首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between bovine adrenal medullary dopamine-beta-monooxygenase and liposomes from chromaffin granule membrane lipids as a function of pH, lipid and salt concentration was studied by ultracentrifugation. Efficient adsorption of dopamine-beta-monooxygenase to liposomes occurs in the pH range 5.0-6.5 and at low ionic strength. The adsorption was not detected in the case of apoenzyme. The membrane dopamine-beta-monooxygenase forms a complex with liposomes more effective than soluble does. The data obtained lead to certain conclusions about the specificity of complex between the enzyme and liposomes.  相似文献   

2.
B H Kim  T L Rosenberry 《Biochemistry》1985,24(14):3586-3592
A small hydrophobic domain in isolated human erythrocyte acetylcholinesterase is responsible for the interaction of this enzyme with detergent micelles and the aggregation of the enzyme on removal of detergent. Papain has been shown to cleave this hydrophobic domain and to generate a fully active hydrophilic enzyme that shows no tendency to interact with detergents or to aggregate [Dutta-Choudhury, T.A., & Rosenberry, T.L. (1984) J. Biol. Chem. 259, 5653-5660]. We report here that the intact enzyme could be reconstituted into phospholipid liposomes while the papain-disaggregated enzyme showed no capacity for reconstitution. More than 80% of the enzyme reconstituted into small liposomes could be released by papain digestion as the hydrophilic form. Papain was less effective in releasing the enzyme from large liposomes that were probably multilamellar. In a novel application of affinity chromatography on acridinium resin, enzyme reconstituted into small liposomes in the presence of excess phospholipid was purified to a level of 1 enzyme molecule per 4000 phospholipid molecules, a ratio expected if each enzyme molecule was associated with a small, unilamellar liposome. Subunits in the hydrophilic enzyme form released from reconstituted liposomes by papain digestion showed a mass decrease of about 2 kilodaltons relative to the intact subunits according to acrylamide gel electrophoresis in sodium dodecyl sulfate, a difference similar to that observed previously following papain digestion of the soluble enzyme aggregates. The data were consistent with the hypothesis that the same hydrophobic domain in the enzyme is responsible for the interaction of the enzyme with detergent micelles, the aggregation of the enzyme in the absence of detergent, and the incorporation of the enzyme into reconstituted phospholipid membranes.  相似文献   

3.
The interaction of acidic copper-containing protein from the membranes of chromaffin granules has been investigated with cytochrome b-561 and dopamine-beta-monooxygenase from the same source. By the use of spectral and polarographic measurements it was demonstrated that the acidic copper-containing protein acts as an electron acceptor for cytochrome b-561 and as electron donor in the reactions, catalyzed by dopamine-beta-monooxygenase. According to the data obtained the possible function of the acidic copper-containing protein in vivo on the area of electron transfer chain between cytochrome b-561 and dopamine-beta-monooxygenase are discussed. The activation or inhibition of the electron transfer reactions by a variety of phospholipids, analogs of membrane lipids of chromaffin granules has been established. The experiments were performed in a model systems by the use of highly purified preparations of proteins and bilamellar liposomes and micelles, prepared from the corresponding phospholipids.  相似文献   

4.
The action of two lysophospholipases purified from beef liver on lysophosphatidylcholine in microsomal membranes has been studied. Enzyme I, which has been shown to be localized in the soluble fraction of the beef liver cell, has a higher specific activity on microsomal lysophosphatidylcholine than Enzyme II, which originates from the microsomal cell fraction. This trend is also observed with phosphatidylcholine liposomes and single bilayer vesicles in which lysophosphatidylcholine has been incorporated. At low mol fractions of lysophosphatidylcholine in liposomes, the maximum enzymatic rate is proportional to this mol fraction. Similar results are obtained with mixed micelles of lysophosphatidylcholine and Triton X-100. The results are explained in terms of a model in which the two-dimensional substrate density in the membrane surface controls the rate of enzyme action.  相似文献   

