首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Singlet oxygen ((1)O(2)) is a product of several biological processes and can be generated in photodynamic therapy, through a photosensitization type II mechanism. (1)O(2) is able to interact with lipids, proteins and DNA, leading to cell killing and mutagenesis, and can be directly involved with degenerative processes such as cancer and aging. In this work, we analyzed the cytotoxicity and mutagenesis induced after direct treatment of wild type and the DNA repair fpg and/or mutY deficient Escherichia coli strains with disodium 3,3'-(1,4-naphthylidene) diproprionate endoperoxide (NDPO(2)), which releases (1)O(2) by thermodissociation. The treatment induced cell killing and mutagenesis in all strains, but the mutY strain showed to be more sensitive. These results indicate that even (1)O(2) generated outside bacterial cells may lead to DNA damage that could be repaired by pathways that employ MutY protein. As (1)O(2) is highly reactive, its interaction with cell membranes may generate secondary products that could react with DNA, leading to mutagenic lesions.  相似文献   

2.
The role of a cytosolic phospholipase A(2)-alpha (cPLA(2)-alpha) in neutrophil arachidonic acid release, platelet-activating factor (PAF) biosynthesis, NADPH oxidase activation, and bacterial killing in vitro, and the innate immune response to bacterial infection in vivo was examined. cPLA(2)-alpha activity was blocked with the specific cPLA(2)-alpha inhibitor, Pyrrolidine-1 (human cells), or by cPLA(2) -alpha gene disruption (mice). cPLA(2)-alpha inhibition or gene disruption led to complete suppression of neutrophil arachidonate release and PAF biosynthesis but had no effect on neutrophil NADPH oxidase activation, FcgammaII/III or CD11b surface expression, primary or secondary granule secretion, or phagocytosis of Escherichia coli in vitro. In contrast, cPLA(2)-alpha inhibition or gene disruption diminished neutrophil-mediated E. coli killing in vitro, which was partially rescued by exogenous arachidonic acid or PAF but not leukotriene B(4). Following intratracheal inoculation with live E. coli in vivo, pulmonary PAF biosynthesis, inflammatory cell infiltration, and clearance of E. coli were attenuated in cPLA(2)-alpha(-/-) mice compared with wild type littermates. These studies identify a novel role for cPLA(2)-alpha in the regulation of neutrophil-mediated bacterial killing and the innate immune response to bacterial infection.  相似文献   

3.
Zhao  Shuqi  Xi  Dalin  Cai  Junwei  Chen  Wenting  Xiang  Jing  Peng  Na  Wang  Juan  Jiang  Yong  Mei  Zhuzhong  Liu  Jinghua 《中国科学:生命科学英文版》2020,63(3):401-409
Bacterial cell wall component-induced tolerance represents an important protective mechanism during microbial infection.Tolerance induced by the TLR2 agonist bacterial lipoprotein (BLP) has been shown to attenuate the inflammatory response,and simultaneously to augment antimicrobial function,thereby conferring its protection against microbial sepsis.However,the underlying mechanism by which BLP tolerance augments bactericidal activity has not been fully elucidated.Here,we reported that the induction of BLP tolerance in murine macrophages upregulated the expression of Rab20,a membrane trafficking regulator,at both the mRNA and protein levels upon bacterial infection.The knockdown of Rab20 with Rab20 specific siRNA(siRab20) did not affect the phagocytosis of Escherichia coli (E.coli),but substantially impaired the intracellular killing of the ingested E.coli in BLP-tolerized macrophages.Furthermore,Rab20 was associated with GFP-E.coli containing phagosomes,and BLP tolerization resulted in the enhanced maturation of GFP-E.coli-containing phagosomes associated with Rab20 and strong lysosomal acidification.The knockdown of Rab20 substantially diminished lysosome acidification and disturbed the fusion of GFP-E.coli containing phagosomes with lysosomes in BLP-tolerized macrophages.These results demonstrate that Rab20 plays a critical role in BLP tolerization-induced augmentation of bactericidal activity via promoting phagosome maturation and the fusion of bacteria containing phagosomes with lysosomes.  相似文献   

