首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The purpose of this study is to examine the differences in the induction of cytotoxic effects and poly(ADP-ribose) polymerase-1 activation in human MCF-7 breast cancer cells by quinonoid derivatives of naphthalene, including 1,2-naphthalenediol (NCAT), 1,4-naphthalenediol (NHQ), 1,2-naphthoquinone (1,2-NQ), and 1,4-naphthoquinone (1,4-NQ). Results from the cytotoxic response analyses in cells indicated that all naphthalene quinonoids induced cell death in MCF-7 cells at concentrations ranging from 0.1 to 100microM where NHQ and 1,4-NQ were more efficient than NCAT and 1,2-NQ in the induction of cell death. Results from Western blot analyses confirmed that treatment of cells with NCAT and NHQ resulted in up-regulation of p53 protein expression and a significant shift in bax/bcl2 ratio, suggesting the induction of p53-dependent apoptosis in MCF-7 cells. Additionally, we observed that all naphthalene quinonoids induced increases in reactive oxygen species (ROS) formation and glutathione (GSH) depletion in MCF-7 cells. The induction of ROS formation and GSH depletion in cells by naphthalene quinonoids decreases in the rank order 1,4-NQ>NHQ>1,2-NQ approximately equal to NCAT. Further investigation indicated that least-squares estimates of the overall rates of elimination (k(e)) of naphthalene quinonoids in MCF-7 cells decreased in the rank order 1,4-NQ>1,2-NQ>NHQ>NCAT. Values of k(e) were estimated to be between 0.280h(-1)(T(1/2)=151min) and 13.8h(-1)(T(1/2)=3.05min). These results provide evidence that the para-isomeric form of naphthalene quinonoids tend to induce acute production of ROS and alterations in intracellular redox status in cells, leading to the subsequent cell death. Further, all naphthalene quinonoids induced decreases in intracellular NAD(P)H and NAD(+) in MCF-7 cells at non-cytotoxic concentrations. The reduction of intracellular NAD(P)H in cells exposed to NCAT and 1,2-NQ was blocked by two types of poly(ADP-ribose) polymerase (PARP) inhibitors whereas PARP inhibitors did not prevent the reduction of NAD(P)H in cells exposed to NHQ and 1,4-NQ. Further investigation confirmed that increases in the number of DNA single-strand breaks were detected in MCF-7 cells exposed to NCAT and 1,2-NQ as measured by the single-cell gel electrophoresis (Comet) assay whereas NHQ and 1,4-NQ did not induce increases in the number of single-strand breaks in MCF-7 cells. Overall, results from our investigation suggest that while NHQ and 1,4-NQ are more efficient in the induction of cell death, NCAT and 1,2-NQ are prone to induce depletion of NAD(P)H and NAD(+) mediated by PARP-1 activation through formation of DNA single-strand breaks in human cultured cells.  相似文献   

2.
After genotoxic stress poly(ADP-ribose) polymerase-1 (PARP-1) can be hyperactivated, causing (ADP-ribosyl)ation of nuclear proteins (including itself), resulting in NAD(+) and ATP depletion and cell death. Mechanisms of PARP-1-mediated cell death and downstream proteolysis remain enigmatic. beta-lapachone (beta-lap) is the first chemotherapeutic agent to elicit a Ca(2+)-mediated cell death by PARP-1 hyperactivation at clinically relevant doses in cancer cells expressing elevated NAD(P)H:quinone oxidoreductase 1 (NQO1) levels. Beta-lap induces the generation of NQO1-dependent reactive oxygen species (ROS), DNA breaks, and triggers Ca(2+)-dependent gamma-H2AX formation and PARP-1 hyperactivation. Subsequent NAD(+) and ATP losses suppress DNA repair and cause cell death. Reduction of PARP-1 activity or Ca(2+) chelation protects cells. Interestingly, Ca(2+) chelation abrogates hydrogen peroxide (H(2)O(2)), but not N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PARP-1 hyperactivation and cell death. Thus, Ca(2+) appears to be an important co-factor in PARP-1 hyperactivation after ROS-induced DNA damage, which alters cellular metabolism and DNA repair.  相似文献   

