首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Estrogen receptor and c-Myc are frequently overexpressed during breast cancer progression but are downregulated in many aggressive forms of the disease. High levels of the EphA2 tyrosine kinase are consistently found in the most aggressive breast cancer cells, and EphA2 overexpression can increase metastatic potential. We demonstrate, herein, that estrogen and Myc negatively regulate EphA2 expression in mammary epithelial cells. These data reveal EphA2 as a downstream target of estrogen and Myc and suggest a mechanism by which estrogen and Myc may regulate breast cancer.  相似文献   

3.
4.
5.
Estrogen receptor alpha (ERα) plays an important role in the development and progression of breast cancer and thus the attenuation of ERα activities is a promising treatment strategy. Furanodienone is one of the main bioactive chemical components of Rhizoma Curcumae which is commonly used in Chinese medicine for the treatment of cancer. In this study, we investigated the effects of furanodienone on human breast cancer MCF‐7, T47D, and MDA‐MB‐231 cells. Our results showed that furanodienone could inhibit MCF‐7, T47D, and MDA‐MB‐231 cells proliferation in a dose (10–160 µM) dependent manner. ERα‐negative MDA‐MB‐231 cells were less sensitive to furanodienone than ERα‐positive MCF‐7 and T47D cells. Furanodienone could effectively block 17β‐estradiol (E2)‐stimulated MCF‐7 cell proliferation and cell cycle progression and induce apoptosis evidenced by the flow cytometric detection of sub‐G1 DNA content and the appearance of apoptotic nuclei after DAPI staining. Furanodienone specifically down‐regulated ERα protein and mRNA expression levels without altering ERβ expression. Furanodienone treatment inhibited E2‐stimulation of estrogen response element (ERE)‐driven reporter plasmid activity and ablated E2‐targeted gene (e.g., c‐Myc, Bcl‐2, and cyclin D1) expression which resulted in the inhibition of cell cycle progression and cell proliferation, and in the induction of apoptosis. Knockdown of ERα in MCF‐7 cells by ERα‐specific siRNA decreased the cell growth inhibitory effect of furanodienone. These findings suggest that effects of furanodienone on MCF‐7 cells are mediated, at least in part, by inhibiting ERα signaling. J. Cell. Biochem. 112: 217–224, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
8.
Chan HS  Chang SJ  Wang TY  Ko HJ  Lin YC  Lin KT  Chang KM  Chuang YJ 《PloS one》2012,7(1):e30397
Serine protease PRSS23 is a newly discovered protein that has been associated with tumor progression in various types of cancers. Interestingly, PRSS23 is coexpressed with estrogen receptor α (ERα), which is a prominent biomarker and therapeutic target for human breast cancer. Estrogen signaling through ERα is also known to affect cell proliferation, apoptosis, and survival, which promotes tumorigenesis by regulating the production of numerous downstream effector proteins.In the present study, we aimed to clarify the correlation between and functional implication of ERα and PRSS23 in breast cancer. Analysis of published breast cancer microarray datasets revealed that the gene expression correlation between ERα and PRSS23 is highly significant among all ERα-associated proteases in breast cancer. We then assessed PRSS23 expression in 56 primary breast cancer biopsies and 8 cancer cell lines. The results further confirmed the coexpression of PRSS23 and ERα and provided clinicopathological significance. In vitro assays in MCF-7 breast cancer cells demonstrated that PRSS23 expression is induced by 17β-estradiol-activated ERα through an interaction with an upstream promoter region of PRSS23 gene. In addition, PRSS23 knockdown may suppress estrogen-driven cell proliferation of MCF-7 cells.Our findings imply that PRSS23 might be a critical component of estrogen-mediated cell proliferation of ERα-positive breast cancer cells. In conclusion, the present study highlights the potential for PRSS23 to be a novel therapeutic target in breast cancer research.  相似文献   