4.
AIMS: To determine the effectiveness of an alkaline cleaner used in food-processing plants and a lytic bacteriophage specific for Escherichia coli O157:H7 in killing wild type and rpoS-deficient cells of the pathogen in a biofilm. METHODS AND RESULTS: Wild type and rpoS-deficient cells were attached to stainless steel coupons (c. 7-8 log CFU per coupon) on which biofilms were developed during incubation at 22 degrees C for 96 h in M9 minimal salts media (MSM) with one transfer to fresh medium. Coupons were treated with 100 and 25% working concentrations of a commercial alkaline cleaner (pH 11.9, with 100 microg ml(-1) free chlorine) used in the food industry, chlorine solutions (50 and 100 microg ml(-1) free chlorine), or sterile deionized water (control) at 4 degrees C for 1 and 3 min. Treatment with 100% alkaline cleaners reduced populations by 5-6 log CFU per coupon, a significant (P < or = 0.05) reduction compared with treatment with water. Initial populations (2.6 log CFU per coupon) of attached cells of both strains were reduced by 1.2 log CFU per coupon when treated with bacteriophage KH1 (7.7 log PFU ml(-1)) for up to 4 days at 4 degrees C. Biofilms containing low populations (2.7-2.8 log CFU per coupon) of wild type and rpoS-deficient cells that had developed for 24 h at 22 degrees C were not decreased by more than 1 log CFU per coupon when treated with KH1 (7.5 log PFU ml(-1)) at 4 degrees C. CONCLUSIONS: Higher numbers of cells of E. coli O157:H7 in biofilms are killed by treatment with an alkaline cleaner than with hypochlorite alone, possibly through a synergistic mechanism of alkaline pH and hypochlorite. Populations of cells attached on coupons were reduced by treating with bacteriophage but cells enmeshed in biofilms were protected. SIGNIFICANCE AND IMPACT OF THE STUDY: The alkaline pH, in combination with hypochlorite, in a commercial cleaner is responsible for killing E. coli O157:H7 in biofilms. Treatment with bacteriophage KH1 reduces populations of cells attached to coupon surfaces but not cells in biofilms.  相似文献   

5.
We addressed the role of O(2) generated by the NADPH oxidase complex in the mechanism of polymorphonuclear leukocyte (PMN) accumulation and transalveolar migration and lung microvascular injury. Studies were made in mice lacking the p47(phox) and gp91(phox) subunits of NADPH oxidase (p47(phox-/-) and gp91(phox-/-)) in which PMN are incapable of the respiratory burst. The mice were challenged i.p. with live Escherichia coli to induce sepsis. We observed time-dependent increases in PMN sequestration and migration from 1 to 6 h after challenge with 2 x 10(8) E. coli. The responses in knockout mice were greater post-E. coli challenge compared with control mice; i.e., transalveolar PMN migration post-E. coli challenge increased by approximately 50% in the null mice above values in wild type. The increased PMN infiltration was associated with decreased lung bacterial clearance. The generation of the chemoattractant macrophage-inflammatory protein-2 in lung tissue was greater in NADPH oxidase-defective mice after E. coli challenge than control mice; moreover, macrophage-inflammatory protein-2 Ab pretreatment prevented the PMN infiltration. We also observed that E. coli failed to increase lung microvascular permeability in p47(phox-/-) and gp91(phox-/-) mice despite the greater lung PMN sequestration. Thus, O(2) production is required for the induction of sepsis-induced lung microvascular injury. We conclude that NADPH oxidase-derived O(2) generation has an important bactericidal role, such that an impairment in bacterial clearance in NADPH oxidase-defective mice results in increased chemokine generation and lung tissue PMN infiltration.  相似文献   

6.
Outbreaks of disease due to acid-tolerant bacterial pathogens in apple cider and orange juice have raised questions about the safety of acidified foods. Using gluconic acid as a noninhibitory low-pH buffer, we investigated the killing of Escherichia coli O157:H7 strains in the presence or absence of selected organic acids (pH of 3.2), with ionic strength adjusted to 0.60 to 0.68. During a 6-h exposure period in buffered solution (pH 3.2), we found that a population of acid-adapted E. coli O157:H7 strains was reduced by 4 log cycles in the absence of added organic acids. Surprisingly, reduced lethality for E. coli O157:H7 was observed when low concentrations (5 mM) of fully protonated acetic, malic, or l-lactic acid were added. Only a 2- to 3-log reduction in cell counts was observed, instead of the 4-log reduction attributed to pH effects in the buffered solution. Higher concentrations of these acids at the same pH aided in the killing of the E. coli cells, resulting in a 6-log or greater reduction in cell numbers. No protective effect was observed when citric acid was added to the E. coli cells. d-Lactic acid had a greater protective effect than other acids at concentrations of 1 to 20 mM. Less than a 1-log decrease in cell numbers occurred during the 6-h exposure to pH 3.2. To our knowledge, this is the first report of the protective effect of organic acids on the survival of E. coli O15:H7 under low-pH conditions.  相似文献   

