首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
周璇  贾志鹏  王娟  杜梅娜  苏雪 《广西植物》2020,40(11):1595-1601
该文以青藏高原特有木本植物肋果沙棘为材料,在62μW·cm-2的UV-B辐射强度下,分别测定处理了0~6 d幼苗叶片的氧化损伤程度、抗氧化系统酶活性和总黄酮含量及其抗氧化活性,以探究肋果沙棘对UV-B辐射的生理生态响应机制。结果表明:随UV-B辐射时间的增加,肋果沙棘幼苗过氧化氢含量(H2O2)和膜脂过氧化产物(MDA)显著增加;抗氧化系统酶中过氧化氢酶(CAT)活性显著升高;过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)活性呈先降后升的趋势,且活性均显著低于对照,超氧化物歧化酶(SOD)活性无明显变化;总黄酮含量随辐射时间的积累显著增加,作为非酶抗氧化物质的总黄酮对1,1-二苯基-2-苦基肼(DPPH)的清除率与其含量变化具有显著正相关关系。综上结果表明,肋果沙棘幼苗在抵御该辐射产生的氧化损伤中,通过提高CAT活性及增加总黄酮含量来抵御辐射造成的氧化损伤。  相似文献   

2.
李敏  王垠  牟晓飞  王洋  阎秀峰 《生态学报》2012,32(7):1987-1994
芥子酸酯(sinapate esters)是拟南芥和其他十字花科植物中大量存在的一类具有紫外吸收作用的羟基肉桂酸衍生物,有研究表明其紫外吸收能力甚至强于类黄酮。以模式植物拟南芥(Arabidopsis thaliana)为实验材料,通过施加低强度(40 μW/cm2)、相对长时间(7 d)的UV-B辐射,考察了拟南芥幼苗和成苗芥子酸酯组分(芥子酰葡萄糖、芥子酰苹果酸)和含量及合成途径关键酶编码基因表达水平对UV-B辐射的响应。经过7 d的UV-B辐射处理,拟南芥幼苗和成苗的芥子酰葡萄糖、芥子酰苹果酸含量均高于对照植株,芥子酸酯表现为响应UV-B辐射而积累。无论是幼苗还是成苗,叶片中芥子酰苹果酸的含量都要比芥子酰葡萄糖高出一个数量级,而且在UV-B处理过程中观察到芥子酰葡萄糖含量减少而芥子酰苹果酸含量增加,催化芥子酰葡萄糖生成芥子酰苹果酸的芥子酰葡萄糖苹果酸转移酶编码基因的表达水平也显著提高,说明芥子酰苹果酸在拟南芥叶片响应UV-B辐射过程中起重要作用并优先合成。另外,拟南芥幼苗中两种芥子酸酯的含量是成苗中的数十倍之多,芥子酸酯合成途径关键酶编码基因fah1sng1的相对表达量也显著高于成苗。同时,在响应UV-B辐射的过程中,幼苗中芥子酰葡萄糖、芥子酰苹果酸含量的变化幅度(分别是7.01%、6.05%)远远低于成苗叶片中芥子酰葡萄糖、芥子酰苹果酸含量的变化幅度(分别是21.88%、70.63%),这可能意味着拟南芥叶片中芥子酸酯对于UV-B辐射的防护作用,幼苗属于组成型防御(constitutive defense),而到成苗则转变为诱导型防御(inducible defense)。  相似文献   