9.
Estrogen stimulates cell proliferation in breast cancer. The biological effects of estrogen are mediated through two intracellular receptors, estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta). However, the role of ERs in the proliferative action of estrogen is not well established. Recently, it has been known that ER activates phosphatidylinositol-3-OH kinase (PI3K) through binding with the p85 regulatory subunit of PI3K. Therefore, possible mechanisms may include ER-mediated phosphoinositide metabolism with subsequent formation of phosphatidylinositol-3,4,5-trisphosphate (PIP(3)), which is generated from phosphatidylinositol 4,5-bisphosphate via PI3K activation. The present study demonstrates that 17beta-estradiol (E2) up-regulates PI3K in an ERalpha-dependent manner, but not ERbeta, and stimulates cell growth in breast cancer cells. In order to study this phenomenon, we have treated ERalpha-positive MCF-7 cells and ERalpha-negative MDA-MB-231 cells with 10nM E2. Treatment of MCF-7 cells with E2 resulted in a marked increase in PI3K (p85) expression, which paralleled an increase in phospho-Akt (Ser-473) and PIP(3) level. These observations also correlated with an increased activity to E2-induced cell proliferation. However, these effects of E2 on breast cancer cells were not observed in the MDA-MB-231 cell line, indicating that the E2-mediated up-regulation of PI3K/Akt pathway is ERalpha-dependent. These results suggest that estrogen activates PI3K/Akt signaling through ERalpha-dependent mechanism in MCF-7 cells.  相似文献   

10.
11.
Phospholipase D (PLD) activity is elevated in response to mitogenic and oncogenic signals. PLD also cooperates with overexpressed tyrosine kinases to transform rat fibroblasts. 3Y1 rat fibroblasts overexpressing the tyrosine kinase c-Src undergo apoptosis in response to serum withdrawal. We report here that elevated expression of either PLD1 or PLD2 in these cells prevents apoptosis induced by serum withdrawal. 3Y1 cells transformed by the activated tyrosine kinase v-Src have elevated PLD activity and are resistant to apoptosis induced by serum withdrawal. However, if PLD activity is blocked, the v-Src-transformed cells underwent apoptosis. MDA-MB-231 cells are a human breast cancer cell line with substantially elevated levels of PLD activity. Inhibiting PLD activity in these cells similarly rendered them sensitive to the apoptotic insult of serum withdrawal. These data indicate that elevated PLD activity generates a survival signal(s) allowing cells to overcome default apoptosis programs.  相似文献   

12.
Activation of the intrinsic apoptotic pathway represents a major mechanism for breast cancer regression resulting from anti-estrogen therapy. The BH3-only protein BIK is inducible by estrogen-starvation and anti-estrogen treatment and plays an important role in anti-estrogen induced apoptosis of breast cancer cells. BIK is predominantly localized to the endoplasmic reticulum where it regulates BAX/BAK-dependent release of Ca(2+) from the endoplasmic reticulum stores and cooperates with other BH3-only proteins such as NOXA to cause rapid release of cytochrome c from mitochondria and activate apoptosis. BIK is also known to inactivate BCL-2 through complex formation. Previously, we demonstrated that apoptosis triggered by BIK in estrogen-starved human breast cancer cells is suppressed by GRP78, a major endoplasmic reticulum chaperone. Here we described the isolation of a novel clonal human breast cancer cell line (MCF-7/BUS-10) resistant to long-term estrogen deprivation. These cells exhibit elevated level of GRP78, which protects them from estrogen starvation-induced apoptosis. Our studies revealed that overexpression of GRP78 suppresses apoptosis induced by BIK and NOXA, either alone or in combination. Surprisingly, the interaction of GRP78 with BIK does not require its BH3 domain, which has been implicated in all previous BIK protein interactions. We further showed GRP78 and BCL-2 form independent complex with BIK and that increased expression of GRP78 decreases BIK binding to BCL-2. Our findings provide the first evidence that GRP78 can decrease BCL-2 sequestration by BIK at the endoplasmic reticulum, thus uncovering a potential new mechanism whereby GRP78 confers endocrine resistance in breast cancer.  相似文献   

13.
14.
c-myc oncogene is implicated in tumorigenesis of many cancers, including breast cancer. Although c-myc is a well-known estrogen-induced gene, its promoter has no estrogen-response element, and the underlying mechanism by which estrogen induces its expression remains obscure. Recent genome-wide studies by us and others suggested that distant elements may mediate estrogen induction of gene expression. In this study, we investigated the molecular mechanism by which estrogen induces c-myc expression with a focus on these distal elements. Estrogen rapidly induced c-myc expression in estrogen receptor (ER)-positive breast cancer cells. Although estrogen had little effect on c-myc proximal promoter activity, it did stimulate the activity of a luciferase reporter containing a distal 67-kb enhancer. Estrogen induction of this luciferase reporter was dependent upon both a half-estrogen response element and an activator protein 1 (AP-1) site within this enhancer, which are conserved across 11 different mammalian species. Small interfering RNA experiments and chromatin immunoprecipitation assays demonstrated the necessity of ER and AP-1 cross talk for estrogen to induce c-myc expression. TAM67, the AP-1 dominant negative, partially inhibited estrogen induction of c-myc expression and suppressed estrogen-induced cell cycle progression. Together, these results demonstrate a novel pathway of estrogen regulation of gene expression by cooperation between ER and AP-1 at the distal enhancer element and that AP-1 is involved in estrogen induction of the c-myc oncogene. These results solve the long-standing question in the field of endocrinology of how estrogen induces c-myc expression.  相似文献   

