首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Schwab C  Vogel R  Gänzle MG 《Cryobiology》2007,55(2):108-114
Freeze-drying is a process commonly used in starter culture preparation. To improve the survival rate of bacteria during the process, cryoprotectives are usually added before freezing. This study investigated the influence of the addition of sucrose, fructo-oligosaccharides (FOS), inulin and skim milk on the viability and membrane integrity of Lactobacillus reuteri TMW1.106 during freezing, freeze-drying and storage. The effect of drying adjuncts on survival was correlated to their interaction with bacterial membrane by determination of the parameters membrane fluidity and membrane lateral pressure. Sucrose, FOS and skim milk significantly enhanced survival of exponential-phase cells of L. reuteri during freeze-drying. Cellular viability during storage of exponential-phase cells remained highest for cells dried in the presence of skim milk and inulin. Membranes of these cells were completely permeabilized after freeze-drying. The application of FOS significantly improved survival of stationary phase cells of L. reuteri TMW1.106 after freeze-drying and storage. This increased viability of L. reuteri TMW1.106 in the presence of FOS correlated to improved membrane integrity. Fructo-oligosaccharides and fructans, but not gluco-oligosaccharides interacted with membrane vesicles prepared from L. reuteri TMW1.106 as indicated by increased membrane lateral pressure in the presence of FOS and fructans. Increased membrane integrity of stationary phase L. reuteri TMW1.106 was attributed to direct interactions between FOS and the membrane which leads to increased membrane fluidity and thus improved stability of the membrane during and rehydration.  相似文献   

3.
Lactobacillus reuteri strain 121 produces a unique, highly branched, soluble glucan in which the majority of the linkages are of the alpha-(1-->4) glucosidic type. The glucan also contains alpha-(1-->6)-linked glucosyl units and 4,6-disubstituted alpha-glucosyl units at the branching points. Using degenerate primers, based on the amino acid sequences of conserved regions from known glucosyltransferase (gtf) genes from lactic acid bacteria, the L. reuteri strain 121 glucosyltransferase gene (gtfA) was isolated. The gtfA open reading frame (ORF) was 5,343 bp, and it encodes a protein of 1,781 amino acids with a deduced M(r) of 198,637. The deduced amino acid sequence of GTFA revealed clear similarities with other glucosyltransferases. GTFA has a relatively large variable N-terminal domain (702 amino acids) with five unique repeats and a relatively short C-terminal domain (267 amino acids). The gtfA gene was expressed in Escherichia coli, yielding an active GTFA enzyme. With respect to binding type and size distribution, the recombinant GTFA enzyme and the L. reuteri strain 121 culture supernatants synthesized identical glucan polymers. Furthermore, the deduced amino acid sequence of the gtfA ORF and the N-terminal amino acid sequence of the glucosyltransferase isolated from culture supernatants of L. reuteri strain 121 were the same. GTFA is thus responsible for the synthesis of the unique glucan polymer in L. reuteri strain 121. This is the first report on the molecular characterization of a glucosyltransferase from a Lactobacillus strain.  相似文献   

4.
Chromosomal DNA from Streptococcus mutans strain UAB90 (serotype c) was cloned into Escherichia coli K-12. The clone bank was screened for any sucrose-hydrolyzing activity by selection for growth on raffinose in the presence of isopropyl-beta-D-thiogalactoside. A clone expressing an S. mutans glucosyltransferase was identified. The S. mutans DNA encoding this enzyme is a 1.73-kilobase fragment cloned into the HindIII site of plasmid pBR322. We designated the gene gtfA. The plasmid-encoded gtfA enzyme, a 55,000-molecular-weight protein, is synthesized at 40% the level of pBR322-encoded beta-lactamase in E. coli minicells. Using sucrose as substrate, the gtfA enzyme catalyzes the formation of fructose and a glucan with an apparent molecular weight of 1,500. We detected the gtfA protein in S. mutans cells with antibody raised against the cloned gtfA enzyme. Immunologically identical gtfA protein appears to be present in S. mutans cells of serotypes c, e, and f, and a cross-reacting protein was made by serotype b cells. Proteins from serotype a, g, and d S. mutans cells did not react with antibody to gtfA enzyme. The gtfA activity was present in the periplasmic space of E. coli clones, since 15% of the total gtfA activity was released by cold osmotic shock and the clones were able to grow on sucrose as sole carbon source.  相似文献   