3.
土壤是植物定居的场所,也是植物-微生物互作的重要界面。古菌是土壤微生物重要组份,在碳、氮、硫、铁等元素的生物地球化学循环和植物的生长发育、适应生境中发挥重要作用。植物定居对土壤古菌群落的影响研究鲜有开展,孑遗植物在研究植物-微生物-环境互作中具有独特的优势。采用扩增子高通量测序技术,研究以荒漠孑遗植物四合木为建群种或优势种的四合木-红砂-珍珠-针茅群落、四合木-针茅群落和四合木群落等三种荒漠植物群落类型中,四合木根区土壤和光板地土体土壤古菌群落特征,揭示四合木定居对土壤古菌物种数量、多样性、群落组成及功能的影响。结果表明,荒漠孑遗植物四合木定居不仅增加了根区土壤古菌的物种数量,提高了根区土壤古菌群落多样性,而且改变了土壤古菌群落组成,减少了奇古菌门Nitrososphaeraceae科未分类的属氨氧化古菌(unclassified_f_Nitrososphaeraceae)和暂定Nitrososphaera属氨氧化古菌(Candidatus Nitrososphaera)相对丰度,增加了Nitrososphaeraceae科暂定Nitrocosmicus属氨氧化古菌(Candidatus Nitrocosmicus)和广古菌门海洋古菌类群Ⅱ中未分类的属(norank_o_Marine_Group_II)相对丰度,广古菌门热原体纲未分类的属(unclassified_c__Thermoplasmata)相对丰度变化显著。植物群落演替对四合木根区土壤和光板地土体土壤古菌群落均无显著影响。Nitrososphaeraceae科氨氧化古菌是三种不同荒漠植物群落类型中土壤古菌的核心微生物组。四合木定居也显著改变土壤古菌群落的功能,减弱了高丰度功能,增强了低丰度功能,对有氧呼吸、核苷酸合成、氨基酸合成等途径影响显著。荒漠孑遗植物四合木定居改变了土壤古菌群落物种数量、多样性、组成、功能等特征。  相似文献   

4.
Solar radiation, particularly the UV-B component, negatively affects survival of entomopathogenic fungi in the field. In an effort to identify Beauveria spp. isolates with promise for use in biological control settings with high insolation, we examined 53 Beauveria bassiana isolates, 7 isolates of 4 other Beauveria spp. and Engyodontium albus (=Beauveria alba). The origins of these fungi varied widely as to host/substrate and country, but approximately 30% of these isolates were B. bassiana from ticks in Brazil. A preliminary trial with three B. bassiana isolates (Bb 19, CG 310 and CG 481) at several UV-B dosages indicated that 2h of weighted UV-B irradiance at 978mWm(-2) (providing a total dose of 7.04kJm(-2)) allowed separation of isolates into low, medium or high UV-B tolerance. This dose, therefore, was selected as a single dose to compare UV-B tolerances of all 60 Beauveria spp. isolates. There was high variability in tolerance to UV-B radiation among the B. bassiana isolates, ranging from virtually zero tolerance (e.g., Bb 03) to almost 80% tolerance (e.g., CG 228). In addition, surviving B. bassiana conidia demonstrated delayed germination; and this is likely to reduce virulence. Conidia of the other species were markedly more sensitive to UV-B, with E. albus (UFPE 3138) being the least UV-B tolerant. Among B. bassiana isolates originating from 0 degrees to 22 degrees latitudes, those from lower latitudes demonstrated statistically significant greater UV-B tolerances than those isolates from higher latitudes. Isolates from above 22 degrees , however, were unaffected by latitude of origin. A similar analysis based on host type did not indicate a correlation between original host and UV-B tolerance. The identification in this study of several B. bassiana isolates with relatively high UV-B tolerance will guide the selection of isolates for future arthropod microbial control experiments.  相似文献   

5.
Xanthone production in Hypericum perforatum (HP) suspension cultures in response to elicitation by Agrobacterium tumefaciens co-cultivation has been studied. RNA blot analyses of HP cells co-cultivated with A. tumefaciens have shown a rapid up-regulation of genes encoding important enzymes of the general phenylpropanoid pathway (PAL, phenylalanine ammonia lyase and 4CL, 4-coumarate:CoA ligase) and xanthone biosynthesis (BPS, benzophenone synthase). Analyses of HPLC chromatograms of methanolic extracts of control and elicited cells (HP cells that were co-cultivated for 24 h with A. tumefaciens) have revealed a 12-fold increase in total xanthone concentration and also the emergence of many xanthones after elicitation. Methanolic extract of elicited cells exhibited significantly higher antioxidant and antimicrobial competence than the equivalent extract of control HP cells indicating that these properties have been significantly increased in HP cells after elicitation. Four major de novo synthesized xanthones have been identified as 1,3,6,7-tetrahydroxy-8-prenyl xanthone, 1,3,6,7-tetrahydroxy-2-prenyl xanthone, 1,3,7-trihydroxy-6-methoxy-8-prenyl xanthone and paxanthone. Antioxidant and antimicrobial characterization of these de novo xanthones have revealed that xanthones play dual function in plant cells during biotic stress: (1) as antioxidants to protect the cells from oxidative damage and (2) as phytoalexins to impair the pathogen growth.  相似文献   

