首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe patterns of DNA variation among the three centromeric satellite families in Arabidopsis halleri and lyrata. The newly studied subspecies (A. halleri ssp. halleri and A. lyrata ssp. lyrata and petraea), like the previously studied A. halleri ssp. gemmifera and A. lyrata ssp. kawasakiana, have three different centromeric satellite families, the older pAa family (also present in A. arenosa) and two families, pAge1 and pAge2, that probably evolved more recently. Sequence variability is high in all three satellite families, and the pAa sequences do not cluster by their species of origin. Diversity in the pAge2 family is complex, and different from variation among copies of the other two families, showing clear evidence for exchange events among family members, especially in A. halleri ssp. halleri. In A. lyrata ssp. lyrata there is some evidence for recent rapid spread of pAge2 variants, suggesting selection favoring these sequences. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Brian Morton]  相似文献   

2.
Kawabe A  Nasuda S 《Genetica》2006,126(3):335-342
The chromosomal localizations of repetitive DNA clusters (ribosomal DNA and centromere satellites) were analyzed by fluorescent in situ hybridization in five strains of Arabidopsis halleri ssp. gemmifera. All five A. gemmifera strains have three chromosome pairs with 45S (5.8S-16S-26S) rDNA loci, and one pair with both 5S and 45S rDNA loci. These localizations are different from that of A. thaliana. Very unusually, there are three families of centromeric satellite DNAs (pAa, pAge1, and pAge2), and they showed polymorphism among the five strains studied. Overall, we found four different centromere satellite compositions. A plant from Fumuro was heterozygous for the chromosome specificities of centromere satellite families, possibly due to a reciprocal translocation involving centromere regions. Changes of centromeric satellite repeats appear to be rapid and frequent events in the history of A. gemmifera, and seem to occur by exchanging clusters as units.  相似文献   

3.
Fluorochrome C-banding ofPinus radiata andP. taeda metaphase chromosomes showed many pericentromeric DAPI bands and interstitial CMA bands inP. radiata, and centromeric and interstitial CMA bands inP. taeda. Giemsa C-band patterns differed between the species with centromeric bands inP. radiata but no consistent bands inP. taeda. A karyotype ofP. radiata was developed based on banding patterns that distinguished all but two of the 12 pairs of chromosomes. In situ hybridization (ISH) using probes for high-copy ribosomal DNA (rDNA) showed 10 pairs of 18S–25S sites and two pairs of 5S sites in both species. Most of the sites were interstitial or centromeric.  相似文献   

4.
Members of three prominent DNA families of Beta procumbens have been isolated as Sau3A repeats. Two families consisting of repeats of about 158 bp and 312 bp are organized as satellite DNAs (Sau3A satellites I and II), whereas the third family with a repeat length of 202 bp is interspersed throughout the genome. Multi-colour fluorescence in situ hybridization was used for physical mapping of the DNA families, and has shown that these tandemly organized families occur in large heterochromatic and DAPI positive blocks. The Sau3A satellite I hybridized exclusively around or near the centromeres of 10, 11 or 12 chromosomes. The Sau3A satellite family I showed high intraspecific variability and high-resolution physical mapping was performed on pachytene chromosomes using differentially labelled repeats. The physical order of satellite subfamily arrays along a chromosome was visualized and provided evidence that large arrays of plant satellite repeats are not contiguous and consist of distinct subfamily domains. Re-hybridization of a heterologous rRNA probe to mitotic metaphase chromosomes revealed that the 18S-5.8S-25S rRNA genes are located at subterminal position on one chromosome pair missing repeat clusters of the Sau3A satellite family I. It is known that arrays of Sau3A satellite I repeats are tightly linked to a nematode (Heterodera schachtii) resistance gene and our results show that the gene might be located close to the centromere. Large arrays of the Sau3A satellite II were found in centromeric regions of 16 chromosomes and, in addition, a considerable interspersion of repeats over all chromosomes was observed. The family of interspersed 202 bp repeats is uniformly distributed over all chromosomes and largely excluded from the rRNA gene cluster but shows local amplification in some regions. Southern hybridization has shown that all three families are specific for genomes of the section Procumbentes of the genus Beta.  相似文献   