5.
Properties of the membrane and soluble forms of somatic angiotensin-converting enzyme (ACE) were studied in the system of hydrated reversed micelles of aerosol OT (AOT) in octane. The membrane enzyme with a hydrophobic peptide anchor was more sensitive to anions and to changes in pH and composition of the medium than the soluble enzyme without anchor. The activity of both forms of the enzyme in the reversed micelles significantly depended on the molarity of the buffer added to the medium (Mes-Tris-buffer, 50 mM NaCl). The maximum activity of the soluble ACE was recorded at buffer concentration of 20-50 mM, whereas the membrane enzyme was most active at 2-10 mM buffer. At buffer concentrations above 20 mM, the rate of hydrolysis of the substrate furylacryloyl-L-phenylalanyl-glycylglycine by both ACE forms was maximal at pH 7.5 both in the reversed micelles and in aqueous solutions. However, at lower concentrations of the buffer (2-10 mM), the membrane enzyme had activity optimum at pH 5.5. Therefore, it is suggested that two conformers of the membrane ACE with differing pH optima for activity and limiting values of catalytic constants should exist in the reversed micelle system with various medium compositions. The data suggest that the activity of the membrane-bound somatic ACE can be regulated by changes in the microenvironment.  相似文献   

6.
The effects of liposomes prepared from the E. coli lipids on the activity of soluble alkaline phosphatase and on the complementation reaction between its subunits were studied. It was shown that the liposomes nonspecifically catalyze the dimerization of the enzyme subunits without changing the dimer activity. The effects of phospholipases A2 and C on the activity of membrane-bound alkaline phosphatase were studied. An interrelationship was found between the level of hydrolysis of membrane phosphatidyl glycerol (PG) by these enzymes and the changes in the activity of membrane-bound alkaline phosphatase. It was also shown that PG is less accessible to the effects of phospholipases in the cells with derepressed biosynthesis of alkaline phosphatase. It is assumed that the membrane PG interacts with the membrane-bound alkaline phosphatase during its translocation into the periplasm.  相似文献   

7.
Form A of the beta-D-galactoside alpha 2----3 sialyltransferase from porcine submaxillary glands was incorporated into liposomes. Incorporation was achieved by gel filtration of the enzyme in the presence of octylglucoside-phospholipid micelles. As detergent was removed during gel filtration, liposomes (average diameter, 370 A) with bound enzyme were formed and emerged unretarded from the column. The recovery of enzyme activity in the liposomes was about 40% of the initial activity starting with as little as 9 micrograms of transferase. Chromatography on Sepharose CL6B and sucrose density gradient centrifugation confirmed the association of enzyme with liposomes. In contrast to Form A, Form B of the sialyltransferase, which lacks the proposed lipid-binding domain of Form A, cannot be incorporated into liposomes. Form A of the transferase was also incorporated into liposomes composed of phosphatidylcholine, cholesterol, and a mixture of phospholipids from the membranes of the Golgi apparatus from porcine submaxillary glands. Although the transferase was distributed about equally on the internal and external surface of the phosphatidylcholine liposomes, most of the transferase was on the external surface in liposomes containing cholesterol (72%) or in liposomes containing Golgi apparatus phospholipids (88%). The enzyme bound to phosphatidylcholine liposomes was shown by kinetic analysis to have the same activity as that found in the presence of activity-stimulating detergents such as Triton X-100. Enzyme incorporated into cholesterol-containing liposomes had the same activity. In contrast, enzyme bound to liposomes formed from the Golgi apparatus mixed phospholipids had a lower activity, but one similar to that of the transferase in Golgi apparatus membranes. These studies suggest that the composition of a biological membrane may well influence the orientation of the transferase in the membrane as well as modulate its enzymic activity.  相似文献   

8.
Since liver microsomal cytochrome b5 spontaneously associates with liposomes and membranes by means of its C-terminal hydrophobic domain (HP), chimeric proteins containing HP prepared by genetic fusion might also spontaneously associate with liposomes or cellular membranes. Synthetic DNA corresponding to the hydrophobic domain of cytochrome b5 was enzymatically fused in-frame to cloned DNA corresponding to the C-terminus of the Escherichia coli enzyme, beta-galactosidase. This protein, LacZ:HP, synthesized in E. coli and purified from a crude E. coli membrane extract, was shown to spontaneously associated with liposomes, as does cytochrome b5. Association is rapid and stable in the presence of salt and high pH and the fusion protein behaves as an integral membrane protein. LacZ:HP can be readily and extensively purified from crude extracts by association with liposomes and this procedure may provide a convenient purification scheme for proteins not otherwise readily purified, for example polypeptides from cloned gene fragments to be used for antibody production. These hybrid proteins may represent a new potentially useful class of polypeptides capable of hydrophobic interactions with membranes.  相似文献   