3.
To characterize PCB action on follicular cell steroidogenesis two PCB congeners were selected as model substances. PCB 126 because of its dioxin-like configuration and high toxicity and PCB 153 because it is one of the most commonly detected PCB congeners in breast milk. The direct effect of PCBs was investigated using a culture system of porcine theca and granulosa cells collected from porcine preovulatory follicles. Granulosa and theca cells were cultured in M199 medium supplemented with 1, 10 or 100 pg/ml of PCB 126 or 1, 10 and 100 ng/ml of PCB 153. The media were changed after 48, 96 and 144 h and frozen until further estradiol (E2) analysis. Additionally, progesterone (P4) was measured in the granulosa cells culture medium and testosterone (T) in theca cells culture medium. Decrease of testosterone concentration in the theca cells culture medium was found after 96 and 144 hours in culture by both investigated PCB congeners. A decrease in E2 concentration was found after exposure to PCB 153. These findings suggest different actions of two congeners on the steroid synthesis in theca cells. The lack of an increase in E2 secretion after the exposure to PCB 126 could be due to depletion of androgen precursor. In granulosa cell culture PCB153 decreased E2 secretion and increased P4 secretion suggesting luteinization and disruption of aromatization process. PCB 126 in a doses from 1 to 10 pg had no effect on granulosa cells steroidogenesis. However, the highest dose (100 pg) increased concentration of both E2 and P4. This observation suggest that PCB 126 in a pharmacological doses may affect cell membrane permeability, thereby increasing steroid outflow into the medium. These results suggest time dependent and cell-specific differences in PCB 153 and 126 action on follicular cells steroidogenesis. Further studies are required to elucidate the mechanism of PCBs action on ovarian steroidogenesis.  相似文献   

4.
Verrucarin A (VA), a protein synthesis inhibitor, derived from the pathogen fungus Myrothecium verrucaria, inhibits growth of leukemia cell lines and activates caspases and apoptosis and inflammatory signaling in macrophages. We have investigated VA-induced growth inhibition in breast cancer cells MDA-MB-231 and T47D and, particularly, the mechanism of VA-induced apoptosis. VA treatment brought about apoptotic cell death in a dose- and time-dependent manner which was associated with chromatin condensation, cell shrinkage, nuclear fragmentation and intracellular ROS production. Mitochondrial membrane depolarization, activation of caspase-3, down-regulation of Bcl-2 expression and up-regulation of Bax and p53 expression were observed. VA thus affects the viability of both the breast cancer cells by triggering ROS-mediated intrinsic mechanism of apoptosis.  相似文献   

5.
Pyroptosis is a new form of programmed cell death generated by some inflammasomes, piloting the cleavage of gasdermin (GSDM) and stimulation of dormant cytokines like IL-18 and IL-1β; these reactions are narrowly linked to certain diseases like diabetic nephropathy and atherosclerosis. Doxorubicin, a typical anthracycline, and famous anticancer drug has emerged as a prominent medication in several cancer chemotherapies, although its application is accompanied with expending of dose-dependent, increasing, irreversible and continuing cardiotoxic side effects. However, the exact path that links the induced pyroptosis to the mechanism by which Doxorubicin (DOX) acts against breast cancer cells is still puzzling. The present study seeks to elucidate the potential link between DOX-induced cell death and pyroptosis in two human breast cancer cell lines (MDA-MB-231 and T47D). We proved that treatment with DOX reduced the cell viability in a dose-dependent way and induced pyroptosis morphology in MDA-MB-231 and T47D cells. Also, protein expression analyses revealed GSDME as a key regulator in DOX-induced pyroptosis and highlighted the related role of Caspase-3 activation. Furthermore, DOX treatments induced intracellular accumulation of ROS, stimulated the phosphorylation of JNK, and Caspase-3 activation, subsequently. In conclusion, the study suggests that GSDME triggered DOX-induced pyroptosis in the caspase-3 dependent reactions through the ROS/JNK signalling pathway. Additionally, it showed that the DOX-induced cardiotoxicity and pyroptosis in breast cancer cells can be minimized by reducing the protein level of GSDME; thus, these outcomes provide a new research target and implications for the anticancer investigations and therapeutic applications.  相似文献   

