首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herpesvirus DNA replication leads to unit length genomes that are translocated into preformed procapsids through a unique portal vertex. The translocation is performed by the terminase that cleaves the DNA and powers the insertion by its ATPase activity. Recently, we demonstrated that the putative human cytomegalovirus (HCMV) portal protein, pUL104, also forms high-molecular-weight complexes. Analyses now have been performed to determine the intracellular localization and identification of interaction partners of pUL104. In infected cells, HCMV pUL104 was found to be predominantly localized throughout the nucleus as well as in cytoplasmic clusters at late times of infection. The latter localization was abolished by phosphonoacetic acid, an inhibitor of viral DNA replication. Immunofluorescence revealed that pUL104 colocalized with pUL56, the large subunit of the HCMV terminase. Specific association of in vitro translated pUL104 with the carboxy-terminal half of GST-UL56C was detected. By using coimmunoprecipitations a direct interaction with pUL56 was confirmed. In addition, this interaction was no longer detected when the benzimidazole-D-nucleosides BDCRB or Cl4RB were added, thus indicating that these HCMV inhibitors block the insertion of the DNA into the capsid by preventing a necessary interaction of pUL56 with the portal. Electron microscopy revealed that in the presence of Cl4RB DNA is not packaged into capsids and these capsids failed to egress from the nucleus. Furthermore, pulsed-field gel electrophoresis showed that DNA concatemers synthesized in the presence of the compound failed to be processed.  相似文献   

2.
人巨细胞病毒(HCMV) UL23基因编码病毒皮层蛋白,该基因缺失时,病毒在人包皮成纤维细胞(HFF)中的繁殖速度加快.为进一步阐述HCMV UL23基因编码产物 pUL23的功能及调控机制,采用鸟枪法构建了融合于GAL4活性区域的HCMV Towne株 基因组随机表达文库.利用酵母双杂交技术,以pGBKT7 -UL23为诱饵质粒,从构建 的HCMV基因组表达文库中筛选到与pUL23相互作用的病毒编码蛋白pUL24. GST-pull down实验和免疫共沉淀实验进一步确认两种病毒蛋白之间的相互作用.结果 表明,构建的HCMV基因组表达文库能够用于GAL4酵母双杂交系统筛选与诱饵蛋白相互作用的病毒自身编码蛋白.病毒蛋白pUL23和pUL24之间具有相互作用,这为进一 步阐述pUL23在HCMV感染过程中的功能提供依据.该研究为揭示HCMV病毒感染机制奠定了基础.  相似文献   

3.
Replication of human cytomegalovirus (HCMV) produces large DNA concatemers of head-to-tail-linked viral genomes that upon packaging into capsids are cut into unit-length genomes. The mechanisms underlying cleavage-packaging and the subsequent steps prior to nuclear egress of DNA-filled capsids are incompletely understood. The hitherto uncharacterized product of the essential HCMV UL52 gene was proposed to participate in these processes. To investigate the function of pUL52, we constructed a ΔUL52 mutant as well as a complementing cell line. We found that replication of viral DNA was not impaired in noncomplementing cells infected with the ΔUL52 virus, but viral concatemers remained uncleaved. Since the subnuclear localization of the known cleavage-packaging proteins pUL56, pUL89, and pUL104 was unchanged in ΔUL52-infected fibroblasts, pUL52 does not seem to act via these proteins. Electron microscopy studies revealed only B capsids in the nuclei of ΔUL52-infected cells, indicating that the mutant virus has a defect in encapsidation of viral DNA. Generation of recombinant HCMV genomes encoding epitope-tagged pUL52 versions showed that only the N-terminally tagged pUL52 supported viral growth, suggesting that the C terminus is crucial for its function. pUL52 was expressed as a 75-kDa protein with true late kinetics. It localized preferentially to the nuclei of infected cells and was found to enclose the replication compartments. Taken together, our results demonstrate an essential role for pUL52 in cleavage-packaging of HCMV DNA. Given its unique subnuclear localization, the function of pUL52 might be distinct from that of other cleavage-packaging proteins.  相似文献   

4.
To develop a gene therapeutic method for human cytomegalovirus (HCMV), the IE86 specific short hairpin (sh) RNA expressing vector was constructed and subsequently transfected into MRC-5 cells. After infection of these cells with HCMV AD169, expression of IE86 was reduced strikingly as compared to the control. In addition, the inhibitory effect corresponded to a decrease in viral DNA replication and the virus-induced cytopathic effect. Measurement of the virus yield demonstrated that infection of cells expressing IE86-specific shRNA resulted in suppression of the formation of infectious viral progeny. These observations indicate that IE86 can be used as an effective target against HCMV infection using RNA interference (RNAi) technology, which provides new possibilities for anti-HCMV studies.  相似文献   