9.
Reaction characteristics of a membrane-bound lipoprotein lipase acting on a hydrophobic substrate were investigated in aggregated structures—lipid bilayers of liposomes and mixed micelles of Triton X-100. The enzyme activity was enhanced with increases in Triton X-100 and phospholipid concentrations in micellar and liposomal structures. This higher activity was found to be due to both the solubilization state of the hydrophobic substrate and the hydrophobic interactions of the enzyme with either phospholipid or Triton X-100 molecules as a result of its incorporation into the aggregated systems. The enzyme reconstituted into lipid bilayers of liposomes prepared from 15 mM DMPC in the presence of 0.05% Triton X-100 showed a further 1.5-fold higher activity in comparison with the activity without reconstitution in micelles of 1.0% Triton X-100. These results indicate the necessity of the bilayer structure to retain the membrane-bound enzyme in an active conformation.  相似文献   

10.
A peculiar characteristic of highly concentrated cytosolic recombinant human glyoxalase II (GII) solutions is to undergo partial precipitation. Previous work indicated that anionic phospholipids (PLs) exert a noncompetitive inhibition on the enzymatic activity of the soluble enzyme. In this study, FTIR spectroscopy was used to analyze the structural properties and the thermal stability of the soluble protein in the absence and in the presence of liposomes made of different phospholipids (PLs). The structural analysis was performed on the precipitate as well. The interaction of acidic PLs with GII lowered the thermal stability of the enzyme and inhibited protein intermolecular interactions (aggregation) brought about by thermal denaturation. Infrared data indicated that ionic and hydrophobic interactions occur between GII and acidic PLs causing small changes in the secondary structure of the enzyme. No interactions of the protein with egg phosphatidylcholine liposomes were detected. The results are consistent with the destabilization of the protein tertiary structure, and indicate that GII possesses hydrophobic part(s) that interact with the acyl chains of PLs. Data on precipitated GII did not show remarkable modification of secondary structure, suggesting that hydrophobic stretches of the enzyme may also be involved in the protein-protein association (precipitation) at high GII concentration. The alterations in the GII structure and the noncompetitive inhibition exerted by acidic PLs are strictly related.  相似文献   

11.
Fusion and changes in permeability of artificial phospholipid vesicles (liposomes) caused by the influence of α-latrotoxin-like protein (L protein) from the gray matter of the bovine brain were studied using a hydrophobic fluorescent probe, R18. It was shown that L protein stimulates fusion of negatively charged liposomes. This effect becomes stronger in acidified media. The influence of L protein on the permeability of phosphatidylcholine liposome membrane is also a pH-dependent process.  相似文献   

12.
Interaction of lauryl maltoside (LM) surfactant with bovine heart cytochrome c oxidase (CcO) has been studied by NMR techniques. Detailed 2-D (1)H and (13)C NMR techniques were used to assign the NMR signals of the surfactant nuclei. Paramagnetic dipolar shift of the surfactant (13)C NMR signals were used to identify the atoms close to the enzyme. The diamagnetic carbon monoxide complex of CcO did not cause any shift in the surfactant NMR spectra suggesting that the paramagnetic centres of the native CcO cause the shifts by dipolar interactions. The results showed that the polar head groups of the surfactant comprised of two maltoside rings are more affected, while the hydrophobic tail groups did not show any significant change on binding of the surfactant to the enzyme. This indicated that surfactant head groups possibly bind to the enzyme surface and the hydrophobic tail of the surfactant forms micelles and remains away from the enzyme. Based on the results, we propose that the membrane bound enzyme is possibly stabilised in aqueous solution by association with the micelles of the neutral surfactant so that the polar heads of the micelles bind to the polar surface of the enzyme. These micelles might form a 'belt like' structure around the enzyme helping it to remain monodispersed in the active form.  相似文献   