6.
Microvascular lesions resulting from endothelial cell dysfunction are produced in the brain, lung, kidney, and retina of patients of complex chronic diseases. The environmental and molecular risk factors which may contribute in the development of microvascular damage are unclear. The mechanism(s) responsible for initiating microvascular damage remain poorly defined, although several inciting factors have been proposed, including environmental toxicants-induced oxidative stress. Enhanced neovascularization has been implicated in either the development or progression of proliferative vascular lesions. Here, we present evidence for how PCB-induced ROS may contribute to the development of a neovascular phenotype with the aim of elucidating the role of environmental toxicants in endothelial dysfunction with a specific focus on the inhibitor of differentiation protein ID3. We used a combination of phenotype and immunohistochemical analysis followed by validating with protein expression and post-translational modifications with Western Blot and MALDI-TOF/TOF analysis. We also looked for a correlation between ID3 expression in vascular tissue. Our results showed that PCB-induced ROS mediated a highly tube branched neovascular phenotype that also depended on ID3 and Pyk2; and PCB153 treatment increased the size of endothelial spheroids under conditions typically used for clonal selection of stem cell spheroids. High ID3 protein expression correlated with a greater degree of malignancy and oxidative DNA damage marker 8-OHdG in blood vessels from human subjects. PCB153 treatment increased both serine and tyrosine phosphorylation of endothelial ID3. Stable ID3 overexpression increased cell survival of human microvascular endothelial cell line hCMEC/D3. In summary, our data provide evidence that ID3 may play a critical role in regulating vascular endothelial cell survival and development of microvascular lesions induced by persistent environmental pollutants such as PCB153. Findings of this study are important because they provide a new paradigm by which PCBs may contribute to the growth of microvascular lesions.  相似文献   

7.
Polychlorinated biphenyls (PCBs) are environmental chemical contaminants believed to adversely affect cellular processes. We investigated the hypothesis that PCB-induced changes in the levels of cellular reactive oxygen species (ROS) induce DNA damage resulting in cytotoxicity. Exponentially growing cultures of human nonmalignant breast epithelial cells (MCF10A) were incubated with PCBs for 3 days and assayed for cell number, ROS levels, DNA damage, and cytotoxicity. Exposure to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) or 2-(4-chlorophenyl)benzo-1,4-quinone (4-Cl-BQ), a metabolite of 4-chlorobiphenyl (PCB3), significantly decreased cell number and MTS reduction and increased the percentage of cells with sub-G1 DNA content. Results from electron paramagnetic resonance (EPR) spectroscopy showed a 4-fold increase in the steady-state levels of ROS, which was suppressed in cells pretreated with catalase. EPR measurements in cells treated with 4-Cl-BQ detected the presence of a semiquinone radical, suggesting that the increased levels of ROS could be due to the redox cycling of 4-Cl-BQ. A dose-dependent increase in micronuclei frequency was observed in PCB-treated cells, consistent with an increase in histone 2AX phosphorylation. Treatment of cells with catalase blunted the PCB-induced increase in micronuclei frequency and H2AX phosphorylation that was consistent with an increase in cell survival. Our results demonstrate a PCB-induced increase in cellular levels of ROS causing DNA damage, resulting in cell killing.  相似文献   