6.
A Total Oligomers Flavonoids (TOFs) and ethyl acetate extracts of Cyperus rotundus were analyzed, in vitro, for their antioxidant activity using several biochemical assays: the xanthine (X)/xanthine oxidase (XO), the lipid peroxidation induced by H2O2 in K562 human chronic myelogenous leukemia cells and the DNA damage in pKS plasmid DNA assay induced by H2O2/UV-photolysis and for their apoptotic effect. TOF and ethyl acetate extracts were found to be efficient in inhibiting xanthine oxidase with IC50 values of 240 and 185 μg/ml and superoxide anion with IC50 values of 150 and 215 μg/ml, respectively. Also, all the extracts tested were effective in reducing the production of thiobarbituric acid reactive substances (TBARS) and were able to protect against H2O2/UV-photolysis induced DNA damage. The highest activity, measured as equivalents of MDA concentration, was observed in the ethyl acetate extract (MDA = 2.04 nM). In addition, the data suggest that only TOF enriched extract exerts growth inhibition on K562 cells through apoptosis induction. Therefore, these extracts were subjected to further separation by chromatographic methods. Thus, three major compounds (catechin, afzelechin and galloyl quinic acid) were isolated from the TOF enriched extract and five major compounds (luteolin, ferulic acid, quercetin, 3-hydroxy, 4-methoxy-benzoic acid and 6,7-dimethoxycoumarin) from ethyl acetate extract. Their structures were determined by spectroscopic data analysis and comparison with the literature. In addition, we evaluate the biological activities of the catechin, ferulic acid and luteolin. This investigation has revealed that the luteolin was the most active in reducing the production of TBARS (MDA = 1.5 nM), inhibiting significantly the proliferation of K562 cells (IC50 = 25 μg/ml) and protecting against H2O2/UV-photolysis induced DNA damage. In conclusion, the study reveals that the ability of C. rotundus to inhibit the enzyme xanthine oxidase (XO), the lipid peroxidation and to exert apoptotic effect, may explain possible mechanisms by which C. rotundus exhibits its health benefits.  相似文献   

7.
Enhanced ultraviolet-B (UVB) radiation and water deficit affect plant growth and development. We determined the effects of UVB and drought stress on growth parameters and chemical attributes of two ecotypes (alpine and prairie) of Stellaria longipes under controlled-environment conditions. Clonal ramets of these ecotypes were grown under three UVB levels (0, 5, and 10 kJ m−2 d−1) and exposed to two watering regimes (well watered and drought stressed) for 21 days. Compared to the alpine, the prairie ecotype was taller, had higher number of nodes, and greater leaf area and specific leaf weight (leaf dry weight: leaf area), which resulted in increased dry matter in this ecotype. Overall, ‘prairie’ was higher in total chlorophyll (Chl), but lower in Chla:b ratio, flavonoids, and ethylene, than ‘alpine’. In both ecotypes, UVB and drought stress reduced growth and dry matter, whereas UVB increased carotenoids and flavonoids. Drought stress decreased ethylene evolution. These characteristics were also determined in plants growing in the field. In the field-growing plants, ‘prairie’ had higher growth and dry matter, but lower Chla:b ratio and flavonoids, than ‘alpine’. The two ecotypes responded differentially to UVB and watering regime, as ‘prairie’ appeared to be more sensitive to UVB and drought stress than ‘alpine’.  相似文献   

