首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) family is composed of 19 proteases. These enzymes are known to play an important role in development, angiogenesis and coagulation, and their dysregulation or mutation has been implicated in disease processes such as inflammation, cancer, arthritis and atherosclerosis. In addition to a brief summary of the structural organization and functional roles of ADAMTSs in normal and pathological conditions, this review focuses on the members known to be involved in the degradation of extracellular matrix and loss of cartilage in arthritis, including the aggrecanases (with special focus on ADAMTS-4 and ADAMTS-5), and ADAMTS-7 and ADAMTS-12, both of which associate with cartilage oligomeric matrix protein (COMP), a component of cartilage extracellular matrix (ECM). Expression patterns of these metalloproteinases, as well as the regulation of their activities at multiple levels, such as their interaction with substrates, induction by pro-inflammatory cytokines, protein processing, inhibition (e.g., TIMP-3, alpha-2-macroglobulin, GEP) and activation (e.g., syndecan-4, PACE-4) are reviewed.  相似文献   

2.
Development and activation of B cells quickly became clear after identifying new ligands and receptors in the tumor necrosis factor superfamily. B cell–activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are the members of membrane proteins Type 2 family released by proteolytic cleavage of furin to form active, soluble homotrimers. Except for B cells, ligands are expressed by all such immune cells like T cells, dendritic cells, monocytes, and macrophages. BAFF and APRIL have two common receptors, namely TNFR homolog transmembrane activator and Ca2+ modulator and CAML interactor (TACI) and B cell–maturation antigen. BAFF alone can also be coupled with a third receptor called BAFFR (also called BR3 or BLyS Receptor). These receptors are often expressed by immune cells in the B-cell lineage. The binding of BAFF or APRIL to their receptors supports B cells differentiation and proliferation, immunoglobulin production and the upregulation of B cell–effector molecules expression. It is possible that the overexpression of BAFF and APRIL contributes to the pathogenesis of autoimmune diseases. In BAFF transgenic mice, there is a pseudo-autoimmune manifestation, which is associated with an increase in B-lymphocytes, hyperglobulinemia, anti-single stranded DNA, and anti-double-stranded DNA antibodies, and immune complexes in their peripheral blood. Furthermore, overexpressing BAFF augments the number of peripheral B220+ B cells with a normal proliferation rate, high levels of Bcl2, and prolonged survival and hyperactivity. Therefore, in this review article, we studied BAFF and APRIL as important mediators in B-cell and discussed their role in rheumatoid arthritis.  相似文献   

3.
Rheumatoid arthritis exhibits diurnal variation in symptoms, with patients suffering with increased painful joint stiffness in the early morning. This correlates with an early morning rise in circulating levels of pro-inflammatory cytokines, such as interleukin-6. This temporal variation in disease pathology is directed by the circadian clock, both at a systemic level, through signalling pathways derived in the central clock, and at a local level by autonomous clocks found within inflammatory organs and cells. Indeed, many cellular components of the immune system, which are involved in the pathogenesis of rheumatoid arthritis, possess independent clocks that facilitate temporal gating of their functions. Furthermore, the circadian clock regulates the expression and activity of several genes and proteins that have demonstrated roles in progression of this autoimmune disease. These include a number of nuclear receptors and also fat-derived adipokines. Employing the knowledge we have about how the inflammatory response is regulated by the clock will facilitate the development of chronotherapy regimens to improve the efficacy of current treatment strategies. Furthermore, a full understanding of the mechanisms by which the clock couples to the immune system may provide novel therapeutic targets for the treatment of this debilitating disease.  相似文献   