8.
Extensive activation of poly(ADP-ribose) polymerase-1 (PARP-1) by DNA damage is a major cause of caspase-independent cell death in ischemia and inflammation. Here we show that NAD(+) depletion and mitochondrial permeability transition (MPT) are sequential and necessary steps in PARP-1-mediated cell death. Cultured mouse astrocytes were treated with the cytotoxic concentrations of N-methyl-N'-nitro-N-nitrosoguanidine or 3-morpholinosydnonimine to induce DNA damage and PARP-1 activation. The resulting cell death was preceded by NAD(+) depletion, mitochondrial membrane depolarization, and MPT. Sub-micromolar concentrations of cyclosporin A blocked MPT and cell death, suggesting that MPT is a necessary step linking PARP-1 activation to cell death. In astrocytes, extracellular NAD(+) can raise intracellular NAD(+) concentrations. To determine whether NAD(+) depletion is necessary for PARP-1-induced MPT, NAD(+) was restored to near-normal levels after PARP-1 activation. Restoration of NAD(+) enabled the recovery of mitochondrial membrane potential and blocked both MPT and cell death. Furthermore, both cyclosporin A and NAD(+) blocked translocation of the apoptosis-inducing factor from mitochondria to nuclei, a step previously shown necessary for PARP-1-induced cell death. These results suggest that NAD(+) depletion and MPT are necessary intermediary steps linking PARP-1 activation to AIF translocation and cell death.  相似文献   

9.
Many tumor cells are capable of migrating through endothelial cell (EC) junctions and disintegrating sub-endothelial extracellular matrix to achieve extravasation. We demonstrate in this study that certain solid tumor cells can induce EC apoptosis to facilitate their escape from the circulation. The EC apoptosis is triggered by elevated intracellular reactive oxygen species (ROS) levels and direct contacts with tumor cells are required. Treating ECs with antioxidants, such as ascorbate and N-acetyl-L-cysteine (NAC), and a glutathione precursor can rescue the ECs from tumor-induced apoptosis and reduce the number of tumor cells migrating across endothelial barriers. NAD(P)H oxidase was identified as the major ROS producer in the event since inhibitors and small interference RNA specific to the enzyme could abrogate the tumor-induced ROS production and hence EC death. This study also provides evidence showing that the interaction between tumor and EC increases intracellular Ca(2+) concentration and activates protein kinase C (PKC) activity, which leads to NAD(P)H oxidase activation through the serine-phosphorylation of p47(phox) subunit. These findings suggest that blocking the tumor-induced EC apoptosis is a potential way to prevent tumor metastasis.  相似文献   

10.
Photodynamic treatment is a minimally invasive and clinically approved procedure for eliminating selected malignant cells with activation of a photosensitizer agent at a specific light. Little is known, however, about the phototoxic properties of curcumin, as a natural phenolic compound, against different types of cancers. It is generally accepted that cellular damage occurs during photo treatment. There is a limitation in using of curcumin as a drug due to its low solubility, but nanoparticles such as anionic nanoclays or layered double hydroxide (LDH) could overcome it. The aim of this study was to investigate cellular responses to curcumin-LDH nanoparticles after photodynamic treatment of MDA-MB-231 human breast cancer cells. For this purpose, the MDA-MB-231 human breast cancer cell line treated with curcumin-LDH nanoparticle and then irradiated (photodynamic treatment). After irradiation, lactate dehydrogenase assay, clonogenic cell survival, cell death mechanisms such as autophagy and apoptosis were determined. Cell cycle distribution after photodynamic therapy (PDT) and also intracellular reactive oxygen species (ROS) generation were measured. The result showed that curcumin-LDH–PDT has a cytotoxic and antiprolifrative effect on MDA-MB-231 human breast cancer cells. Curcumin-LDH–PDT induced autophagy, apoptosis, and G0/G1 cell cycle arrest in human breast cancer cell line. Intracellular ROS increased in MDA-MB-231 cancer cell line after treatment with curcumin-LDH along with irradiation. The results suggest that curcumin-LDH nanoparticle could be considered as a novel approach in the photodynamic treatment of breast cancer.  相似文献   