7.
We demonstrated that the production of reactive oxygen species (ROS) by U937 macrophage-like cells was suppressed upon infection with a wild type Legionella pneumophila strain, whereas such suppression was not observed in the case of infection with intracellular growth-deficient mutants. This was supported not only by measuring ROS released into the supernatants of cell cultures by chemiluminescence assaying but also by detecting intracellular ROS with a fluorescent probe, 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (APF), under a confocal laser scanning microscope. Furthermore, more than 60% of the phagosomes containing intracellular growth-deficient mutants were colocalized with p47(phox), which is the cytosolic subunit of NADPH oxidase, consistently throughout the observation period in an early stage of bacterial infection. In contrast, the colocalization of p47(phox) was suppressed after infection with the wild type strain. These results suggest that the interference with ROS production by U937 cells infected with wild type L. pneumophila is due to a failure of NADPH oxidase activation through inhibition of p47(phox) recruitment to phagosomes harboring bacteria. The results also highlighted the difference in the nature of phagosomes between ones harboring the wild type and ones the intracellular growth-deficient strains.  相似文献   

8.
The chlorination of glycine by the myeloperoxidase-H2O2-Cl- system at acidic pH values yielded N-monochloroglycine and a mixture of HCN and ClCN. HCN was formed as a product of N-dichloroglycine decomposition and cyanogen chloride formation resulted from simultaneous chlorination of HCN by N-chloroglycine or directly by the myeloperoxidase-H2O2-Cl- system. HCN was readily chlorinated by the myeloperoxidase-H2O2Cl- system yielding cyanogen chloride. This dissociation constants of the myeloperoxidase-CN- complex were estimated as 2.5.10(-6)--1.15.10(-5) M within the pH range of 6.2 to 3.4, respectively. Chloride competed with cyanide for binding at the active site of myeloperoxidase. The lower the pH the more pronounced was the competitive effect of chloride. This accounted for chlorination by myeloperoxidase in the presence of CN-.  相似文献   

9.
AIMS: To determine the effectiveness of combined treatments with chemicals, heat and ultrasound in killing or removing Salmonella and Escherichia coli O157:H7 on alfalfa seeds intended for sprout production. METHODS AND RESULTS: Alfalfa seeds inoculated with Salmonella or E. coli O157:H7 were treated with ultrasound (38.5-40.5 kHz) in solutions containing 1% Ca(OH)(2), 1% Tween 80, 1% Ca(OH)(2) plus 1% Tween 80, 160 microg ml(-1) Tsunami 200 and 0.5% Fit at 23 and 55 degrees C for 2 and 5 min. Highest reductions were in chemical solutions at 55 degrees C, but seed viability was also reduced compared with treatment at 23 degrees C. Inactivation of Salmonella and E. coli O157:H7 was generally enhanced by simultaneous treatments with ultrasound, chemicals and heat. CONCLUSIONS: Ultrasound treatment, in combination with chemicals and heat, had a modest enhancing effect on the effectiveness of chemicals in killing or removing pathogens on alfalfa seeds. Overall, treatment with 1% Ca(OH)(2) was most effective in killing Salmonella and E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of 1% Ca(OH)(2) instead of 20,000 microg ml(-1) chlorine, which is currently recommended as a sanitizer for seeds intended for sprout production in the US, should be considered. Ultrasound treatment of alfalfa seeds containing Salmonella or E. coli O157:H7, in combination with chemical treatment, contributes to achieving greater reductions in populations of these pathogens, thereby reducing the risk of contamination and the presence of pathogens in sprouts produced from these seeds.  相似文献   