5.
Exopolysaccharides (EPS) produced in situ by sourdough lactobacilli affect rheological properties of dough as well as bread quality and may serve as prebiotics. The aim of this study was to characterize EPS-formation by Lactobacillus sanfranciscensis TMW 1.392 at the molecular level. A levansucrase gene from L. sanfranciscensis TMW 1.392 encompassing 2,300 bp was sequenced. This levansucrase is predicted to be a cell-wall associated protein of 879 amino acids with a relative molecular weight (MR) of 90,000. The levansucrase gene was heterologously expressed in Escherichia coli and purified to homogeneity. The recombinant enzyme exhibited transferase and hydrolase activities and produced glucose, fructose, 1-kestose and levan from sucrose; truncation of the N-terminal domain did not affect catalytic activity. Kestose formation was enhanced relative to fructose and levan formation by low temperature or high sucrose levels. During growth in wheat doughs, strain TMW 1.392 utilized sucrose to form fructose, 1-kestose, and fructan, whereas a levansucrase deletion mutant, L. sanfranciscensis TMW 1392lev, lost the ability to hydrolyze sucrose, and did not produce fructan or 1-kestose. These results indicate that, in L. sanfranciscensis TMW 1.392, sucrose metabolism and formation of fructan and 1-kestose is dependent on the activity of a single enzyme, levansucrase.  相似文献   

6.
7.
Lactococcus lactis is a widely used food bacterium mainly known for its fermentation metabolism. An important, and for long time overlooked, trait of this species is its ability to perform respiratory metabolism in the presence of heme and under aerobic conditions. There is no evidence however for the presence of an alternative respiration pathway and AOX activity. In this study, a cDNA fragment encoding the mitochondrial alternative oxidase, the enzyme responsible for alternative respiration, from a citric acid producing Aspergillus niger strain was cloned and expressed in L. lactis as a host strain. Expression of aox1 conferred on this organism cyanide-resistant and salicylhydroxamate-sensitive growth. Bioreactor cultures under fully aerobic conditions of the transformed L. lactis showed that the alternative respiratory pathway operates and improves significantly the microorganism's response to oxidizing stress conditions as it enhances biomass production, suppresses lactate formation, and leads to accumulation of large amounts of nisin.  相似文献   

8.
Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584   总被引:1,自引:0,他引:1  
Lactobacillus reuteri LTH2584 exhibits antimicrobial activity that can be attributed neither to bacteriocins nor to the production of reuterin or organic acids. We have purified the active compound, named reutericyclin, to homogeneity and characterized its antimicrobial activity. Reutericyclin exhibited a broad inhibitory spectrum including Lactobacillus spp., Bacillus subtilis, B. cereus, Enterococcus faecalis, Staphylococcus aureus, and Listeria innocua. It did not affect the growth of gram-negative bacteria; however, the growth of lipopolysaccharide mutant strains of Escherichia coli was inhibited. Reutericyclin exhibited a bactericidal mode of action against Lactobacillus sanfranciscensis, Staphylococcus aureus, and B. subtilis and triggered the lysis of cells of L. sanfranciscensis in a dose-dependent manner. Germination of spores of B. subtilis was inhibited, but the spores remained unaffected under conditions that do not permit germination. The fatty acid supply of the growth media had a strong effect on reutericyclin production and its distribution between producer cells and the culture supernatant. Reutericyclin was purified from cell extracts and culture supernatant of L. reuteri LTH2584 cultures grown in mMRS by solvent extraction, gel filtration, RP-C(8) chromatography, and anion-exchange chromatography, followed by rechromatography by reversed-phase high-pressure liquid chromatography. Reutericyclin was characterized as a negatively charged, highly hydrophobic molecule with a molecular mass of 349 Da. Structural characterization (A. H?ltzel, M. G. G?nzle, G. J. Nicholson, W. P. Hammes, and G. Jung, Angew. Chem. Int. Ed. 39:2766-2768, 2000) revealed that reutericyclin is a novel tetramic acid derivative. The inhibitory activity of culture supernatant of L. reuteri LTH2584 corresponded to that of purified as well as synthetic reutericyclin.  相似文献   