8.
运用压力室-容积技术(P-V技术)对西鄂尔多斯地区特有的濒危植物四合木(Tetraena mongolica Maxim.)和生长于同一生境的近缘种霸王(Zygophyllum xanthoxylon (Bunge) Maxim.)的7个水分关系参数饱和含水量时最大渗透势(Ψssat) 、初始质壁分离时的渗透势(Ψstlp) 、初始质壁分离时渗透水相对含量(ROWCtlp) 、初始质壁分离时的相对含水量(RWCtlp) 、质外体水的相对含量(AWC) 、束缚水与自由水的比值(Va / V0),以及细胞最大弹性模量(εmax)进行了测定,同时利用Li-6400光合作用测定系统测定了二者叶片气体交换参数的日变化,从生理生态学角度探讨了二者生存力、适应力的差异。结果表明:1)四合木的εmax、ROWCtlp值和RWCtlp值均显著低于霸王,而ΨssatΨstlp值、AWC和Va / V0高于霸王。二者保持膨压的能力和方式不同,四合木表现为较小的细胞体积和较强的持水能力,主要以高的组织弹性来保持膨压,而霸王主要以增加细胞质浓度的渗透调节来维持膨压,弹性调节较弱。且四合木保持最大膨压的能力和维持最低膨压的极限渗透势低于霸王,耐旱性弱于霸王。2)自然条件下,四合木和霸王叶片的光合速率(Pn)、蒸腾速率(Tr)日进程均呈"双峰"曲线,主峰出现在11:00时,次峰出现在15:00时左右,光合作用的午间降低是由气孔导度(Gs)降低造成的。二者相比,四合木光合速率和水分利用效率(WUE)低于霸王,光合能力和对干旱环境适应能力弱于霸王。研究表明四合木在生理生态学方面的生存力、适应力弱于霸王。  相似文献   

9.
Effects of enhanced ultraviolet B (UV-B, 280-320 nm) on copepods have gained particular attention in recent years. In this study, we investigated the effects of UV-B radiation on ingestion, fecundity, population dynamics and antioxidant enzyme activities of copepod Schmackeria inopinus exposed to varying doses of UV-B irradiance. Artificial UV-B radiation resulted in an increased mortality of nauplii, copepodites and adults with increasing UV-B doses. Nauplii and copepodites were more sensitive to UV-B radiation than adults, and adult males had a higher UV-B radiation susceptivity in comparison with adult females. Both ingestion rates and proportion of gravid females decreased with the increase of UV-B doses; and at the same time, we also observed that adult females had higher ingestion rates as compared with adult males. In comparison with the control, the abundance of the treatment significantly decreased. Antioxidant enzyme (GPx and GR) activities attained a significant increase at lower UV-B radiation doses when compared to the control, but declined at higher UV-B doses. These results suggested that enhanced UV-B radiation might change the species composition of copepods. Our study also showed that antioxidant enzymes might protect S. inopinus against UV-induced oxidative damage.  相似文献   

10.
Exposure to ultraviolet-B (UV-B) radiation can lead to oxidative damage in plants. However, plants possess a number of UV-protection mechanisms including screening of potentially damaging UV-B and increased production or activities of antioxidants. The balance or trade-off between these two mechanisms has rarely been studied and is poorly understood. Two isolines of soybean (Glycine max [L.] Merr.) Clark cultivar, the normal line with moderate levels of flavonoids and the magenta line with reduced flavonoids levels, were grown in the field with or without natural levels of UV-B. Leaflet blades of the first trifoliate leaf were harvested after 4–12 days of exposure to the experimental conditions for analysis of active oxygen species (AOS) and antioxidant levels. Solar UV-B radiation caused oxidative stress in both lines and altered AOS metabolism primarily by decreasing superoxide dismutase activity and increasing the activities of ascorbate peroxidase, catalase and glutathione reductase. This resulted in decreased ascorbic acid content and increased dehydroascorbate content. The magenta line had greater oxidative stress than the normal line in spite of its enhanced oxidative defense capacity as compared to the normal line, even under UV-B exclusion. These results indicate enhanced sensitivity in the magenta line, especially under UV-B exclusion that was likely due to the absence of flavonoid epidermal screening compounds and subsequent increased penetration of solar ultraviolet radiation into the leaf.  相似文献   