10.
Zheng J  Ho B  Mekalanos JJ 《PloS one》2011,6(8):e23876
A type VI secretion system (T6SS) was recently shown to be required for full virulence of Vibrio cholerae O37 serogroup strain V52. In this study, we systematically mutagenized each individual gene in T6SS locus and characterized their functions based on expression and secretion of the hemolysin co-regulated protein (Hcp), virulence towards amoebae of Dictyostelium discoideum and killing of Escherichia coli bacterial cells. We group the 17 proteins characterized in the T6SS locus into four categories: twelve (VipA, VipB, VCA0109-VCA0115, ClpV, VCA0119, and VasK) are essential for Hcp secretion and bacterial virulence, and thus likely function as structural components of the apparatus; two (VasH and VCA0122) are regulators that are required for T6SS gene expression and virulence; another two, VCA0121 and valine-glycine repeat protein G 3 (VgrG-3), are not essential for Hcp expression, secretion or bacterial virulence, and their functions are unknown; the last group is represented by VCA0118, which is not required for Hcp expression or secretion but still plays a role in both amoebae and bacterial killing and may therefore be an effector protein. We also showed that the clpV gene product is required for Dictyostelium virulence but is less important for killing E. coli. In addition, one vgrG gene (vgrG-2) outside of the T6SS gene cluster was required for bacterial killing but another (vgrG-1) was not. However, a bacterial killing defect was observed when vgrG-1 and vgrG-3 were both deleted. Several genes encoded in the same putative operon as vgrG-1 and vgrG-2 also contribute to virulence toward Dictyostelium but have a smaller effect on bacterial killing. Our results provide new insights into the functional requirements of V. cholerae's T6SS in the context of secretion as well as killing of bacterial and eukaryotic phagocytic cells.  相似文献   

11.
Catalase and superoxide dismutase in Escherichia coli   总被引:9,自引:0,他引:9  
We assessed the roles of intrabacterial catalase and superoxide dismutase in the resistance of Escherichia coli to killing by neutrophils. E. coli in which the synthesis of superoxide dismutase and catalase were induced by paraquat 10-fold and 5-fold, respectively, did not resist killing by neutrophils. When bacteria were allowed to recover from the toxicity of paraquat for 1 h on ice and for 30 min at 37 degrees C, they still failed to resist killing by neutrophils. Induction of the synthesis of catalase 9-fold by growth in the presence of phenazine methosulfate did not render E. coli resistant to killing by either neutrophils or by H2O2 itself. The lack of protection by intrabacterial catalase from killing by neutrophils could not be attributed to an impermeable bacterial membrane; the evolution of O2 from H2O2 was no less rapid in suspensions of E. coli than in lysates. The failure of intrabacterial catalase or superoxide dismutase to protect bacteria from killing by neutrophils might indicate either that the flux of O-2 and H2O2 in the phagosome is too great for the intrabacterial enzymes to alter or that the site of injury is at the bacterial surface.  相似文献   

12.
《The Journal of cell biology》1984,99(6):1936-1943
We used quantitative fluorescence microscopy to measure the pH of phagosomes in human monocytes that contain virulent Legionella pneumophila, a bacterial pathogen that multiplies intracellularly in these phagocytes. The mean pH of phagosomes that contain live L. pneumophila was 6.1 in 14 experiments. In the same experiments, the mean pH of phagosomes containing dead L. pneumophila averaged 0.8 pH units lower than the mean pH of phagosomes containing live L. pneumophila, a difference that was highly significant (P less than 0.01 in all 14 experiments). In contrast, the mean pH of phagosomes initially containing live E. coli, which were then killed by monocytes, was the same as for phagosomes initially containing dead E. coli. The mean pH of L. pneumophila phagosomes in activated monocytes, which inhibit L. pneumophila intracellular multiplication, was the same as in nonactivated monocytes. To simultaneously measure the pH of different phagosomes within the same monocyte, we digitized and analyzed fluorescence images of monocytes that contained both live L. pneumophila and sheep erythrocytes. Within the same monocyte, live L. pneumophila phagosomes had a pH of approximately 6.1 and sheep erythrocyte phagosomes had a pH of approximately 5.0 or below. This study demonstrates that L. pneumophila is capable of modifying the pH of its phagocytic vacuole. This capability may be critical to the intracellular survival and multiplication of this and other intracellular pathogens.  相似文献   