4.
Endothelial cell survival and antiapoptotic pathways, including those stimulated by extracellular matrix, are critical regulators of vasculogenesis, angiogenesis, endothelial repair, and shear-stress-induced endothelial activation. One of these pathways is mediated by alpha(v)beta(3) integrin ligation, downstream activation of nuclear factor-kappaB, and subsequent up-regulation of osteoprotegerin (OPG). In this study, the mechanism by which OPG protects endothelial cells from death was examined. Serum-starved human microvascular endothelial cells (HMECs) plated on the alpha(v)beta(3) ligand osteopontin were protected from cell death. Immunoprecipitation experiments indicated that OPG formed a complex with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in HMECs under these conditions. Furthermore, inhibitors of TRAIL, including recombinant soluble TRAIL receptors and a neutralizing antibody against TRAIL, blocked apoptosis of serum-starved HMECs plated on the nonintegrin attachment factor poly-d-lysine. Whereas TRAIL was unable to induce apoptosis in HMECs plated on osteopontin, the addition of recombinant TRAIL did increase the percentage of apoptotic HMECs plated on poly-d-lysine. This evidence indicates that OPG blocks endothelial cell apoptosis through binding TRAIL and preventing its interaction with death-inducing TRAIL-receptors  相似文献   

5.

Introduction

Progression of joint destruction in rheumatoid arthritis (RA) is partly heritably; 45 to 58% of the variance in joint destruction is estimated to be explained by genetic factors. The binding of RANKL (Receptor Activator for Nuclear Factor κ B Ligand) to RANK results in the activation of TRAF6 (tumor necrosis factor (TNF) receptor associated factor-6), and osteoclast formation ultimately leading to enhanced bone resorption. This bone resorption is inhibited by osteoprotegerin (OPG) which prevents RANKL-RANK interactions. The OPG/RANK/RANKL/TRAF6 pathway plays an important role in bone remodeling. Therefore, we investigated whether genetic variants in OPG, RANK, RANKL and TRAF6 are associated with the rate of joint destruction in RA.

Methods

1,418 patients with 4,885 X-rays of hands and feet derived from four independent data-sets were studied. In each data-set the relative increase of the progression rate per year in the presence of a genotype was assessed. First, explorative analyses were performed on 600 RA-patients from Leiden. 109 SNPs, tagging OPG, RANK, RANKL and TRAF6, were tested. Single nucleotide polymorphisms (SNPs) significantly associated in phase-1 were genotyped in data-sets from Groningen (Netherlands), Sheffield (United Kingdom) and Lund (Switzerland). Data were summarized in an inverse weighted variance meta-analysis. Bonferonni correction for multiple testing was applied.

Results

We found that 33 SNPs were significantly associated with the rate of joint destruction in phase-1. In phase-2, six SNPs in OPG and four SNPs in RANK were associated with progression of joint destruction with P-value <0.05. In the meta-analyses of all four data-sets, RA-patients with the minor allele of OPG-rs1485305 expressed higher rates of joint destruction compared to patients without these risk variants (P = 2.35x10−4). This variant was also significant after Bonferroni correction.

Conclusions

These results indicate that a genetic variant in OPG is associated with a more severe rate of joint destruction in RA.  相似文献   

6.
Recent evidence highlighted the role of Toll-like receptors (TLRs) as key recognition structures of the innate immune system. The activation of TLRs initiates the production of inflammatory cytokines, chemokines, tissue destructive enzymes, and type I interferons. In addition, TLR signalling plays an important role in the activation and direction of the adaptive immune system by the upregulation of costimulatory molecules of antigen presenting cells. Considering the important role of TLR signalling as a critical link between innate and adaptive immunity it has been proposed that a dysregulation in TLR signalling might be associated with autoimmunity. In this review, recent studies on TLR signal transduction pathways activated by corresponding ligands are summarized and evidence for a possible role of TLR signalling in the pathogenesis of rheumatoid arthritis is discussed.  相似文献   