9.
Novel therapeutic approaches are needed to combat the rapid increase in HIV sexual transmission in women. The probiotic organism Lactobacillus reuteri RC-14 which safely colonizes the human vagina and prevents microbial infections, has been genetically modified to produce anti-HIV proteins which were capable of blocking the three main steps of HIV entry into human peripheral blood mononuclear cells. The HIV entry or fusion inhibitors were fused to the native expression and secretion signals of BspA, Mlp or Sep in L. reuteri RC-14 and the expression cassettes were stably inserted into the chromosome. L. reuteri RC-14 expressed the HIV inhibitors in cell wall-associated and secreted forms. L. reuteri RC-14 expressing CD4D1D2-antibody-like fusion proteins were able to bind single or dual tropic coreceptor-using HIV-1 primary isolates. This is the first study to show that a well-documented and proven human vaginal probiotic strain can express potent functional viral inhibitors, which may potentially lower the sexual transmission of HIV.  相似文献   

10.
Lactobacillus reuteri inhibits Staphylococcus aureus growth on Baird-Parker agar. This activity required the presence of tellurite and was not shared with other lactic acid bacteria or an L. reuteri mutant defective in cystine metabolism. Secreted products generated from L. reuteri cystine metabolism and thiols were shown to augment tellurite toxicity.  相似文献   

11.
目的研究罗伊乳杆菌对变形链球菌的拮抗作用,初步了解产生拮抗作用的原因。方法利用罗伊乳杆菌无菌上清液,应用双层平板打孔法测定其抑菌效果,再通过滤纸片抑菌法对罗伊乳杆菌发酵的酸乳制品与普通酸乳制品对变形链球菌的抑菌作用进行比较,用饱和硫酸铵沉淀法分析产生拮抗作用的原因。结果罗伊乳杆菌有显著抑菌活性(P〈0.05),仅罗伊乳杆菌的发酵乳样品对变性链球菌产生直径为6.3mm抑菌圈,80%饱和硫酸铵沉淀的细菌素抑菌活力最强,蛋白酶K处理后无明显抑菌圈。结论本研究证明了罗伊乳杆菌的代谢产物以及罗伊乳杆菌发酵的酸奶制品对致龋菌变形链球菌有着明显的拮抗作用。  相似文献   

12.
The effect was investigated of sucrose concentration on sucrose metabolism and on the formation of exopolysaccharide (EPS) by Lactobacillus sanfranciscensis LTH2590 in pH-controlled fermentations with sucrose concentrations ranging from 20 to 160 g liter(-1). The EPS production increased and the relative sucrose hydrolysis activity decreased by increasing the sucrose concentration in the medium. The carbon recovery decreased from 95% at a sucrose concentration of 30 g liter(-1) to 58% at a sucrose concentration of 160 g liter(-1) because of the production of an unknown metabolite by L. sanfranciscensis. This metabolite was characterized as a fructo-oligosaccharide. The oligosaccharide produced by L. sanfranciscensis was purified and characterized as a trisaccharide with a glucose/fructose ratio of 1:2. The comparison of the retention time of this oligosaccharide and that of pure oligosaccharide standards using two different chromatography methods revealed that the oligosaccharide produced by L. sanfranciscensis LTH2590 is 1-kestose. Kestose production increased concomitantly with the initial sucrose concentration in the medium.  相似文献   