5.
Genomic in situ hybridization offers a powerful tool for investigating genome organisation and evolution of taxa known, or suspected, to be allopolyploids. The question of the diploid progenitors of cultivated peanut (Arachis hypogaea, 2n=4x=40) has been the subject of numerous studies at cytogenetical, cytochemical, biochemical and molecular levels, but no definitive conclusions have been reached. The biotinylated total genomic DNA from potential diploidArachis species were separately hybridized in situ to root tip chromosomes ofA. hypogaea and wild speciesA. monticola (2n=4x=40) without or mixed with an excess of unlabelled DNA from the species not used as a probe. Among the range of different species combinations used, the strong and uniform signals given by labelledA. ipaensis DNA when hybridized toA. hypogaea andA. monticola in combination with unlabelledA. villosa DNA indicates that overall molecular composition of twenty chromosomes ofA. hypogaea andA. monticola is very similar toA. ipaensis chromosomes. ProbingA. hypogaea andA. monticola chromosomes with labelled genomic DNA fromA. villosa mixed with unlabelled DNA fromA. ipaensis likewise labelled strongly and uniformly the other twenty chromosomes. BarringA. ipaensis, all the diploidArachis species presently investigated had characteristic centromeric bands in the twenty chromosomes within the complement indicating a clear division ofA. ipaensis from other species. InA. hypogaea andA. monticola only twenty chromosomes showed centromeric bands. These results (i) confirm the allopolyploid nature ofA. hypogaea andA. monticola, (ii) strongly support the view that wildA. monticola and cultivatedA. hypogaea are very closely related, and (iii) indicate thatA. villosa andA. ipaensis are the diploid wild progenitors of the tetraploid species studied. The present results also reveal that the nucleolus organizing region (NOR) originating fromA. villosa alone is expressed in the two tetraploid species.  相似文献   

6.
The structural organization and evolution of two tandemly repeated families, Spelt1 and Spelt52, located in the subtelomeric regions of Aegilops speltoides chromosomes were studied. The Spelt1 family of sequences with a monomer length of 178 bp was characterized by cloning and sequence analysis of polymerase chain reaction (PCR) products. Members of the Spelt1 family revealed sequence similarities exceeding 95\%. This conservation has remained despite divergence of species in Aegilops section Sitopsis and after independent multiple amplification events in the genome of Ae. speltoides. Sequences representing the Spelt52 family were cloned, sequenced and compared with other sequences in databases. The Spelt52 repeat family contains monomers of two types, Spelt52.1 and Spelt52.2. The two monomers share a homologous stretch of 280 bp and have two regions without sequence similarity of 96 bp and 110 bp, respectively. PCR analysis was conducted to 15 lines in Ae. speltoidesTausch., Ae. longissimaSchw.&Mushc.,Ae. sharonensisEig.,Ae. bicornis(Forssk)Jaub.&Sp., andAe. searsii Feld.&Kis. using primers to the homologous and non- homologous regions of Spelt52 family. Intraspecies and interspecies differences in the occurrence and abundance of combinations of Spelt52.1 and Spelt52.2 monomers were detected. The use of primers to telomeric and subtelomeric repeats followed by Southern hybridization, cloning, and sequence analysis demonstrated that Spelt1 and Spelt52 are localized close to each other and to telomeric repeats. The efficiency of a PCR approach for the analysis of telomeric/subtelomeric junction regions of chromosomes is discussed.  相似文献   