11.
Ultraviolet-B (UV-B) radiation has a negative impact on plant cells, and results in the generation of reactive oxygen species (ROS). In order to increase our understanding of the effects of UV-B on antioxidant processes, we investigated the response of an ascorbate-deficient Arabidopsis thaliana mutant vtc1 to short-term increased UV-B exposure. After UV-B supplementation, vtc1 mutants exhibited oxidative damage. Evidence for damage included an increase in H(2)O(2) content and the production of thiobarbituric acid reactive substances (TBARS); a decrease in chlorophyll content and chlorophyll fluorescence parameters were also reported. The vtc1 mutants had higher total glutathione than the wild type (WT) during the first day of UV-B treatment. We found reduced ratio of glutathione/total glutathione and increased ratio of dehydroascorbate/total ascorbate in the vtc1 mutants, compared to the WT plants. In addition, the enzymes responsible for ROS scavenging, including superoxide dismutase, catalase, and ascorbate peroxidase, had insufficient activity in the vtc1 mutants, compared to the WT plants. The same reduced activity in the vtc1 mutants was reported for the enzymes responsible for the regeneration of ascorbate and glutathione (including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase). These results suggest that the ascorbate-deficient mutant vtc1 is more sensitive to supplementary UV-B treatment than WT plants and ascorbate can be considered an important antioxidant for UV-B radiation.  相似文献   

12.
13.
The cosmopolitan presence of Ulva spp. is partly due to its great reproductive ability, but relatively little information is available for the radiation conditions triggering reproduction. In the present study, we investigated the effect of photon irradiance, photoperiod, and spectral qualities of light on growth and reproduction of Ulva pertusa.During 8-day culture of discs cut from marginal parts of the thallus of U. pertusa, the size of the thallus discs was greatest at 10 μmol m−2 s−1, while saturation of reproduction occurred at 30 μmol m−2 s−1. The minimum photon irradiance allowing growth and reproduction was 5 and 10 μmol m−2 s−1, respectively. Rapid increases in the size and subsequent initiation of sporulation were observed in samples transferred to saturating irradiance from 5 μmol m−2 s−1 or darkness for 9 days. When exposed to different photoperiods (8:16-, 12:12-, 16:8-h LD and continuous light regimes) combined with different photon irradiances (10 and 100 μmol m−2 s−1), U. pertusa thallus showed that the thallus size attained at the low irradiance was similar in daylengths longer than 12 h per day, while the surface area increased in parallel with increasing light duration at the high irradiance. The degree of sporulation at 10 μmol m−2 s−1 varied, ranging from no sporulation in 8:16-h LD to 80% in 16:8-h LD and continuous light. On the other hand, there was no remarkable difference in the degree of sporulation between the photoperiods except for slightly smaller percentage sporulation in 8:16-h LD at 100 μmol m−2 s−1.At 5 μmol m−2 s−1, the growth of U. pertusa was markedly lower in green than in blue or red light, but there was no sporulation in any spectral quality. The degree of sporulation at 20 μmol m−2 s−1 was almost twice as much in blue or red as in green light.The size of plants irradiated with 1.0 W m−2 of UV-B for 20-40 min increased by 18-21% relative to control, whereas higher UV irradiance caused inhibition of growth. There was a significantly lower incidence of sporulation in UV-B-irradiated plants with the degree of reduction being greater in those exposed to higher UV doses. The total biologically effective UV-B dose for 50% inhibition of sporulation was 0.085 Doseeff kJ m−2. The time required to achieve 50% inhibition would be longer than 13 h at depths below 1 m in Ahnin coastal waters. The vertical attenuation coefficient of PAR (λ=400-700 nm) and UV-B (λ=300-320 nm) in April 1998 at Ahnin on the eastern coast of Korea was 0.21 m−1 for KPAR and 0.54 m−1 for KUV-B. A large reduction of light quantity and rapid disappearance of blue wavelength occurred by shading from overlying thalli.Percentage inhibition of sporulation was only 14-18% at 150-200 μmol m−2 s−1 compared with 70% at 10 μmol m−2 s−1, when plants were incubated under different irradiances of PAR immediately after UV-B exposures.These different photoadaptive strategies for sporulation may in part account for the great ecological success of U. pertusa.  相似文献   

14.
基于开顶式气室(OTC),系统开展了地表O3增加和UV-B增强及其复合处理下(自然空气,CK;10%UV-B增强,T1;100nmol/mol O3,T2;100 nmol/mol O3+10%UV-B增强,T3)大豆光合气体交换、光响应、光合色素和类黄酮含量等参数的观测与分析研究。结果表明,与对照相比,T1和T2单因子处理组的如下指标有相似变化:气孔导度、气孔限制值下降,胞间二氧化碳浓度上升,净光合速率、最大净光合速率、半饱和光强显著降低,表观量子效率和暗呼吸速率先升后降。T1的叶绿素含量降低不显著,类胡萝卜素含量先降后升,类黄酮含量上升,而T2的叶绿素和类胡萝卜素含量显著降低,类黄酮含量先降后升。复合处理下,与CK相比各指标的变化和单因子相似,影响程度均强于两单因子组。因此,100 nmol/mol O3浓度增加和10%UV-B辐射增强复合处理对大豆叶绿素含量的影响存在协同作用,且O3胁迫起了主导作用。光合作用下降的主要原因均是非气孔因素,复合处理对大豆光合作用的影响比两因子单独胁迫有所加深,是O3和UV-B共同作用的结果。  相似文献   