13.
Recent studies have demonstrated a central role for the exchange protein activated by cAMP (Epac) in the inhibition of Fcgamma-receptor-mediated phagocytosis and bacterial killing by prostaglandin E(2) (PGE(2)) in macrophages. However, the subcellular localization of Epac, and its primary target Rap1, has yet to be determined in primary macrophages. Therefore, we used immunofluorescent techniques and phagosome isolation to localize Epac-1 and Rap1 in alveolar macrophages. Epac-1 was predominantly expressed on punctate and tubular membranes throughout the cell body; on the plasma membrane; and co-localized with microtubule organizing centers (MTOCs). Rap1 was abundant on punctate membranes, less abundant on plasma membrane, and also found on MTOCs. Following PGE(2) treatment, Epac-1, but not Rap1, accumulated on the nuclear envelope and disappeared from MTOCs. By immunofluorescent microscopy, both Epac-1 and Rap1 were seen to associate with phagosomes containing IgG-opsonized beads, but this association appeared weak, as we failed to observe such interactions in phagosomes isolated from cells at various time points after bead ingestion. Strikingly, however, Epac-1, but not Rap1, appeared to accumulate on maturing phagosomes, but only after PGE(2) treatment (or treatment with a selective Epac-1 agonist). This association was confirmed in isolated phagosome preparations. The changes in Epac-1 localization were too slow to account for the inhibitory effects of PGE(2) on phagocytosis. However, the appearance of Epac-1 on late phagosomes following PGE(2) treatment might be important for suppressing H(2)O(2) production and inhibiting the killing of intraphagosomal pathogens. The absence of Rap1 on late phagosomes suggests that the effect of Epac-1 might not require Rap1.  相似文献   

14.
Acidification of phagosomes has been proposed to have a key role in the microbicidal function of phagocytes. Here, we show that in alveolar macrophages the cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) participates in phagosomal pH control and has bacterial killing capacity. Alveolar macrophages from Cftr-/- mice retained the ability to phagocytose and generate an oxidative burst, but exhibited defective killing of internalized bacteria. Lysosomes from CFTR-null macrophages failed to acidify, although they retained normal fusogenic capacity with nascent phagosomes. We hypothesize that CFTR contributes to lysosomal acidification and that in its absence phagolysosomes acidify poorly, thus providing an environment conducive to bacterial replication.  相似文献   

15.
Myeloperoxidase, a granule-associated enzyme of neutrophils and monocytes, combines with H2O2 and chloride to form a potent microbicidal system that contributes to phagocyte antimicrobial activity. The nature of the lesion or lesions induced by the myeloperoxidase system which are responsible for the loss of microbial replicative activity (viability) remains unknown. Using Escherichia coli grown to late log or stationary phase under conditions of low aeration with succinate as the sole carbon source, we found that myeloperoxidase-induced loss of microbial viability could be correlated with a decrease in succinate-dependent respiration (succinate oxidase activity). Succinate dehydrogenase activity fell rapidly to undetectable levels during incubation with the myeloperoxidase system, suggesting that damage to the dehydrogenase was a major factor in the loss of oxidase activity. Other components of the succinate oxidase system were resistant to the actions of myeloperoxidase. The ubiquinone-8 and cytochrome components of the respiratory chain remained nearly constant in amount despite reduction of respiration to undetectable levels. However, as expected from the loss of succinate dehydrogenase activity, succinate-ubiquinone reductase and succinate-cytochrome reductase activities were markedly impaired. We propose that the loss of E. coli viability induced by the myeloperoxidase-H2O2-chloride system is due in part to the loss of electron transport function consequent to the oxidation of critical catalytic centers in susceptible dehydrogenases.  相似文献   

16.
Actively growing Escherichia coli cells exposed to plumbagin, a redox cycling quinone that increases the flux of O2- radicals in the cell, were mutagenized or killed by this treatment. The toxicity of plumbagin was not found to be mediated by membrane damage. Cells pretreated with plumbagin could partially reactivate lambda phage damaged by exposure to riboflavin plus light, a treatment that produces active oxygen species. The result suggested the induction of a DNA repair response. Lambda phage damaged by H2O2 treatment were not reactivated in plumbagin-pretreated cells, nor did H2O2-pretreated cells reactivate lambda damaged by treatment with riboflavin plus light. Plumbagin treatment did not induce lambda phage in a lysogen, nor did it cause an increase in beta-galactosidase production in a dinD::Mu d(lac Ap) promoter fusion strain. Cells pretreated with nonlethal doses of plumbagin showed enhanced survival upon exposure to high concentrations of plumbagin, but were unchanged in their susceptibility to far-UV irradiation. polA and recA mutants were not significantly more sensitive than wild type to killing by plumbagin. However, xth-1 mutants were partially resistant to plumbagin toxicity. It is proposed that E. coli has an inducible DNA repair response specific for the type of oxidative damage generated during incubation with plumbagin. Furthermore, this response appears to be qualitatively distinct from the SOS response and the repair response induced by H2O2.  相似文献   