7.
The somatic karyotypes of 10 taxa belonging toAllium subgen.Molium (Liliaceae) from the Mediterranean area have been investigated using Giemsa C-band and fluorochrome (Hoechst, Quinacrine) banding techniques. A wide range of banding patterns has been revealed. InAllium moly (2n = 14),A. oreophilum (2n = 16) andA. paradoxum (2n = 16) C-banding is restricted to a region on each side of the nucleolar organisers and the satellites show reduced fluorescence with fluorochromes. The satellites are also C-banded and with reduced fluorescence inA. triquetrum (2n = 18), but two other chromosome pairs also have telomeric bands which are not distinguished by fluorochrome treatment. InA. erdelii (2n = 16) 4 pairs of metacentric chromosomes have telomeric C-bands while 2 pairs of telocentric chromosomes have centromeric C-banding. InA. subhirsutum (2n = 14),A. neapolitanum (2n = 28),A. trifoliatum subsp.hirsutum (2n = 14) andA. trifoliatum subsp.trifoliatum (2n = 21) chromosomes with long centromeres, consisting of a centromere and nucleolar organiser are positively C-banded on each side of the constriction. InA. subhirsutum banding is confined to the pair of chromosomes with this feature, whereas inA. neapolitanum one additional chromosome pair has telomeric bands and inA. trifoliatum there are varying numbers of chromosomes with centromeric and telomeric bands, depending on the subspecies.A. zebdanense (2n = 18) shows no C-bands. The banding patterns in this subgenus are compared with those recorded for otherAllium species and with the sectional divisions in the genus. Evidence from the banding patterns for allopolyploidy inA. trifoliatum subsp.trifoliatum andA. neapolitanum is discussed.  相似文献   

8.
Paenibacillus graminis strains were described recently as cyclodextrin (CD) producers. Cyclodextrins are produced by cyclodextrin glucanotransferase (CGTase) which has not been characterized in P. graminis. Similar amounts of α- and β-CDs were produced by P. graminis (MC22.13) and P. macerans (LMD24.10T). Primers were designed to sequence the gene encoding CGTase from P. graminis. A phylogenetic tree was constructed and P. graminis CGTase protein showed to be closer (79.4% protein identity) to P. macerans |P31835|. Hybridization studies suggested that the gene encoding CGTase is located in different positions in the genomes of P. macerans and P. graminis.  相似文献   

9.
The goal of the present experiments was to transfer the chromosomes of Solanum sitiens (syn. Solanum rickii) into cultivated tomato (Lycopersicon esculentum). By crossing an allotetraploid L. esculentum × Solanum sitiens hybrid to sesquidiploid L. esculentum × S. lycopersicoides, a trigenomic hybrid (2n+14=38) was obtained. Analysis of the latter by GISH (genomic in situ hybridization) indicated it contained a full set of 12 S. sitiens chromosomes, plus two extras from S. lycopersicoides. This and other complex hybrids were pollinated with Lycopersicon pennellii-derived bridging lines to overcome unilateral incompatibility. A total of 40 progeny were recovered by embryo rescue, including diploids and aneuploids (up to 2n+8). In order to determine the origin of chromosomes and the location of introgressed segments, progeny were genotyped with RFLP markers. S. sitiens-specific markers on all chromosomes, except 6 and 11, were detected in the progeny. Several S. sitiens chromosomes were transmitted intact, either through chromosome addition (i.e., trisomics) or substitution (i.e., disomics). Recombination between S. sitiens and L. esculentum was detected on most chromosomes, in both diploid and aneuploid progeny. A monosomic alien addition line for S. sitiens chromosome 8 was identified, and the extra chromosome was stably transmitted to approximately 13% of the backcross progeny. This study demonstrates the feasibility of gene transfer from S. sitiens to L. esculentum through chromosome addition, substitution, and recombination in the progeny of complex aneuploid hybrids.Communicated by J.S. Heslop-Harrison  相似文献   

