenced by methylation-sensitive gel-blot analysis, which showed that 10 out of 10 studied low-copy transposons and retrotransposons manifested methylation alteration in at least one of the 8 randomly chosen pressure-treated plants, whereas none of the 16 studied low-copy cellular genes showed any change. Both gel-blotting and genome-wide fingerprinting indicated that the methylation alteration in mobile elements was not accompanied by a general genetic instability. Progeny analysis indicated retention of the altered methylation patterns in most progeny plants, underscoring early occurrence of the alterations, and their faithful epigenetic inheritance.  相似文献   

8.
Transposable elements (TEs) are DNA fragments that have the ability to move from one chromosomal location to another. The insertion of TEs into gene-rich regions often affects changes in the expression of neighboring genes. Miniature Ping (mPing) is an active miniature inverted-repeat TE discovered in the rice genome. It has been found to show exceptionally active transposition in a few japonica rice varieties, including Gimbozu, where mPing insertion rendered adjacent genes stress-inducible. In the Gimbozu population, it is highly possible that several genes with modified expression profiles are segregating due to the de novo mPing insertions. In our study, we utilized a screening system for detecting de novo mPing insertions in the upstream region of target genes and evaluated the effect of mPing on the stress response of the target genes. Screening for 17 targeted genes revealed five genes with the mPing insertion in their promoters. In most cases, the alteration of gene expression was observed under stress conditions, and there was no change in the expression levels of those five genes under normal conditions. These results indicate that the mPing insertion can be used as a genetic tool to modify an expression pattern of a target gene under stress conditions without changing the expression profiles of those under natural conditions.  相似文献   

9.
10.
P Barret  M Brinkman  M Beckert 《Génome》2006,49(11):1399-1407
Miniature inverted-repeat transposable elements (MITEs) are nonautonomous elements that are abundant in plant genomes. The rice MITE mPing was shown to be mobilized by anther culture, and the associated transposon Pong was shown to transpose actively in an Oryza sativa 'indica' rice cell-culture line. We have identified 3 sequences in maize named ZmTPAPong-like 1, 2, and 3 that displayed homology with the transposase of Pong. Here, we show that these sequences are differentially expressed during the in vitro androgenetic process in maize. We also demonstrate that the ZmTPAPong-like 1 and 3 sequences reveal somaclonal variations among plants regenerated from the calli of a doubled haploid line. These data suggest that the ZmTPAPong-like sequences could form part of a Zea mays element related to the rice Pong element. The possible activation of this newly discovered element under stress conditions is discussed.  相似文献   

11.
Nitrogen fixing endophytic Serratia sp. was isolated from rice and characterized. Re-colonization ability of Serratia sp. in the rice seedlings as endophyte was studied under laboratory condition. For detecting the re-colonization potential in the rice seedlings, Serratia sp. was marked with reporter genes (egfp and Kmr) using transposon mutagenesis. The conjugants were screened for re-colonization ability and presence of nif genes using PCR. Further, the influence of flavonoids and growth hormones on the endophytic colonization and in planta nitrogen fixation of Serratia was also investigated. The flavonoids, quercetin (3 microg/ml) and diadzein (2 microg/ml) significantly increased the re-colonization ability of the endophytic Serratia, whereas the growth hormones like IAA and NAA (5 microg/ml) reduced the endophytic colonization ability of Serratia sp. Similarly, the in planta nitrogen fixation by Serratia sp. in rice was significantly increased due to flavonoids. The inoculation of endophytic diazotrophs increased the plant biomass and biochemical constituents.  相似文献   

12.
The Mutator transposable element system of maize is the most active transposable element system characterized in higher plants. While Mutator has been used to generate and tag thousands of new maize mutants, the mechanism and regulation of its transposition are poorly understood. The Mutator autonomous element, MuDR, encodes two proteins: MURA and MURB. We have detected an amino acid sequence motif shared by MURA and the putative transposases of a group of bacterial insertion sequences. Based on this similarity we believe that MURA is the transposase of the Mutator system. In addition we have detected two rice cDNAs in genbank with extensive similarity to MURA. This sequence similarity suggests that a Mutator-like element is present in rice. We believe that Mutator, a group of bacterial insertion sequences, and an uncharacterized rice transposon represent members of a family of transposable elements.  相似文献   

13.
Esophageal secretions from endoparasitic sedentary nematodes are thought to play key roles throughout plant parasitism, in particular during the invasion of the root tissue and the initiation and maintenance of the nematode feeding site (NFS) essential for nematode development. The secretion in planta of esophageal cell-wall-degrading enzymes by migratory juveniles has been shown, suggesting a role for these enzymes in the invasion phase. Nevertheless, the secretion of an esophageal gland protein into the NFS by nematode sedentary stages has never been demonstrated. The calreticulin Mi-CRT is a protein synthesized in the esophageal glands of the root-knot nematode Meloidogyne incognita. After three-dimensional modeling of the Mi-CRT protein, a surface peptide was selected to raise specific antibodies. In planta immunolocalization showed that Mi-CRT is secreted by migratory and sedentary stage nematodes, suggesting a role for Mi-CRT throughout parasitism. During the maintenance of the NFS, the secreted Mi-CRT was localized outside the nematode at the tip of the stylet. In addition, Mi-CRT accumulation was observed along the cell wall of the giant cells that compose the feeding site, providing evidence for a nematode esophageal protein secretion into the NFS.  相似文献   