5.
Giesen K  Radsak K  Bogner E 《FEBS letters》2000,471(2-3):215-218
The highly conserved DNA-binding protein pUL56 of human cytomegalovirus (HCMV) was found to be predominantly localized throughout the nucleus as well as in viral replication centers of infected cells. The latter localization was abolished by phosphono acetic acid, an inhibitor of viral DNA replication. Immunofluorescence revealed that pUL56 co-localized in replication centers alongside pUL112-113 and pUL44 at late times of infection. By co-immunoprecipitations, a direct interaction with pUL44, a protein of the replication fork, was detected. These results showed for the first time that HCMV pUL56 is localized in viral replication centers, implicating that DNA replication is coupled with packaging.  相似文献   

6.
7.
Apoptosis is an innate cellular defense response to viral infection. The slow-replicating human cytomegalovirus (HCMV) blocks premature death of host cells prior to completion of the infection cycle. In this study, we report that the HCMV UL38 gene encodes a cell death inhibitory protein. A mutant virus lacking the pUL38 coding sequence, ADdlUL38, grew poorly in human fibroblasts, failed to accumulate viral DNA to wild-type levels, and induced excessive death of infected cells. Cells expressing pUL38 were resistant to cell death upon infection and effectively supported the growth of ADdlUL38. Cells infected with the pUL38-deficient virus showed morphological changes characteristic of apoptosis, including cell shrinkage, membrane blebbing, vesicle release, and chromatin condensation and fragmentation. The proteolytic cleavage of two key enzymes involved in apoptosis, namely, caspase 3 and poly(ADP-ribose) polymerase, was activated upon ADdlUL38 infection, and the cleavage was blocked in cells expressing pUL38. The pan-caspase inhibitor Z-VAD-FMK largely restored the growth of ADdlUL38 in normal fibroblasts, indicating that the defective growth of the mutant virus mainly resulted from premature death of host cells. Furthermore, cells expressing pUL38 were resistant to cell death induced by a mutant adenovirus lacking the antiapoptotic E1B-19K protein or by thapsigargin, which disrupts calcium homeostasis in the endoplasmic reticulum. Taken together, these results indicate that the HCMV protein pUL38 suppresses apoptosis, blocking premature death of host cells to facilitate efficient virus replication.  相似文献   

8.
Bcl-2 small hairpin RNAs enhance radiation-induced apoptosis in A549 cells   总被引:2,自引:0,他引:2  
Bcl-2, a prominent member of the family of proteins, is responsible for dys-regulation of apoptosis and resistance to chemotherapy and radiotherapy. This study investigated whether small hairpin RNA (shRNA) targeting Bcl-2 could render A549 cells more susceptible to gamma radiation-induced apoptosis. Recombinant Bcl-2 shRNAs expression vector were transfected into A549 cells with Lipofectamine 2000. Transfected cells were screened in 800 mg/ml G418 screening medium, and after stable transfection, silencing was examined. Expression of the Bcl-2 protein was assayed using Western blot in A549 cells. Inhibition of cell growth was assessed by a MTT assay. Apoptosis was determined by morphological observation and flow cytometry. Expression levels of Bcl-2 protein from A549 cells decreased after stable transfection with Bcl-2 shRNAs. No differences in Bcl-2 protein levels between control shRNA group and untreated cells were noted. After stable transfection with Bcl-2 shRNAs the viability of cells was less than after stable transfection with those with control shRNAs and untransfected A549, respectively (P<0.05). Control shRNA had no significant effect on growth of cells. Radiation significantly inhibited the growth of cells stably transfected with Bcl-2 shRNA (P<0.05). No difference in survival between the cells with control shRNA and untransfected cells was noted. Using Giemsa staining, cells stably transfected with Bcl-2 shRNA combined with radiation at 48 h displayed changes of apoptosis. After treatment with radiation apoptotic rates of the A549 cells stably transfected with Bcl-2 shRNA significantly increased (P<0.05), compared with the cells with control shRNA and untransfected cells. shRNAs against the Bcl-2 mRNA increases radiation-induced apoptosis in A549 cells.  相似文献   

9.
Dittmer A  Bogner E 《Biochemistry》2005,44(2):759-765
In this report we analyze the UL104 open reading frame of human cytomegalovirus (HCMV) genome that encodes the putative portal protein. An affinity-purified monospecific antiserum directed against a GST-UL104 fusion protein identified proteins of approximate M(r) 73000 and 145000 in HCMV-infected cells and purified virions. Furthermore, using an in vitro assay the ability of pUL104 to bind double-stranded DNA was shown. Analysis under native conditions of pUL104 revealed that the monomeric and dimeric forms of the protein also form high molecular weight complexes upon sucrose gradient centrifugation. The protein has been purified from recombinant baculovirus UL104 infected cells. The quaternary structure of rpUL104 was investigated by gel permeation chromatography and electron microscopy. The purified rpUL104 was found to assemble into high molecular weight complexes, a prerequisite of portal proteins which form channels for DNA import into capsids.  相似文献   