10.
Karyomorphological comparisons were made of 16 native and cultivated species ofSelaginella in Japan. The somatic chromosome numbers are 2n=16 inS. boninensis; 2n=18 inS. doederleinii, S. helvetica, S. limbata, S. lutchuensis, S. nipponica, S. selaginoides, S. tama-montana, andS. uncinata; 2n=20 inS. biformis, S. involvens, S. moellendorffii, S. remotifolia, andS. tamariscina; 2n=30 inS. rossii; and 2n=32 inS. heterostachys. The interphase nuclei of all species examined are uniformly assigned to the simple chromocenter type. The metaphase karyotype of 2n=16 (x=8) is 8 m (=median centromeric chromosomes)+8(st+t)(=subterminal and terminal). The group of the species having 2n=18 (x=9) is heterogeneous karyomorphologically: The karyotype ofS. nipponica is 2n=18=6 m+12(st+t),S. tama-montana 10 m+2 sm(=submedian)+6(st+t), andS. uncinata 6 m+7 sm+5(st+t). Although the remaining five species have the common karyotype 8 m+4 sm+6(st+t), the values of mean chromosome length are variable. Another group of the specles having 2n=20 (x=10) is homogeneous, since all species have the same karyotypes 8 m+4 sm+8(st+t) and have similar chromosome size. The karyotype of 2n=30 is 12 m+6 sm+12(st+t) and is suggested to be a triploid of x=10, and 2n=32=16m+16(st+t), a tetraploid of x=8. Thus, three kinds of basic chromosome numbers, x=8, 9, 10 are present in JapaneseSelaginella examined, and their karyomorphological relationships are discussed.  相似文献   

11.
In situ hybridization with a biotin-labeled rice ribosomal DNA (rDNA) probe to the somatic metaphase chromosomes of six species ofPhaseolus andVigna (P. angularis, P. calcaratus, P. coccineus, P. vulgaris, V. sesquipedalis andV. sinensis) was done to determine the sites of rDNA. Hybridization signals were present in the terminal and subterminal chromosome regions of each of the six species. The number of rDNA sites was two inP. angularis andP. calcaratus, four inP. coccineus andP. vulgaris, and six inV. sesquipedalis andV. sinensis.  相似文献   

12.
The karyotype and the C-banding pattern in two species ofHexastylis andAsarum epigynum were analysed in detail, and the results obtained were compared with those of the other species ofAsarum, Asiasarum andHeterotropa previously reported. The present results were partially different from the previous reports related to the karyotypes of these species. The karyotype observed in two species ofHexastylis (2n=26) was represented by ten pairs of metacentric chromosomes and three pairs of small subtelocentric chromosomes, which is very similar to that ofAsiasarum in eastern Asia. The C-banding patterns ofHexastylis andAsiasarum, however, were clearly different from each other. A striking difference was found in one of the three pairs of small subtelocentric chromosomes. A Formosan speciesAsarum epigynum had the somatic chromosome number 2n=12 and a highly asymmetrical karyotype composed of mainly subtelocentric chromosomes. These karyological features were remarkably different from those of the other groups inAsarum s.l.  相似文献   

13.
We compared the organization of satellite DNA (stDNA) and its chromosomal allocation inMus domesticus and inMus musculus. The two stDNAs show similar restriction fragment profiles after digestion (probed withM. domesticus stDNA) with some endonucleases of which restriction sequences are present in the 230–240 bp repetitive unit of theM. domesticus stDNA. In contrast, EcoRI digestion reveals thatM. musculus stDNA lacks most of the GAATTC restriction sites, particularly at the level of the half-monomer. The chromosome distribution of stDNA (revealed by anM. domesticus stDNA probe) shows different patterns in theM. domesticus andM. musculus karyotypes, with about 60% ofM. domesticus stDNA retained in theM. musculus genome. It is particularly noteworthy that the pericentromeric regions ofM. musculus chromosomes 1 and X are totally devoid ofM. domesticus stDNA sequences. In both groups, the differences in energy transfer between the stDNA-bound fluorochromes Hoechst 33258 and propidium iodide suggest that AT-rich repeated sequences have a much more clustered array in theM. domesticus stDNA, as if they are organized in tandem repeats longer than those ofM. musculus. Considering the data as a whole, it seems likely that the evolutionary paths of the two stDNAs diverged after the generation of the ancestral 230–240 bp stDNA repetitive unit through the amplification, in theM. domesticus genome, of a family repeat which included the EcoRI GAATTC restriction sequence.  相似文献   

