首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Nucleotide sequence of the yeast SUC2 gene for invertase.   总被引:42,自引:4,他引:38       下载免费PDF全文
The yeast SUC2 gene is a structural gene for both the secreted and intracellular forms of invertase. We have determined the nucleotide sequence of the coding region and the 5' and 3' flanking regions. The coding regions for the signal peptide-containing precursor to secreted invertase and for the intracellular invertase begin at different initiation codons within the SUC2 gene but share the same reading frame. The amino acid sequences predicted for the two forms of invertase from the nucleotide sequence are consistent with the properties of the purified enzymes. Potential sites for glycosylation of the secreted invertase are identified.  相似文献   

4.
5.
6.
7.
8.
Eukaryotic proteins initially synthesized with a C-terminal CAAX motif (C is Cys, A is aliphatic, and X can be one of several amino acids) undergo a series of modifications involving isoprenylation of the Cys residue, proteolysis of AAX, and alpha-carboxyl methyl esterification of the newly formed isoprenyl cysteine. We have previously demonstrated that STE14 encodes the enzyme which mediates carboxyl methylation of the Saccharomyces cerevisiae CAAX proteins a-factor, RAS1, and RAS2. Here we report the nucleotide sequence of STE14, which indicates that STE14 encodes a protein of 239 amino acids, predicted to contain multiple membrane-spanning segments. Mapping data indicate that STE14 resides on chromosome IV, tightly linked to ADE8. By analysis of ste14 null alleles, we demonstrated that MATa ste14 mutants are unable to mate but are viable and exhibit no apparent growth defects. Additional analysis of ste14 ras 1 and ste14 ras2 double mutants, which grow normally, reinforces our previous conclusion that RAS function is not significantly influenced by its methylation status. We examine a-factor biogenesis in a ste14 null mutant by metabolic labeling and immunoprecipitation and demonstrate that although proteolytic processing and membrane localization of a-factor are normal, the ste14 null mutant exhibits a profound block in a-factor export. This observation suggests that the methyl group is likely to be a critical recognition determinant for the a-factor transporter, STE6, thus providing insight into the substrate specificity of STE6 and also supporting the hypothesis that carboxyl methylation can have a dramatic impact on protein-protein interactions.  相似文献   

9.
10.
Structure of the yeast HOM3 gene which encodes aspartokinase   总被引:5,自引:0,他引:5  
The yeast HOM3 gene has been cloned molecularly by complementation of a HOM3 mutant. The gene is located about 8 kilobase pairs from HIS1 and is present as a single copy in the yeast genome. Mutations in HOM3 result in a requirement for threonine and methionine (or homoserine) for growth and a lack of detectable aspartokinase activity. The nucleotide sequence of HOM3 predicts an enzyme 414 amino acids long that shows homology to the three Escherichia coli aspartokinases, indicating that it is the structural gene for yeast aspartokinase. An approximately 1800-base pair mRNA is transcribed from the HOM3 gene, initiating at several start sites, 80 and 70 base pairs downstream, respectively, from two TATA boxes. Upstream of the TATA boxes is a single TGACTC sequence. This sequence has been shown to be essential for regulation of several genes that encode amino acid biosynthetic enzymes by the general control system. However, no increase in aspartokinase mRNA is observed under general control derepressing conditions.  相似文献   

11.
12.
Nucleotide sequence of the yeast regulatory gene GAL80   总被引:20,自引:1,他引:19       下载免费PDF全文
The GAL80 gene in Saccharomyces cerevisiae encodes a negative regulatory protein for the set of inducible genes involving metabolism of galactose and melibiose. We have determined the nucleotide sequence of GAL80 and its flanking regions and assigned the 5' end of its mRNA to the sequence. The deduced coding sequence for GAL80 protein contains 1305 nucleotides and the calculated molecular weight of the peptide chain is 48309. The 5' end of the GAL80 mRNA maps about 67 nucleotides upstream from the translation initiating ATG. We have also determined the nucleotide sequence of uninducible alleles GAL80S-0, GAL80S-1 and GAL80S-2, and found single base substitution in each of these mutant genes which would lead to alteration of amino acid in GAL80 protein.  相似文献   

13.
Regulation of tobacco acetolactate synthase gene expression.   总被引:4,自引:0,他引:4       下载免费PDF全文
S J Keeler  P Sanders  J K Smith    B J Mazur 《Plant physiology》1993,102(3):1009-1018
  相似文献   

14.
15.
16.
Nucleotide sequence of the gene encoding yeast C-8 sterol isomerase.   总被引:3,自引:0,他引:3  
B A Arthington  J Hoskins  P L Skatrud  M Bard 《Gene》1991,107(1):173-174
The ERG2 gene encoding the Saccharomyces cerevisiae C-8 sterol isomerase, an enzyme involved in plant, animal, and fungal sterol biosynthesis was sequenced. A large open reading frame comprising 222 amino acids was observed.  相似文献   

17.
W Xiao  G H Rank 《Génome》1988,30(6):984-986
The yeast ILV2 gene encodes acetolactate synthase, the first enzyme in the biosynthesis of isoleucine and valine. Its multiple regulation has precluded the clear demonstration of whether ILV2 is under general amino acid control. Nonderepressible gcn4 strains were used as recipients for transformation with a YCp plasmid carrying GCN4. Parental gcn4 cells and their isogenic GCN4 transformants were evaluated for ALS derepression following induced amino acid starvation. GCN4 cells showed 1.5- to 1.7-fold derepression but no derepression was observed in isogenic control gcn4 strains. A similar depression of ILV2 mRNA was also observed. Genetic evidence for general amino acid control was the gcn4 suppression of high level resistance to sulfometuron methyl by the SMRI-410 allele of ILV2.  相似文献   

18.
19.
Nucleotide sequence of the rat protamine 2 gene.   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

20.
The lpxB gene of Escherichia coli, believed to be the structural gene for lipid A disaccharide synthase, is located in the min 4 region of the chromosome. It is adjacent to and clockwise of the lpxA gene, which is thought to encode UDP-N-acetylglucosamine acyltransferase. Preliminary evidence suggests that lpxA and lpxB are cotranscribed in the clockwise direction and thus constitute part of a previously unknown operon (D. N. Crowell, M. S. Anderson, and C. R. H. Raetz, J. Bacteriol. 168:152-159, 1986). We now report the complete nucleotide sequence of a 1,522-base-pair PvuII-HincII fragment known to carry the lpxB gene. This sequence contained an open reading frame of 1,149 base pairs, in agreement with the predicted size, location, and orientation of lpxB. There was a second open reading frame 5' to, and in the same orientation as, lpxB that corresponded to lpxA. The ochre codon terminating lpxA was shown to overlap the methionine codon identified as the initiation codon for lpxB, suggesting that these genes are cotranscribed and translationally coupled. A third open reading frame was also shown to begin at the 3' end of lpxB with analogous overlap between the opal codon terminating lpxB and the methionine codon that putatively initiates translation downstream of lpxB in the clockwise direction. These results argue that at least three genes constitute a translationally coupled operon in the min 4 region of the E. coli chromosome. The accompanying paper by Tomasiewicz and McHenry (J. Bacteriol. 169:5735-5744, 1987) presents 4.35 kilobases of DNA sequence, beginning at the 3' end of lpxB, and argues that dnaE and several other open reading frames may be members of this operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号