7.
8.
The management of rheumatoid arthritis (RA) is primarily based on the use of disease-modifying antirheumatic drugs (DMARDs), mainly comprising synthetic chemical compounds (that is, methotrexate or leflunomide) and biological agents (tumor necrosis factor inhibitors or abatacept). On the other hand, glucocorticoids (GCs), used for decades in the treatment of RA, are effective in relieving signs and symptoms of the disease, but also interfere with radiographic progression, either as monotherapy or in combination with conventional synthetic DMARDs. GCs exert most of their biological effects through a genomic action, using the cytosolic GC receptor and then interacting with the target genes within target cells that can result in increased expression of regulatory - including anti-inflammatory - proteins (transactivation) or decreased production of proinflammatory proteins (transrepression). An inadequate secretion of GCs from the adrenal gland, in relation to stress and inflammation, seems to play an important role in the pathogenesis and disease progression of RA. At present there is clear evidence that GC therapy, especially long-term low-dose treatment, slows radiographic progression by at least 50% when given to patients with early RA, hence satisfying the conventional definition of a DMARD. In addition, long-term follow-up studies suggest that RA treatment strategies which include GC therapy may favorably alter the disease course even after their discontinuation. Finally, a low-dose, modified night-release formulation of prednisone, although administered in the evening (replacement therapy), has been developed to counteract the circadian (night) rise in proinflammatory cytokine levels that contributes to disease activity, and might represent the way to further optimize the DMARD activity exerted by GCs in RA.  相似文献   

9.
Rheumatoid arthritis (RA) is a chronic, persistent inflammatory joint disease with systemic involvement that affects about 1% of the world’s population, that ultimately leads to the progressive destruction of joint. Effective medical treatment for joint destruction in RA is lacking because the knowledge about molecular mechanisms leading to joint destruction are incompletely understood. It has been confirmed that cytokine-mediated immunity plays a crucial role in the pathogenesis of various autoimmune diseases including RA. Recently, IL-17 was identified, which production by Th17 cells. IL-17 has proinflammatory properties and may promote bone and joint damage through induction of matrix metalloproteinases and osteoclasts. In mice, intra-articular injection of IL-17 into the knee joint results in joint inflammation and damage. In addition, it has been shown that blocking IL-17/IL-17R signaling is effective in the control of rheumatoid arthritis symptoms and in the prevention of joint destruction. In this article, we will briefly discuss the biological features of IL-17/IL-17R and summarize recent advances on the role of IL-17/IL-17R in the pathogenesis and treatment of joint destruction in RA.  相似文献   

10.
1α,25-Dihydroxyvitamin D3 upregulates the expression of the receptor activator of nuclear factor kB ligand (RANKL), and downregulates osteoprotegerin (OPG) expression. We tested the effects of polymorphisms in the vitamin D receptor gene (VDR), and OPG gene in rheumatoid arthritis (RA) patients and healthy controls and their relationship to bone mineral density (BMD) and development of osteoporosis. Three hundred and fifty women were evaluated, 200 women having RA and 150 healthy control. The subjects were genotyped for polymorphism at BsmI in VDR and A163G in OPG genes by polymerase chain reaction followed by restriction fragment length polymorphism analysis. BMD was also measured. In A163G, the G allele increased the risk for RA and for the development of osteoporosis. We found a significant association between lower hip (BMD-h) and genotype variants of VDR (BsmI) and OPG A163G in RA patients with osteoporosis. Our results suggested that OPG A163G polymorphism was associated with RA susceptibility and with the development of osteoporosis in these patients. Also, VDR and OPG genes are important candidates for osteoporosis in RA patients.  相似文献   

11.
Although the causes of inflammatory arthritis elude us, aberrant cytokine expression has been linked to joint pathology. Consequently, several approaches in the clinic and/or in clinical trials are targeting cytokines, e.g. tumor necrosis factor (TNF), Interleukin 23 (IL-23) and Interleukin 17 (IL-17), with the goal of antagonizing their respective biologic activity through therapeutic neutralizing antibodies. Such, cytokine signaling-dependent molecular networks orchestrate synovial inflammation on multiple levels including differentiation of myeloid cells to osteoclasts, the central cellular players in arthritis-associated pathologic bone resorption. Hence, understanding of the cellular and molecular mechanisms elicited by synovial cytokine networks that dictate recruitment, differentiation and activation of osteoclast precursors and osteoclasts, respectively, is central to shaping novel therapeutic options for inflammatory arthritis patients. In this article we are discussing the complex signaling interactions involved in the regulation of inflammatory arthritis and it's associated bone loss with a focus on Interleukin 27 (IL-27). The present review will discuss the primary bone-degrading cell, the osteoclast, and on how IL-27, directly or indirectly, modulates osteoclast activity in autoimmune-driven inflammatory joint diseases.  相似文献   