10.
11.
12.
We previously described a novel genetic locus within the ULb' region of the human cytomegalovirus (HCMV) genome that, while dispensable for replication in fibroblasts, suppresses replication in hematopoietic progenitors and augments replication in endothelial cells. This locus, referred to as the UL133-UL138 locus, encodes four proteins, pUL133, pUL135, pUL136, and pUL138. In this work, we have mapped the interactions among these proteins. An analysis of all pairwise interactions during transient expression revealed a robust interaction between pUL133 and pUL138. Potential interactions between pUL136 and both pUL133 and pUL138 were also revealed. In addition, each of the UL133-UL138 locus proteins self-associated, suggesting a potential to form higher-order homomeric complexes. As both pUL133 and pUL138 function in promoting viral latency in CD34(+) hematopoietic progenitor cells (HPCs) infected in vitro, we further focused on this interaction. pUL133 and pUL138 are the predominant complex detected when all proteins are expressed together and require no other proteins in the locus for their association. During infection, the interaction between pUL133 and pUL138 or pUL136 can be detected. A recombinant virus that fails to express both pUL133 and pUL138 exhibited a latency phenotype similar to that of viruses that fail to express either pUL133 or pUL138, indicating that these proteins function cooperatively in latency and do not have independent functions that additively contribute to HCMV latency. These studies identify protein interactions among proteins encoded by the UL133-UL138 locus and demonstrate an important interaction impacting the outcome of HCMV infection.  相似文献   

13.
Human cytomegalovirus (HCMV) UL77 gene encodes the essential protein UL77, its function is characterized in the present study. Immunoprecipitation identified monomeric and oligomeric pUL77 in HCMV infected cells. Immunostaining of purified virions and subviral fractions showed that pUL77 is a structural protein associated with capsids. In silico analysis revealed the presence of a coiled-coil motif (CCM) at the N-terminus of pUL77. Chemical cross-linking of either wild-type pUL77 or CCM deletion mutant (pUL77ΔCCM) implicated that CCM is critical for oligomerization of pUL77. Furthermore, co-immunoprecipitations of infected and transfected cells demonstrated that pUL77 interacts with the capsid-associated DNA packaging motor components, pUL56 and pUL104, as well as the major capsid protein. The ability of pUL77 to bind dsDNA was shown by an in vitro assay. Binding to certain DNA was further confirmed by an assay using biotinylated 36-, 250-, 500-, 1000-meric dsDNA and 966-meric HCMV-specific dsDNA designed for this study. The binding efficiency (BE) was determined by image processing program defining values above 1.0 as positive. While the BE of the pUL56 binding to the 36-mer bio-pac1 containing a packaging signal was 10.0 ± 0.63, the one for pUL77 was only 0.2±0.03. In contrast to this observation the BE of pUL77 binding to bio-500 bp or bio-1000 bp was 2.2 ± 0.41 and 4.9 ± 0.71, respectively. By using pUL77ΔCCM it was demonstrated that this protein could not bind to dsDNA. These data indicated that pUL77 (i) could form homodimers, (ii) CCM of pUL77 is crucial for oligomerization and (iii) could bind to dsDNA in a sequence independent manner.  相似文献   

14.
The human cytomegalovirus (HCMV) protein kinase pUL97 represents an important determinant for viral replication and thus is a promising target for the treatment of HCMV. The authors screened a compound library of nearly 5000 entities based on known kinase inhibitors in 2 distinct ways. A radioactive in vitro kinase assay was performed with recombinant pUL97, purified from baculovirus-infected insect cells, on myelin basic protein-coated FlashPlates. About 20% of all compounds tested inhibited pUL97 kinase activity by more than 50% at a concentration of 10 microM. These hits belonged to various structural classes. To elucidate their potential to inhibit pUL97 in a cellular context, all compounds of the library were also tested in a cell-based activity assay. For this reason, a HEK293 cell line was established that ectopically expressed pUL97. When these cells were incubated with ganciclovir (GCV), pUL97 phosphorylated GCV to its monophosphate, which subsequently became phosphorylated to cytotoxic metabolites by cellular enzymes. Thereby, pUL97 converted cells into a GCV-sensitive phenotype. Inhibition of the pUL97 kinase activity resulted in protection of the cells against the cytotoxic effects of GCV. In total, 199 compounds of the library were cellular active at nontoxic concentrations, and 93 of them inhibited pUL97 in the in vitro kinase assay. Among these, promising inhibitors of HCMV replication were identified. The 2-fold screening system described here should facilitate the development of pUL97 inhibitors into potent drug candidates.  相似文献   