11.
DNA single strand breaks (SSBs) are one of the most frequent DNA lesions in genomic DNA generated either by oxidative stress or during the base excision repair pathways. Here we established a new real-time assay to assess an imbalance of DNA SSB repair by indirectly measuring PARP-1 activation through the depletion of intracellular NAD(P)H. A water-soluble tetrazolium salt is used to monitor the amount of NAD(P)H in living cells through its reduction to a yellow colored water-soluble formazan dye. While this assay is not a direct method, it does not require DNA extraction or alkaline treatment, both of which could potentially cause an artifactual induction of SSBs. In addition, it takes only 4 h and requires less than a half million cells to perform this measurement. Using this assay, we demonstrated that the dose- and time-dependent depletion of NAD(P)H in XRCC1-deficient CHO cells exposed to methyl methanesulfonate. This decrease was almost completely blocked by a PARP inhibitor. Furthermore, methyl methanesulfonate reduced NAD(P)H in PARP-1+/+cells, whereas PARP-1–/– cells were more resistant to the decrease in NAD(P)H. These results indicate that the analysis of intracellular NAD(P)H level using water-soluble tetrazolium salt can assess an imbalance of SSB repair in living cells in real time.  相似文献   

12.
In the present study we used human breast cancer cell lines to assess the influence of ceramide and glucosylceramide (GC) on expression of MDR1, the multidrug resistance gene that codes for P-glycoprotein (P-gp), because GC has been shown to be a substrate for P-gp. Acute exposure (72 h) to C8-ceramide (5 microg/ml culture medium), a cell-permeable ceramide, increased MDR1 mRNA levels by 3- and 5-fold in T47D and in MDA-MB-435 cells, respectively. Acute exposure of MCF-7 and MDA-MB-231 cells to C8-GC (10 microg/ml culture medium), a cell-permeable analog of GC, increased MDR1 expression by 2- and 4- fold, respectively. Chronic exposure of MDA-MB-231 cells to C8-ceramide for extended periods enhanced MDR1 mRNA levels 45- and 390-fold at passages 12 and 22, respectively, and also elicited expression of P-gp. High-passage C8-ceramide-grown MDA-MB-231 (MDA-MB-231/C8cer) cells were more resistant to doxorubicin and paclitaxel. Incubation with [1-(14)C]C6-ceramide showed that cells converted short-chain ceramide into GC, lactosylceramide, and sphingomyelin. When challenged with 5 mug/ml [1-(14)C]C6-ceramide, MDA-MB-231, MDA-MB-435, MCF-7, and T47D cells took up 31, 17, 21, and 13%, respectively, and converted 82, 58, 62, and 58% of that to short-chain GC. Exposing cells to the GCS inhibitor, ethylenedioxy-P4, a substituted analog of 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol, prevented ceramide's enhancement of MDR1 expression. These experiments show that high levels of ceramide and GC enhance expression of the multidrug resistance phenotype in cancer cells. Therefore, ceramide's role as a messenger of cytotoxic response might be linked to the multidrug resistance pathway.  相似文献   

13.
The newly discovered human voltage-gated proton channel Hv1 is essential for proton transfer, which contains a voltage sensor domain (VSD) without a pore domain. We report here for the first time that Hv1 is specifically expressed in the highly metastatic human breast tumor tissues, but not in poorly metastatic breast cancer tissues, detected by immunohistochemistry. Meanwhile, real-time RT-PCR and immunocytochemistry showed that the expression levels of Hv1 have significant differences among breast cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, MDA-MB-453, T-47D and SK-BR-3, in which Hv1 is expressed at a high level in highly metastatic human breast cancer cell line MDA-MB-231, but at a very low level in poorly metastatic human breast cancer cell line MCF-7. Inhibition of Hv1 expression in the highly metastatic MDA-MB-231 cells by small interfering RNA (siRNA) significantly decreases the invasion and migration of the cells. The intracellular pH of MDA-MB-231 cells down-regulated Hv1 expression by siRNA is obviously decreased compared with MDA-MB-231 with the scrambled siRNA. The expression of matrix metalloproteinase-2 and gelatinase activity in MDA-MB-231 cells suppressed Hv1 by siRNA were reduced. Our results strongly suggest that Hv1 regulates breast cancer intracellular pH and exacerbates the migratory ability of metastatic cells.  相似文献   