15.
兰春剑  江洪  黄梅玲  胡莉 《生态学报》2011,31(24):7516-7525
通过对UV-B辐射胁迫下亚热带典型木本杨桐幼苗的生长及光合生理的研究,探讨植物对于UV-B辐射胁迫的生理响应及适应性机理,进而揭示UV-B辐射变化对亚热带森林树种的影响.实验设置UV-B辐射滤光组、自然光对照组以及辐射增强组,选择亚热带典型树种杨桐(Cleyera japonica Thunb.)幼苗为实验材料.研究结果表明:(1)增强UV-B辐射会降低杨桐幼苗的叶绿素含量,而降低辐射则会显著促进叶绿素的增加,且这种胁迫在时间上具有积累性.(2)增强或降低辐射强度都会抑制杨桐地径的生长,增强辐射会产生更显著的抑制;降低辐射强度会对杨桐幼苗的株高生长产生促进作用,反之,则会抑制其生长.3个测定期数据综合分析显示随着处理时间的加长,这种胁迫作用有减小的趋势.(3)对光响应曲线的分析表明相对于自然光条件下的UV-B辐射,降低其强度对杨桐幼苗光合作用有显著的促进作用,反之则会抑制,不过抑制作用并不显著;对于光合特征参数的分析表明增强或降低UV-B辐射会显著降低杨桐幼苗的光饱和点(LSP)和光补偿点(LcP),而对最大净光合速率(Amax)、表观光合量子效率(AQY)、暗呼吸速率(Rd)影响均不显著,表明辐射胁迫对杨桐幼苗利用光能的效率影响不大,从而也并未对杨桐的光合作用产生显著性的伤害,但是由于森林树种的多年生特性,这种影响将是积累性的或延迟的,UV-B所造成的光合作用或光能利用率的微小变化都可能会积累成长期影响.因此,对森林树种进行长期研究是必要的.  相似文献   

16.
Physiological integration has been documented in many clonal plants growing under resource heterogeneity. Little is still known about the response of physiological integration to heterogeneous ultraviolet-B radiation. In this paper, the changes in intensity of physiological integration and of physiological parameters under homogeneous and heterogeneous ultraviolet-B radiation (280-315 nm) were measured in order to test the hypothesis that in addition to resource integration a defensive integration in Trifolium repens might exist as well. For this purpose, homogeneous and heterogeneous ultraviolet-B radiation was applied to pairs of connected and severed ramets of the stoloniferous herb Trifolium repens. Changes in intensity of water and nutrient integration were followed with acid fuchsin dye and 15N-isotope labeling of the xylem water transport. In order to assess the patterns of physiological integration contents of chlorophyll, ultraviolet-B absorbing compounds, soluble sugar and protein were determined and activities of superoxide dismutase (SOD) and peroxidase (POD) measured. When ramets were connected and exposed to heterogeneous UV-B radiation, the velocity of water transportation from the UV-B treated ramet to its connected sister ramet was markedly lower and the percentage of 15N left in labelled ramets that suffered from enhanced UV-B radiation was higher and their transfer to unlabelled ramets lower. In comparison with clones under homogeneous ultraviolet-B radiation, the content of chlorophyll, ultraviolet-B absorbing compounds, soluble sugar and activities of SOD and POD increased notably if ultraviolet-B stressed ramets were connected to untreated ramets. Chlorophyll and UV-B absorbing compounds were shared between connected ramets under heterogeneous UV-B radiation. This indicated that physiological connection improved the performance of whole clonal plants under heterogeneous ultraviolet-B radiation. The intensity of physiological integration of T. repens for resources decreased under heterogeneous ultraviolet-B radiation in favor of the stressed ramets. Ultraviolet-B stressed ramets benefited from unstressed ramets by physiological integration, supporting the hypothesis that clonal plants are able to optimize the efficiency of their resistance maintaining their presence also in less favorable sites. The results could be helpful for further understanding of the function of heterogeneous UV-B radiation on growth regulation and microevolution in clonal plants.  相似文献   