14.
Aliphatic glucosinolates and their derived isothiocyanates are important secondary metabolites in crucifers. Some of these compounds have beneficial activities such as carcinogen detoxification, pesticidal and antifungal properties, but others are anti-nutritional; the differences are largely due to side chain modifications. We report the cloning and in planta functionality analysis of BoGSL-ALK, a gene whose protein product influences side-chain modifications in the glucosinolate pathway. Expression of this Brassica gene was demonstrated in Arabidopsis thaliana by assaying RNA activity and monitoring changes in the glucosinolate profiles in leaves and seeds of transformed plants. Dependent on the proposed uses of the crops under development, the ability to regulate BoGSL-ALK expression is a key step towards engineering Brassica crops with specific glucosinolate content.  相似文献   

15.
Isolated rice embryos were used to investigate the regulatory effects of endosperm extracts and pure sugars on the expression of alpha-amylase gene RAmy3D and a sucrose synthase gene homologous to the maize isozyme Ss2. The high-level expression of RAmy3D in the scutella of isolated embryos could be inhibited by a variety of sugars as well as endosperm extracts from germinated rice grains. Glucose, at a concentration of 250 mM, was most effective in repressing RAmy3D mRNA accumulation. Furthermore, this repression was reversible. Interestingly, RAmy3D repression was always accompanied by the induction of sucrose synthase gene expression. These results support a model in which the expression of alpha-amylase and sucrose synthase genes in the rice scutellum are counter-regulated by the influx of sugars from the endosperm.  相似文献   

16.
Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum, Ideonella, Enterobacter, and Azospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and (15)N(2) gas incorporation assays. Therefore, we conclude that Herbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis.  相似文献   

17.
Maize (Zea mays L.) is susceptible to infection by Fusarium verticillioides through autoinfection and alloinfection, resulting in diseases and contamination of maize kernels with the fumonisin mycotoxins. Attempts at controlling this fungus are currently being done with biocontrol agents such as bacteria, and this includes bacterial endophytes, such as Bacillus mojavensis . In addition to producing fumonisins, which are phytotoxic and mycotoxic, F. verticillioides also produces fusaric acid, which acts both as a phytotoxin and as an antibiotic. The question now is Can B. mojavensis reduce lesion development in maize during the alloinfection process, simulated by internode injection of the fungus? Mutant strains of B. mojavensis that tolerate fusaric acid were used in a growth room study to determine the development of stalk lesions, indicative of maize seedling blight, by co-inoculations with a wild-type strain of F. verticillioides and with non-fusaric acid producing mutants of F. verticillioides. Lesions were measured on 14-day-old maize stalks consisting of treatment groups inoculated with and without mutants and wild-type strains of bacteria and fungi. The results indicate that the fusaric-acid-tolerant B. mojavensis mutant reduced stalk lesions, suggesting an in planta role for this substance as an antibiotic. Further, lesion development occurred in maize infected with F. verticillioides mutants that do not produce fusaric acid, indicating a role for other phytotoxins, such as the fumonisins. Thus, additional pathological components should be examined before strains of B. mojavensis can be identified as being effective as a biocontrol agent, particularly for the control of seedling disease of maize.  相似文献   

18.
19.

Background

Spider silk is a tear-resistant and elastic biopolymer that has outstanding mechanical properties. Additionally, exiguous immunogenicity is anticipated for spider silks. Therefore, spider silk represents a potential ideal biomaterial for medical applications. All known spider silk proteins, so-called spidroins, reveal a composite nature of silk-specific units, allowing the recombinant production of individual and combined segments.

Results

In this report, a miniaturized spidroin gene, named VSO1 that contains repetitive motifs of MaSp1 has been synthesized and combined to form multimers of distinct lengths, which were heterologously expressed as elastin-like peptide (ELP) fusion proteins in tobacco. The elastic penetration moduli of layered proteins were analyzed for different spidroin-based biopolymers. Moreover, we present the first immunological analysis of synthetic spidroin-based biopolymers. Characterization of the binding behavior of the sera after immunization by competitive ELISA suggested that the humoral immune response is mainly directed against the fusion partner ELP. In addition, cytocompatibility studies with murine embryonic fibroblasts indicated that recombinant spidroin-based biopolymers, in solution or as coated proteins, are well tolerated.

Conclusion

The results show that spidroin-based biopolymers can induce humoral immune responses that are dependent on the fusion partner and the overall protein structure. Furthermore, cytocompatibility assays gave no indication of spidroin-derived cytotoxicity, suggesting that recombinant produced biopolymers composed of spider silk-like repetitive elements are suitable for biomedical applications.

Electronic supplementary material

The online version of this article (doi:10.1186/s12896-015-0123-2) contains supplementary material, which is available to authorized users.  相似文献   

20.
A family of carotenoid cleavage dioxygenases (CCDs) produces diverse apocarotenoid compounds via the oxidative cleavage of carotenoids as substrates. Their types are highly dependent on the action of the CCD family to cleave the double bonds at the specific position on the carotenoids. Here, we report in vivo function of the AtCCD4 gene, one of the nine members of the Arabidopsis CCD gene family, in transgenic rice plants. Using two independent single-copy rice lines overexpressing the AtCCD4 transgene, the targeted analysis for carotenoids and apocarotenoids showed the markedly lowered levels of β-carotene (74 %) and lutein (72 %) along with the changed levels of two β-carotene (C40) cleavage products, a two-fold increase of β-ionone (C13) and de novo generation of β-cyclocitral (C10) at lower levels, compared with non-transgenic rice plants. It suggests that β-carotene could be the principal substrate being cleaved at 9–10 (9′–10′) for β-ionone and 7–8 (7′–8′) positions for β-cyclocitral by AtCCD4. This study is in planta report on the generation of apocarotenal volatiles from carotenoid substrates via cleavage by AtCCD4. We further verified that the production of these volatiles was due to the action of exogenous AtCCD4 and not the expression of endogenous rice CCD genes (OsCCD1, 4a, and 4b).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号