12.
Psoriasis (PsO) is a chronic inflammatory skin disease with both local and systemic components. PsO‐associated arthritis, known as psoriatic arthritis (PsA), develops in approximately 13%‐25% of PsO patients. Various factors associated with both PsO and PsA indicate that these conditions are part of a single disease. Identification of novel targets for the development of drugs to treat both PsO and PsA is desirable to provide more patient‐friendly treatment regimens. Such targets will likely represent ‘common checkpoints’ of inflammation, for example key components or transduction cascades of the signalling pathways involved. Emerging evidence supports involvement of the non‐canonical Wnt signalling pathways in the development of both PsO and PsA, especially the Wnt5a‐activated signalling cascades. These, together with interlinked factors, are crucial in the interactions among keratinocytes, immune cells and inflammatory factors in PsO, as well as among chondrocytes, osteoblasts and osteoclasts that trigger both subchondral bone remodelling and cartilage catabolism in PsA. This review focuses on the pathological role of Wnt5a signalling and its interaction with other interlinked pathways in both PsO and PsA, and also on the main challenges for future research, particularly with respect to molecules targeting Wnt signalling pathways for the treatment of PsO and PsA.  相似文献   

13.
14.
Rheumatoid arthritis (RA) is a chronic inflammatory disease which is marked by leukocytes infiltration inside synovial tissue, joints and also inside synovial fluid which causes progressive destruction of joint cartilage. There are numerous genetical and lifestyle factors, responsible for rheumatoid arthritis. One such factor can be cysteine cathepsins, which act as proteolytic enzymes. These proteolytic enzyme gets activated at acidic pH and are found in lysosomes and are also termed as cysteine proteases. These proteases belong to papain family and have their elucidated role in musculoskeletal disorders. Numerous cathepsins have their targeted role in rheumatoid arthritis. These proteases are secreted through various cell types which includes matrix metalloproteases and papain like cysteine proteases. These proteases can potentially lead to bone and cartilage destruction which causes an immune response in case of inflammatory arthritis.  相似文献   

15.

Introduction

Interleukin-22 (IL-22) is a cytokine of IL-10 family with significant proliferative effect on different cell lines. Immunopathological role of IL-22 has been studied in rheumatoid arthritis (RA) and psoriasis. Here we are reporting the functional role of IL-22 in the inflammatory and proliferative cascades of psoriatic arthritis (PsA).

Method

From peripheral blood and synovial fluid (SF) of PsA (n = 15), RA (n = 15) and osteoarthritis (OA, n = 15) patients, mononuclear cells were obtained and magnetically sorted for CD3+ T cells. Fibroblast like synoviocytes (FLS) were isolated from the synovial tissue of PsA (n = 5), RA (n = 5) and OA (n = 5) patients. IL-22 levels in SF and serum were measured by enzyme linked immunosorbent assay (ELISA). Proliferative effect of human recombinant IL-22 (rIL-22) on FLS was assessed by MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole) and CFSE dilution (Carboxyfluorescein succinimidyl ester) assays. Expression of IL-22Rα1 in FLS was determined by western blot.

Results

IL-22 levels were significantly elevated in SF of PsA patients (17.75 ± 3.46 pg/ml) compared to SF of OA (5.03 ± 0.39 pg/ml), p < 0.001. In MTT and CFSE dilution assays, rIL-22 (MTT, OD: 1.27 ± 0.06) induced significant proliferation of FLS derived from PsA patients compared to media (OD: 0.53 ± 0.02), p < 0.001. In addition, rIL-22 induced significantly more proliferation of FLS in presence of TNF-α. IL-22Rα1 was expressed in FLS of PsA, RA and OA patients. Anti IL-22R antibody significantly inhibited the proliferative effect of rIL-22. Further we demonstrated that activated synovial T cells of PsA and RA patients produced significantly more IL-22 than those of OA patients.