17.
Floating and nodularin-producing strains of Nodularia spumigena from the Baltic Sea are regarded as belonging to one species. However, intraspecific variation in the response of N. spumigena to environmental factors has been commonly overlooked. As blooms of N. spumigena occur in late summer, a period with strong light and stable water-column stratification, the cells can be expected to also be exposed to ultraviolet-B radiation (UV-B, 280–320 nm). The UV-B tolerance of four different strains of N. spumigena, isolated from the Baltic Sea, was investigated in the laboratory for 8 days, by measuring photosynthesis, growth and pigment composition. Variables included maximum quantum yield of photosynthesis (Fv/Fm, PAM fluorometry), growth rate (cell counts) and photosynthetic pigments, as well as mycosporine-like amino acids (HPLC). Intraspecific differences regardless of treatment were found for cell dimension, growth rate, Fv/Fm and pigment concentrations. UV-B related effects differed between strains. By Day 8 one of the four strains showed a lower Fv/Fm when treated with UV-B; in another strain the growth rate and cell numbers were lower. In three strains, UV-B exposure resulted in higher cell concentrations of carotenoids and chlorophyll a. In all strains, the concentrations of total mycosporine-like amino acids were 60–130% higher in the UV-B treated samples compared with samples shielded from UV-B. Although strain-specific differences in UV-B tolerance were observed, it is concluded that N. spumigena is a species that is not generally negatively affected by moderate levels of UV-B radiation.  相似文献   

18.
19.
Ultraviolet (UV) light (blacklight), which emits UV in the range of 320-400 nm, has been used worldwide in light trapping of insect pests. In this article, we test the hypothesis that one of the effects of UV light irradiation is to increase oxidative stress on insects. The effects of UV light irradiation on total antioxidant capacity, malondialdehyde (MDA) and protein carbonyl contents and the activities of superoxide dismutase (SOD), catalase (CAT), peroxidases (POX) and glutathione-S-transferase (GST) were investigated in Helicoverpa armigera adults. The adults were exposed to UV light for various time periods (0, 30, 60 and 90 min). We found that exposure to UV light for 30 min resulted in increased total antioxidant capacity, protein carbonyl content and activities of SOD, CAT, POX and GST. When the exposure time lasted for 60 and 90 min, the protein carbonyl content and activities of CAT and GST remained significantly higher than the control. However, the antioxidant capacity and SOD activity returned to control levels, and POX activity decreased at 60 and 90 min. Our results confirm the hypothesis that UV light irradiation increases the level of oxidative stress in H. armigera adults.  相似文献   

20.
为了解增强UV-B辐射诱导芒果叶片抗氧化响应的机制,以?台农1号?芒果(Mangifera indica?Tainong No. 1?)成年树为材料,以自然光为对照(CK),设置24和96 kJ/(m~2·d)两个增强UV-B辐射处理水平,观测叶片生理生化指标的动态变化。结果表明,24k J/(m~2·d)处理的芒果叶片MDA含量、相对电导率、净光合速率、抗氧化酶活性、多酚、Vc和芒果苷含量均与对照没有显著差异,而类黄酮和还原型GSH含量显著高于对照;而96 kJ/(m~2·d)处理的芒果叶片MDA含量、相对电导率、抗氧化酶活性及多酚、类黄酮、还原型GSH、芒果苷等还原型保护成分的含量均显著高于对照,而净光合速率和Vc含量均显著低于对照。因此,24 kJ/(m~2·d) UV-B辐射未引起?台农1号?芒果成年树损伤,可能是通过提高类黄酮和还原型GSH的含量来清除活性氧自由基;96 kJ/(m~2·d)处理则引起叶片活性氧损伤,但仍可能以两种机制减轻损伤,一是通过增强抗氧化酶活性和提高还原性成分含量来清除活性氧自由基,二是利用芒果苷、类黄酮和还原型GSH等成分吸收UV-B辐射。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号