14.
High rates of glucose metabolism and mitochondrial electron transport have been associated with increased mitochondrial production of reactive oxygen species (ROS). This mechanism was also proposed as a possible cause for dysfunction and death of pancreatic beta cells exposed to high glucose levels. We examined whether high rates of glucose metabolism increase ROS production in purified rat beta cells. Glucose up to 20 mm did not stimulate H(2)O(2) or superoxide production, whereas it dose-dependently increased cellular NAD(P)H and FADH(2) levels with an EC(50) around 8 mm. On the contrary, glucose concentration-dependently suppressed H(2)O(2) and superoxide formation, with a major effect between 0 and 5 mm, parallel to an increase in cellular NAD(P)H levels. This suppressive effect was more marked in beta cells with higher NAD(P)H responsiveness to glucose; it was not observed in glucagon-containing alpha cells, which lacked a glucose-induced increase in NAD(P)H. Suppression was also induced by the mitochondrial substrates leucine and succinate. Experiments with electron transport chain inhibitors indicate a role of respiratory complex I in ROS production at low mitochondrial activity and low NADH levels. Superoxide production at low glucose is potentially cytotoxic, because scavenging by the superoxide dismutase mimetic agent manganese(III)tetrakis(4-benzoic acid)porphyrin was found to reduce the rate of beta cell apoptosis. Analysis of islets cultured at 20 mm glucose confirmed that this condition does not induce ROS production in beta cells as a result of their increased rates of glucose metabolism. Our study indicates the need of beta cells for basal nutrients maintaining mitochondrial NADH production at levels that suppress ROS accumulation from an inadequate respiratory complex I activity and thus inhibit a potential apoptotic pathway.  相似文献   

15.
Redox regulation of TNF signaling   总被引:2,自引:0,他引:2  
TNF is produced during inflammation and induces, among other activities, cell death in sensitive tumour cells. We previously reported an increased generation of ROS in TNF-treated L929 fibrosarcoma cells prior to cell death. These ROS are of mitochondrial origin and participate in the cell death process. Presently, we focus on the identification of parameters that control ROS production and subsequent cytotoxicity. From the cytotoxic properties and susceptibility to scavenging of TNF-induced ROS as compared to pro-oxidant-induced ROS we conclude that TNF-mediated ROS generation and their lethal action are confined to the inner mitochondrial membrane. Oxidative substrates, electron-transport inhibitors, glutathione and thiol-reactive agents but also caspase inhibitors modulate TNF-induced ROS production and imply the existence of a negative regulator of ROS production. Inactivation of this regulator by a TNF-induced reduction of NAD(P)H levels and/or formation of intraprotein disulfides would be responsible for ROS generation.  相似文献   

16.
Abelson interactor protein-1 (ABI-1) is an adaptor protein involved in actin reorganization and lamellipodia formation. It forms a macromolecular complex containing Hspc300/WASP family verprolin-homologous proteins 2/ABI-1/nucleosome assembly protein 1/PIR121 or Abl/ABI-1/WASP family verprolin-homologous proteins 2 in response to Rho family-dependent stimuli. Due to its role in cell mobility, we hypothesized that ABI-1 has a role in invasion and metastasis. In the present study, we found that weakly invasive breast cancer cell lines (MCF-7, T47D, MDA-MB-468, SKBR3, and CAMA1) express lower levels of ABI-1 compared with highly invasive breast cancer cell lines (MDA-MB-231, MDA-MB-157, BT549, and Hs578T), which exhibit high ABI-1 levels. Using RNA interference, ABI-1 was stably down-regulated in MDA-MB-231, which resulted in decreased cell proliferation and anchorage-dependent colony formation and abrogation of lamellipodia formation on fibronectin. Down-regulation of ABI-1 decreased invasiveness and migration ability and decreased adhesion on collagen IV and actin polymerization in MDA-MB-231 cells. Additionally, compared with control parental cells, ABI-1 small interfering RNA-transfected cells showed decreased levels of phospho-PDK1, phospho-Raf, phospho-AKT, total AKT, and AKT1. These data suggest that ABI-1 plays an important role in the spread of breast cancer and that this role may be mediated via the phosphatidylinositol 3-kinase pathway.  相似文献   