15.
雌激素受体(estrogen receptor,ER)是诊断和治疗乳腺癌的分子标志和靶点.雌激素受体包括ER-α和ER-β,其中ER-α有ER-α66、ER-α46和ER-α36三种亚型.ER-α36作为新型雌激素受体,参与膜起始的雌激素信号或非基因组雌激素信号转导,在肿瘤细胞的增殖、分化、侵袭和转移等过程中发挥作用.胃癌、子宫内膜腺癌、前列腺癌、尤其是乳腺癌的发生发展与ER-α36密切相关.本文介绍了ER-α36的结构域特点,ER-α36介导的信号通路及ER-α36在乳腺癌治疗中的作用研究进展.  相似文献   

16.
Estrogen receptors play a key role in breast cancer development and progression. Kruppel-like factor 6 (KLF6) is a tumour-suppressing protein. The aim of this study was to identify the role of KLF6 inhibition in estrogen receptor{alpha} (ERα)-elicited breast cancer development. Protein expression levels were examined by western blot analysis and immunoprecipitation was used to analyse interactions between proteins. An MTT assay was used to study cell proliferation. We found that KLF6 mediates cell growth in ERα-positive breast cancer cells through interaction with the c-Src protein. This interaction causes inactivation of the Erk and Akt proteins. These pathways are critical for the proliferation and survival of breast cancer cells. We also established that KLF6 could not mediate cell growth in ERα-negative cells. We conclude that KLF6 can modulate ERα-mediated cell growth in breast cancer cells. The unique role of KLF6 in mediating cell growth in breast cancer cells opens up the possibility of a new therapeutic strategy for treating breast cancer.  相似文献   

17.
18.
Estrogen receptor alpha (ER alpha) degradation is regulated by ubiquitination, but the signaling pathways that modulate ER alpha turnover are unknown. We found that extracellular signal-regulated kinase 7 (ERK7) preferentially enhances the destruction of ER alpha but not the related androgen receptor. Loss of ERK7 was correlated with breast cancer progression, and all ER alpha-positive breast tumors had decreased ERK7 expression compared to that found in normal breast tissue. In human breast cells, a dominant-negative ERK7 mutant decreased the rate of endogenous ER alpha degradation >4-fold in the presence of hormone and potentiated estrogen responsiveness. ERK7 targets the ER alpha ligand-binding domain for destruction by enhancing its ubiquitination. Thus, ERK7 is a novel regulator of estrogen responsiveness through its control of ER alpha turnover.  相似文献   

19.
20.
Loss of estrogen receptor α (ERα) expression and gain of TWIST (TWIST1) expression in breast tumors correlate with increased disease recurrence and metastasis and poor disease-free survival. However, the molecular and functional regulatory relationship between TWIST and ERα are unclear. In this study, we found TWIST was associated with a chromatin region in intron 7 of the human ESR1 gene coding for ERα. This association of TWIST efficiently recruited the nucleosome remodeling and deacetylase (NuRD) repressor complex to this region, which subsequently decreased histone H3K9 acetylation, increased histone H3K9 methylation and repressed ESR1 expression in breast cancer cells. In agreement with these molecular events, TWIST expression was inversely correlated with ERα expression in both breast cancer cell lines and human breast ductal carcinomas. Forced expression of TWIST in TWIST-negative and ERα-positive breast cancer cells such as T47D and MCF-7 cells reduced ERα expression, while knockdown of TWIST in TWIST-positive and ERα-negative breast cancer cells such as MDA-MB-435 and 4T1 cells increased ERα expression. Furthermore, inhibition of histone deacetylase (HDAC) activity including the one in NuRD complex significantly increased ERα expression in MDA-MB-435 and 4T1 cells. HDAC inhibition together with TWIST knockdown did not further increase ERα expression in 4T1 and MDA-MB-435 cells. These results demonstrate that TWIST/NuRD represses ERα expression in breast cancer cells. Therefore, TWIST may serve as a potential molecular target for converting ERα-negative breast cancers to ERα-positive breast cancers, allowing these cancers to restore their sensitivity to endocrine therapy with selective ERα antagonists such as tamoxifen and raloxifene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号