15.
Modulation of host DNA synthesis is essential for many viruses to establish productive infections and contributes to viral diseases. Human cytomegalovirus (HCMV), a large DNA virus, blocks host DNA synthesis and deregulates cell cycle progression. We report that pUL117, a viral protein that we recently identified, is required for HCMV to block host DNA synthesis. Mutant viruses in which pUL117 was disrupted, either by frame-shift mutation or by a protein destabilization-based approach, failed to block host DNA synthesis at times after 24 hours post infection in human foreskin fibroblasts. Furthermore, pUL117-deficient virus stimulated quiescent fibroblasts to enter S-phase, demonstrating the intrinsic ability of HCMV to promote host DNA synthesis, which was suppressed by pUL117. We examined key proteins known to be involved in inhibition of host DNA synthesis in HCMV infection, and found that many were unlikely involved in the inhibitory activity of pUL117, including geminin, cyclin A, and viral protein IE2, based on their expression patterns. However, the ability of HCMV to delay the accumulation of the mini-chromosome maintenance (MCM) complex proteins, represented by MCM2 and MCM4, and prevent their loading onto chromatin, was compromised in the absence of pUL117. When expressed alone, pUL117 slowed cell proliferation, delayed DNA synthesis, and inhibited MCM accumulation. Knockdown of MCM proteins by siRNA restored the ability of pUL117-deficient virus to block cellular DNA synthesis. Thus, targeting MCM complex is one mechanism pUL117 employs to help block cellular DNA synthesis during HCMV infection. Our finding substantiates an emerging picture that deregulation of MCM is a conserved strategy for many viruses to prevent host DNA synthesis and helps to elucidate the complex strategy used by a large DNA virus to modulate cellular processes to promote infection and pathogenesis.  相似文献   

16.
17.
Morphogenesis of human cytomegalovirus (HCMV) is still only partially understood. We have characterized the role of HCMV tegument protein pUL71 in viral replication and morphogenesis. By using a rabbit antibody raised against the C terminus of pUL71, we could detect the protein in infected cells, as well as in virions showing a molecular mass of approximately 48 kDa. The expression of pUL71, detected as early as 48 h postinfection, was not blocked by the antiviral drug foscarnet, indicating an early expression. The role of pUL71 during virus replication was investigated by construction and analysis of a UL71 stop mutant (TBstop71). The mutant could be reconstituted on noncomplementing cells proving that pUL71 is nonessential for virus replication in human fibroblasts. However, the inhibition of pUL71 expression resulted in a severe growth defect, as reflected by an up to 16-fold reduced extracellular virus yield after a high-multiplicity infection and a small-plaque phenotype. Ultrastructural analysis of cells infected with TBstop71 virus revealed an increased number of nonenveloped nucleocapsids in the cytoplasm, many of them at different stages of envelopment, indicating that final envelopment of nucleocapsids in the cytoplasm was affected. In addition, enlarged multivesicular bodies (MVBs) were found in close proximity to the viral assembly compartment, suggesting that pUL71 affects MVBs during virus infection. The observation of numerous TBstop71 virus particles attached to MVB membranes and budding processes into MVBs indicated that these membranes can be used for final envelopment of HCMV.  相似文献   

18.
19.
20.
Congenital infection of human cytomegalovirus (HCMV) is one of the leading causes of nongenetic birth defects, and development of a prophylactic vaccine against HCMV is of high priority for public health. The gH/gL/pUL128–131 pentameric complex mediates HCMV entry into endothelial and epithelial cells, and it is a major target for neutralizing antibody responses. To better understand the mechanism by which antibodies interact with the epitopes of the gH/gL/pUL128–131 pentameric complex resulting in viral neutralization, we expressed and purified soluble gH/gL/pUL128–131 pentameric complex and gH/gL from Chinese hamster ovary cells to >95% purity. The soluble gH/gL, which exists predominantly as (gH/gL)2 homodimer with a molecular mass of 220 kDa in solution, has a stoichiometry of 1:1 and a pI of 6.0–6.5. The pentameric complex has a molecular mass of 160 kDa, a stoichiometry of 1:1:1:1:1, and a pI of 7.4–8.1. The soluble pentameric complex, but not gH/gL, adsorbs 76% of neutralizing activities in HCMV human hyperimmune globulin, consistent with earlier reports that the most potent neutralizing epitopes for blocking epithelial infection are unique to the pentameric complex. Functionally, the soluble pentameric complex, but not gH/gL, blocks viral entry to epithelial cells in culture. Our results highlight the importance of the gH/gL/pUL128–131 pentameric complex in HCMV vaccine design and emphasize the necessity to monitor the integrity of the pentameric complex during the vaccine manufacturing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号