17.
18.
The chemical property of 6-formylpterin and its biological functions were examined. Polarographic studies revealed that 6-formylpterin reacted with NAD(P)H and consumed oxygen. In contrast, other conjugated pterins, such as biopterin and neopterin, showed no consumption of oxygen. The production analysis using high-performance liquid chromatography documented that 6-formylpterin catalyzes the conversion from NADH to NAD. Electroparamagnetic resonance spin trapping experiments demonstrated that this reaction is accompanied with the generation of reactive oxygen species (ROS), superoxide anion and hydrogen peroxide. When 6-formylpterin was administered to HL-60 cells, intracellular ROS generation was observed and apoptosis was induced. In contrast, other conjugated pterins induced neither intracellular ROS generation nor apoptosis in HL-60 cells. The intracellular ROS generation by 6-formylpterin was observed in other cells, such as PanC-1 cells and Jurkat cells. 6-formylpterin suppressed cell proliferation in PanC-1 cells and inhibited Fas-mediated apoptosis in Jurkat cells. These findings indicate that, among conjugated pterins, 6-formylpterin has the unique property to transfer electron from NAD(P)H to oxygen and that the property brings about intracellular ROS generation, which exerts various biological functions such as induction of apoptosis, suppression of cell proliferation, and inhibition of Fas-mediated apoptosis.  相似文献   

19.
Atlantic croaker (Micropogonias undulatus) were exposed to the polychlorinated biphenyl (PCB) mixture (Aroclor 1254) or one of three individual congeners (planar PCB 77 or ortho-substituted PCB 47 and PCB 153) in the diet for 30 days to investigate the effects of PCBs on circulating thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Aroclor 1254 (0.2 and 1.0 mg/kg body mass/day) decreased plasma T3 levels consistently, but the effects on T4 levels were inconsistent from year to year. Exposure to PCB 153 (0.1 and 1.0 mg/kg body mass/day) significantly lowered both T4 and T3, while PCB 47 at the same doses had no effect on thyroid hormone levels. The lower doses of PCB 77 (0.004, 0.01 and 0.02 mg/kg body mass/day) had no effect on T4 or T3, whereas the highest dose (0.1 mg/kg body mass/day) increased T4 levels significantly. The results of the present study demonstrate that exposure to PCBs at environmentally realistic concentrations can have profound effects on the thyroid status of Atlantic croaker. The ortho-substituted PCB 153 appears to contribute at least partially to the deleterious effects of Aroclor 1254 on thyroid status, whereas the planar PCB 77 at concentrations present in the mixture is unlikely to alter thyroid hormone levels.  相似文献   

20.
Chromones and triazoles are groups of heterocyclic compounds widely known to exhibit a broad spectrum of biological activities. The combination of these two pharmacophores could result in multiple mechanisms of action to increase the potency of anticancer drugs and reduce their side effects. The in vitro antitumor effect of eight chromone-based compounds was evaluated in breast (T-47D and MDA-MB-231) and prostate (PC3) cancer cell lines, and in non-cancerous human mammary epithelial cells (HuMEC) using a resazurin-based method. Flow cytometry was used to evaluate the cell cycle and cell death, and ɣ-H2AX detection to identify DNA damage. The compounds showed selective cytotoxicity against cancer cell lines, with (E)-2-(2-(5-(4-methoxyphenyl)-2H-1,2,3-triazol-4-yl)vinyl)-4H-chromen-4-one (compound 2 a ) being more potent in non-metastatic T-47D cells (IC50 0.65 μM). Replacing the hydrogen by a methyl group on the triazole ring in compound 2 b enhanced the cytotoxic activity up to IC50 0.24 μM in PC3, 0.32 μM in MDA-MB-231 and 0.52 μM in T-47D. Compound 2 b was 3-fold more potent than doxorubicin in PC3 (IC50 0.73 μM) and 4-fold in MDA-MB-231 (IC50 1.51 μM). The addition of tetrahydroisoindole-1,3-dione moiety in compound 5 did not improve its effectiveness in any of the cell lines but it exerted the lowest cytotoxic effect in HuMEC (IC50 221.35 μM). The compounds revealed different cytotoxic mechanisms: 2 a and 2 b induced G2/M arrest, and compound 5 did not affect the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号