17.
AIMS: The objective of this study was to determine the combined effects of water activity (a(w)), chemical treatment and temperature on Salmonella and Escherichia coli O157:H7 inoculated onto alfalfa seeds. METHODS AND RESULTS: Alfalfa seeds inoculated with Salmonella or E. coli O157:H7 and adjusted to various a(w) values were subjected to simultaneous and separate treatments with chemicals and heat. The rate of death of both pathogens was correlated with increased a(w) (0.15-0.60) and temperature (5-37 degrees C) over a 52-week storage period. Higher seed a(w) enhanced the inactivation of pathogens on seeds heated at 50-70 degrees C for up to 24 h. Treatment of seeds with water, 1% Ca(OH)2, 1% Tween 80, 1% Ca(OH)2 plus 1% Tween 80 or 40 mg l(-1) Tsunami 200 at 23 or 55 degrees C for 2 min significantly (alpha=0.05) reduced populations of Salmonella and E. coli O157:H7. CONCLUSIONS: Overall, at the combinations of temperature and concentrations of chemicals tested, 1% Ca(OH)2 was most effective in killing Salmonella and E. coli O157:H7 without reducing seed viability. SIGNIFICANCE AND IMPACT OF THE STUDY: None of the treatments evaluated in this study, whether applied separately or in combination, eliminated Salmonella or E. coli O157:H7 on alfalfa seeds without sacrificing the viability of the seeds. It remains essential that practices to prevent the contamination of alfalfa seeds be strictly followed in order to minimize the risk of Salmonella and E. coli O157:H7 infections associated with sprouts produced from these seeds.  相似文献   

18.
The cellular slime mold Dictyostelium discoideum expresses a gene encoding a 452-amino-acid polypeptide that is 47% identical to Escherichia coli RecA. A recA-deficient E. coli, JE6651, was transformed by pYSN1, which was designed to express the truncated form of the D. discoideum gene, and used in suppression assays. The viability of the transformant, JE6651(pYSN1), increased following UV irradiation or mitomycin C treatment. Phage lambda (red(-) gam(-)), which required RecA activity for DNA packaging, formed plaques on a lawn of JE6651(pYSN1). These results indicate that the gene product has a DNA recombination activity. Fluorescence of D. discoideum protein fused with GFP was detected in mitochondria. The gene disruption mutant was hypersensitive to UV-light (254nm), mitomycin C and H(2)O(2), indicating that D. discoideum recA is important for survival following exposure to DNA damaging agents.  相似文献   

19.
Peptide Nucleic Acids (PNA) is a new type of DNA analogue with a peptide backbone. We developed a rapid identification system of Escherichia. coli O157:H7 using PNA mediated PCR clamping. Firstly, we confirmed a single nucleotide alteration in the uidA gene (T93G), which is specific to E. coli O157: H7. We designed forward mutant DNA primer, wild type PNA, and a reverse DNA primer corresponding to the uidA sequence. PCR cycle consisted of four steps including dual annealing temperatures, 57 degrees C and 45 degrees C. Among 20 E. coli strains with various serotypes and 4 neighboring strains, the amplified bands (517 bp) were detected only in E. coli O157:H7 strains. PNA has specifically inhibited the PCR amplification from a wild type uidA gene. We successfully developed a multiplex PCR system, which detects both shigatoxin (stx) and uidA genes at once, to get reliable results by easier and rapid operation. We also analyzed kinetic parameters of PNA/DNA association using surface plasmon resonance and melting temperature using fluorescence resonance energy transfer (FRET). We discussed a selection mechanism of PCR clamping from these results.  相似文献   

20.
Dps(DNAprotection during starvation)蛋白是原核生物中特有的一类具有铁离子结合和抗氧化损伤功能的重要蛋白。利用体外PCR扩增技术和体内同源重组方法,获得了耐辐射奇球菌(Deinococcus radiodurans)dps全基因(DRB0092)缺失突变株。对突变株和野生型分别进行不同浓度过氧化氢(H2O2)处理,结果表明:与野生型菌株R1相比,dps突变株在低浓度H2O2(≤10mmol/L)条件下存活率急剧下降,而高浓度(≥30mmol/L)下则完全致死。Native-PAGE活性染色结果显示,稳定生长期dps突变株体内两种过氧化氢酶(KatA和KatB)的活性较野生型R1分别上调2.3倍和2.6倍。通过质粒构建和大肠杆菌诱导表达,获得可溶性Dps蛋白。体外结合和DNA保护实验结果显示:Dps具有明显的DNA结合功能,并能保护质粒DNA免受羟自由基攻击。本研究证明,Dps蛋白在耐辐射奇球菌抗氧化体系中发挥重要作用,可能对该菌极端抗性机制有重要贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号