13.
Weller K  Lauber S  Lerch M  Renaud A  Merkle HP  Zerbe O 《Biochemistry》2005,44(48):15799-15811
Pep-1 is a tryptophane-rich cell-penetrating peptide (CPP) that has been previously proposed to bind protein cargoes by hydrophobic assembly and translocate them across cellular membranes. To date, however, the molecular mechanisms responsible for cargo binding and translocation have not been clearly identified. This study was conducted to gain insight into the interaction between Pep-1 with its cargo and the biological membrane to identify the thereby involved structural elements crucial for translocation. We studied three peptides differing in their N- and C-termini: (i) Pep-1, carrying an acetylated N-terminus and a C-terminal cysteamine elongation, (ii) AcPepWAmide, with an acetylated N-terminus and an amidated C-terminus, and (iii) PepW, with two free termini. Thioredoxin (TRX) and beta-galactosidase were used as protein cargoes. To study CPP-membrane interactions, we performed biophysical as well as biological assays. To mimic biological membranes, we used phospholipid liposomes in a dye leakage assay and surfactant micelles for high-resolution NMR studies. In addition, membrane integrity, cell viability, and translocation efficiency were analyzed in HeLa cells. An alpha-helical structure was found for all peptides in the hydrophobic N-terminal region encompassing residues 4-13, whereas the hydrophilic region remained unstructured in the presence of micelles. Our results show that the investigated peptides interacted with the micelles as well as with the protein cargo via their tryptophan-rich domain. All peptides displayed an orientation parallel to the micelle surface. The C-terminal cysteamine group formed an additional membrane anchor, leading to more efficient translocation properties in cells. No membrane permeabilization was observed, and our data were largely compatible with an endocytic pathway for cellular uptake.  相似文献   

14.
The hydrophilic protein-enzyme, α-chymotrypsin, can be bound to the liposomal membrane after the preliminary increase in hydrophobicity induced by acylation of protein amino groups with palmitic chloroanhydride.The efficacy of binding depends on the degree of modification. The bound enzyme almost completely preserves its catalytic properties and the ability to interact with a high molecular weight inhibitor. Binding can be performed during both the process of liposome formation and the incubation of a modified enzyme with preformed liposomes. According to ESR and fluorescence spectroscopy, the hydrophobic tail of the modified enzyme is incorporated into the membrane and the protein globule is located on the surface of the membrane. Protein incorporation causes an increase in the amorphous nature of the membrane, and the bound protein is not as mobile as the free protein. The approach discussed can be useful in binding soluble hydrophilic proteins to artificial membranes.  相似文献   

15.
Enkephalin degradation in brain has been shown to be catalyzed, in part, by a membrane-bound puromycin-sensitive aminopeptidase. A cytosolic puromycin-sensitive aminopeptidase with similar properties also has been described. The relationship between the soluble and membrane forms of the rat brain enzyme is investigated here. Both of these aminopeptidase forms were purified from rat brain and an antiserum was generated to the soluble enzyme. Each of the aminopeptidases is composed of a single polypeptide of molecular mass 100 kilodaltons as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size-exclusion chromatography. The antisoluble aminopeptidase antiserum reacts with both enzyme forms on immunoblots and inhibits both with nearly identical inhibition curves. The isoelectric points (pI = 5.0) of both forms were shown to be identical. N-terminal sequencing yielded a common sequence (P-E-K-R-P-F-E-R-L-P-T-E-V-S-P-I-N-Y) for both enzyme forms, and peptide mapping yielded 26 peptides that also appeared identical between the two enzyme forms. Studies on the nature of the association of the membrane enzyme form with the cell membrane suggest that this enzyme form does not represent the soluble form trapped during the enzyme preparation. It is suggested that the membrane form of the puromycin-sensitive aminopeptidase is identical to the soluble enzyme and that it associates with the membrane by interactions with other integral membrane proteins.  相似文献   

16.
In this study, vibrational circular dichroism (VCD) spectroscopy was employed for the first time to study the bilirubin (BR) interaction with model membranes and models for membrane proteins. An enantioselective interaction of BR with zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and sphingomyelin (SPM) liposomes was observed by VCD and electronic circular dichroism (ECD) complemented by absorption and fluorescence spectroscopy. The M-form of BR was preferentially recognized in the BR/DMPC system at concentration above 1 × 10− 4 M, for lower concentrations the P-form of BR was recognized by the DMPC liposomes. The VCD spectra also showed that the SPM liposomes, which represent the main component of nerve cell membrane, were significantly more disturbed by the presence of BR than the DMPC liposomes—a stable association with a strong VCD signal was observed providing the explanations for the supposed BR neurotoxicity. The effect of time and pH on the BR/DMPC or SPM liposome systems was shown to be essential while the effect of temperature in the range of 15–70 °C was negligible demonstrating the surprisingly high temperature stability of BR when interacting with the studied membranes. The influence of a membrane protein was tested on a model consisting of poly-l-arginine (PLAG) bound in the α-helical form to the surface of 1,2-dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol) liposomes and sodium dodecyl sulfate micelles. VCD and also ECD spectra showed that a variety of BR diastereoisomers interacted with PLAG in such systems. In a system of PLAG with micelles composed of sodium dodecyl sulfate, the M-form of bound BR was observed.  相似文献   