Conclusion

SF of PsA patients have higher concentration of IL-22 and rIL-22 induced marked proliferation of PsA derived FLS. Moreover combination of rIL-22 and TNF-α showed significantly more proliferative effect on FLS. IL-22Rα1 was expressed in FLS. Successful inhibition of IL-22 induced FLS proliferation by anti IL-22R antibody suggests that blocking of IL-22/IL-22R interaction may be considered as a novel therapeutic target for PsA.  相似文献   

16.
The expansion of the synovial lining of joints in rheumatoid arthritis (RA), and the subsequent invasion by the pannus of underlying cartilage and bone, necessitates an increase in the vascular supply to the synovium, to cope with the increased requirement for oxygen and nutrients. New blood vessel formation - 'angiogenesis' - is now recognised as a key event in the formation and maintenance of the pannus in RA. Although many pro-angiogenic factors have been demonstrated to be expressed in RA synovium, the potent pro-angiogenic cytokine vascular endothelial growth factor (VEGF) has been demonstrated to have a central involvement in the angiogenic process in RA. The additional activity of VEGF as a vascular permeability factor may also increase oedema and hence joint swelling in RA. Several studies, including those from the Kennedy Institute of Rheumatology Division, have shown that targeting angiogenesis in animal models of arthritis ameliorates disease. Inhibition of angiogenesis, as an adjunct to existing therapy of RA, or even as a stand-alone treatment, would not only prevent delivery of nutrients to the synovium, but could also lead to vessel regression and possibly reversal of disease.  相似文献   

17.
18.
Matrix metalloproteinases (MMPs) are a large group of enzymes responsible for matrix degradation. Among them, the family of gelatinases (MMP-2/gelatinase A and MMP-9/gelatinase B) is overproduced in the joints of patients with rheumatoid arthritis. Because of their degradative effects on the extracellular matrix, gelatinases have been believed to play an important role in progression and cartilage degradation in this disease, although their precise roles are yet to be defined. To clarify these roles, we investigated the development of Ab-induced arthritis, one of the murine models of rheumatoid arthritis, in MMP-2 or MMP-9 knockout (KO) mice. Surprisingly, the MMP-2 KO mice exhibited severe clinical and histologic arthritis than wild-type mice. The MMP-9 KO mice displayed milder arthritis. Recovery from exacerbated arthritis in the MMP-2 KO mice was possible by injection of wild-type fibroblasts. These results indicated a suppressive role of MMP-2 and a pivotal role of MMP-9 in the development of inflammatory joint disease.  相似文献   

19.
Gram-positive pathogenic bacteria display proteins on their surface that play important roles during infection. In Staphylococcus aureus, these surface proteins are anchored to the cell wall by two sortase enzymes, SrtA and SrtB, that recognize specific surface protein sorting signals. The role of sortase enzymes in bacterial virulence was examined using a murine septic arthritis model. Intravenous inoculation with any of the Delta(srtA), Delta(srtB) or Delta(srtAB) mutants resulted in significantly increased survival and significantly lower weight loss compared with the parental strain. Mice inoculated with the Delta(srtA) mutant did not express severe arthritis, while arthritis in mice inoculated with the Delta(srtB) mutant was not different from that seen in mice that were infected with the wild-type parent strain. Furthermore, persistence of staphylococci in kidneys and joints following intravenous inoculation of mice was more pronounced for wild-type and Delta(srtB) mutant strains than for Delta(srtA) or Delta(srtAB) variants. Together these results indicate that sortase B (srtB) plays a contributing role during the pathogenesis of staphylococcal infections, whereas sortase A (srtA) is an essential virulence factor for the establishment of septic arthritis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号