13.
The effect of the glutathione reductase (GshR) activity of Lactobacillus sanfranciscensis DSM20451(T) on the thiol levels in fermented sourdoughs was determined, and the oxygen tolerance of the strain was also determined. The gshR gene coding for a putative GshR was sequenced and inactivated by single-crossover integration to yield strain L. sanfranciscensis DSM20451(T)DeltagshR. The gene disruption was verified by sequencing the truncated gshR and surrounding regions on the chromosome. The gshR activity of L. sanfranciscensis DSM20451(T)DeltagshR was strongly reduced compared to that of the wild-type strain, demonstrating that gshR indeed encodes an active GshR enzyme. The thiol levels in wheat doughs fermented with L. sanfranciscensis DSM20451 increased from 9 microM to 10.5 microM sulfhydryl/g of dough during a 24-h sourdough fermentation, but in sourdoughs fermented with L. sanfranciscensis DSM20451(T)DeltagshR and in chemically acidified doughs, the thiol levels decreased to 6.5 to 6.8 microM sulfhydryl/g of dough. Remarkably, the GshR-negative strains Lactobacillus pontis LTH2587 and Lactobacillus reuteri BR11 exerted effects on thiol levels in dough comparable to those of L. sanfranciscensis. In addition to the effect on thiol levels in sourdough, the loss of GshR activity in L. sanfranciscensis DSM20451(T)DeltagshR resulted in a loss of oxygen tolerance. The gshR mutant strain exhibited a strongly decreased aerobic growth rate on modified MRS medium compared to either the growth rate under anaerobic conditions or that of the wild-type strain, and aerobic growth was restored by the addition of cysteine. Moreover, the gshR mutant strain was more sensitive to the superoxide-generating agent paraquat.  相似文献   

14.
Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with beta-(2-->1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>10(7)) with beta-(2-->1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established.  相似文献   

15.
Culture supernatants of Lactobacillus reuteri ATCC 55730 repressed ler expression in Escherichia coli O157:H7 cells, but neither the strain's isogenic luxS mutant nor the L. reuteri 100-23C wild-type strain and its luxS mutant elicited a comparable effect. Furthermore, the epinephrine-mediated induction of ler expression was repressed by secreted substance(s) of L. reuteri ATCC 55730.  相似文献   

16.
17.
18.
以乙醇耐受力较强的酿酒酵母为受体菌,构建了能够分泌菊粉酶的基因工程菌并进行了菊芋粉的生料发酵。首先,以马克斯克鲁维酵母Kluyveromyces marxianus中的基因组DNA为模板,PCR扩增菊粉酶编码基因inu,分别使用菊粉酶自身启动子和酵母磷酸甘油激酶 (Phosphoglycerate kinase,pgk) 启动子,构建重组表达质粒HO/p-inu和HO/pgk-inu。经NotⅠ线性化后,采用电击法转化酿酒酵母工业菌株Saccharomyces cerevisiae 6525,分别得到含菊  相似文献   

19.
The effect was investigated of sucrose concentration on sucrose metabolism and on the formation of exopolysaccharide (EPS) by Lactobacillus sanfranciscensis LTH2590 in pH-controlled fermentations with sucrose concentrations ranging from 20 to 160 g liter−1. The EPS production increased and the relative sucrose hydrolysis activity decreased by increasing the sucrose concentration in the medium. The carbon recovery decreased from 95% at a sucrose concentration of 30 g liter−1 to 58% at a sucrose concentration of 160 g liter−1 because of the production of an unknown metabolite by L. sanfranciscensis. This metabolite was characterized as a fructo-oligosaccharide. The oligosaccharide produced by L. sanfranciscensis was purified and characterized as a trisaccharide with a glucose/fructose ratio of 1:2. The comparison of the retention time of this oligosaccharide and that of pure oligosaccharide standards using two different chromatography methods revealed that the oligosaccharide produced by L. sanfranciscensis LTH2590 is 1-kestose. Kestose production increased concomitantly with the initial sucrose concentration in the medium.  相似文献   

20.
Proton coupled transport of α-glucosides via Mal11 into Saccharomyces cerevisiae costs one ATP per imported molecule. Targeted mutation of all three acidic residues in the active site resulted in sugar uniport, but expression of these mutant transporters in yeast did not enable growth on sucrose. We then isolated six unique transporter variants of these mutants by directed evolution of yeast for growth on sucrose. In three variants, new acidic residues emerged near the active site that restored proton-coupled sucrose transport, whereas the other evolved transporters still catalysed sucrose uniport. The localization of mutations and transport properties of the mutants enabled us to propose a mechanistic model of proton-coupled sugar transport by Mal11. Cultivation of yeast strains expressing one of the sucrose uniporters in anaerobic, sucrose-limited chemostat cultures indicated an increase in the efficiency of sucrose dissimilation by 21% when additional changes in strain physiology were taken into account. We thus show that a combination of directed and evolutionary engineering results in more energy efficient sucrose transport, as a starting point to engineer yeast strains with increased yields for industrially relevant products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号