17.
The aim of the study was to determine changes incurred by polyphenolic compounds from selected fruits in the lipid phase of the erythrocyte membrane, in liposomes formed of erythrocyte lipids and phosphatidylcholine liposomes. In particular, the effect of extracts from apple, chokeberry, and strawberry on the red blood cell morphology, on packing order in the lipid hydrophilic phase, on fluidity of the hydrophobic phase, as well as on the temperature of phase transition in DPPC liposomes was studied. In the erythrocyte population, the proportions of echinocytes increased due to incorporation of polyphenolic compounds. Fluorimetry with a laurdan probe indicated increased packing density in the hydrophilic phase of the membrane in presence of polyphenolic extracts, the highest effect being observed for the apple extract. Using the fluorescence probes DPH and TMA-DPH, no effect was noted inside the hydrophobic phase of the membrane, as the lipid bilayer fluidity was not modified. The polyphenolic extracts slightly lowered the phase transition temperature of phosphatidylcholine liposomes. The studies have shown that the phenolic compounds contained in the extracts incorporate into the outer region of the erythrocyte membrane, affecting its shape and lipid packing order, which is reflected in the increasing number of echinocytes. The compounds also penetrate the outer part of the external lipid layer of liposomes formed of natural and DPPC lipids, changing its packing order.  相似文献   

18.
It was shown that soluble cytoplasmic proteins of rabbit cardiac muscle were able to penetrate into phospholipid bilayer during preincubation with liposomes. The incorporation of cytoplasmic proteins into the liposomic membrane induced the sodium permeability that was sensitive to neurotoxins (veratridine and tetrodotoxin). This effect was partly eliminated by addition of tetrodotoxin to the external medium and completely eliminated in the presence of tetrodotoxin on the both sides of the liposomic membrane. It was found also that some of the proteins incorporated into the liposomes become resistant to pronase digestion when the enzyme is added to external medium. At the same time pronase included in the internal volume of the proteoliposomes was able to digest partly proteoliposomic proteins. All these data support the ideas of the integral incorporation of soluble cytoplasmic proteins into the liposomic membrane and to the existence of cytoplasmic precursor of voltage-dependent sodium channel.  相似文献   

19.
Interaction with phospholipids of a membrane thiol peptidase [referred to as trigger peptidase (TPase), T. Miyakawa et al. (1987) J. Bacteriol. 169, 1626-1631] that plays a key role in the signalling of a lipopeptidyl mating pheromone at the cell surface of pheromone-target cell (mating type a) of Rhodosporidium toruloides was studied. The activity of highly purified TPase which requires phospholipids was restored by reconstitution of the enzyme into liposomes prepared with phospholipids extracted from the yeast cell. The presence of Ca2+ was essential for both the reconstitution process and the catalytic reaction of TPase. Triton X-100 mixed micelles containing phospholipids also activated the enzyme. The specificity and stoichiometry of activation by phospholipids was investigated by determination of TPase in the presence of mixed micelles that contained defined classes and numbers of phospholipid molecules in the Triton X-100 micelles. It was demonstrated that TPase is activated by mixed micelles containing 2-6 molecules of phosphatidylserine or phosphatidylethanolamine. Other phospholipids of the membranes of this organism, such as phosphatidylcholine and phosphatidylglycerol, had little effect on activation, indicating that the amino group of the phospholipids may be required for the function of TPase. Direct evidence for the interaction of TPase and Triton X-100/phosphatidylserine mixed micelles was obtained by molecular sieve chromatography on Sephacryl S-200. These data established that a phospholipid bilayer is not a requirement for TPase activation, and that the purified enzyme can be activated by a relatively small number of phospholipid molecules of specific classes.  相似文献   

20.
Polar residues in transmembrane alpha-helices may strongly influence the folding or association of integral membrane proteins. To test whether a motif that promotes helix association in a soluble protein could do the same within a membrane, we designed a model transmembrane helix based on the GCN4 leucine zipper. We found in both detergent micelles and biological membranes that helix association is driven strongly by asparagine, independent of the rest of the hydrophobic leucine and/or valine sequence. Hydrogen bonding between membrane helices gives stronger associations than the packing of surfaces in glycophorin A helices, creating an opportunity to stabilize structures, but also implying a danger that non-specific interactions might occur. Thus, membrane proteins may fold to avoid exposure of strongly hydrogen bonding groups at their lipid exposed surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号