14.
A rapid and accurate method based on multiplex PCR using three different primers was developed for determining mating type inCochliobolus heterostrophus. The primers of MAT113 and MAT123 were uniquely derived fromMAT1-1 andMAT1-2, respectively, and the primer MATcon5 is conserved in the flanking regions of the idiomorphs. The amplification product was estimated to be 702 bp (MAT1-1) or 547 bp (MAT1-2). Crossing experiments confirmed the accuracy of this method, which requires less time than the conventional determination of mating type.  相似文献   

15.
High-resolution fluorescence in situ hybridization (FISH) on interphase and pachytene nuclei, and extended DNA fibers enabled microscopic distinction of DNA sequences less than a few thousands of base pairs apart. We applied this technique to reveal the molecular organization of telomere ends in japonica rice (Oryza sativa ssp. japonica), which consist of the Arabidopsis type TTTAGGG heptameric repeats and the rice specific subtelomeric tandem repeat sequence A (TrsA). Southern hybridizations of DNA digested with Bal31 and EcoRI, and FISH on chromosomes and extended DNA fibers demonstrated that (1) all chromosome ends possess the telomere tandem repeat measuring 3–4 kb; (2) the subtelomeric TrsA occurs only at the ends of the long arms of chromosomes 6 and 12, and measure 6 and 10 kb, which corresponds to 231 and 682 copies for these sites, respectively; (3) the telomere and TrsA repeats are separated by at most a few thousands of intervening nucleotide sequences. The molecular organization for a general telomere organization in plant chromosomes is discussed.  相似文献   

16.
The DNA sequence structure of 5S DNA units inAcacia species, including representatives from the three subgenera ofAcacia, have been determined. The data was interpreted to suggest that at least three lineages of 5S DNA sequences exist inAcacia and the proposal was made that the lineages be named5S Dna-1, 5S Dna-2, and5S Dna-3. The5S Dna-1 lineage was represented by units fromA. boliviana andA. bidwilli, the5S Dna-2 lineage by units fromA. melanoxylon, A. pycnantha, A. ulicifolia, A. boliviana, A. bidwillii, andA. albida, and the5S Dna-3 lineage by units fromA. bidwillii, A. boliviana, andA. senegal. Based on this interpretation of the sequence data, the Australian species of subg.Phyllodineae grouped together as a cluster, quite separate from the subgeneraAculeiferum andAcacia. As expected from the analyses of morphological characters, the 5S DNA units fromAcacia albida (syn.Faidherbia albida) were quite separate from the otherAcacia spp.  相似文献   

17.
18.
This paper describes a species specific satellite DNA family (pSsP216) of Drosophila subsilvestris, a palearctic species of the D. obscura group. The pSsP216 family consists of tandemly arranged 216 bp repetitive units that are predominantly localized on B chromosomes. These chromosomes appear in variable numbers in the karyotype of this species. Some pSsP216 repeats can also be detected in the centromeric heterochromatin of the acrocentric A chromosomes. Two strains, one with and the other without B chromosomes, were investigated for sequence variability and for the location of this satellite DNA on the chromosomes. Among 16 clones of the 216 bp basic repeat unit an overall similarity of about 93% and no strain specific differences were found, indicating that the B chromosomes may have derived from the A chromosomes (probably the dots) by spontaneous amplification of the pSsP216 satellite DNA family.  相似文献   

19.
This work examines the cytogeographical distribution, the morphological characters, and the karyotypes of threeCrepis species endemic to Greece (C. sibthorpiana, C. incana, andC. heldreichiana). C. sibthorpiana is diploid (2n = 2x = 8),C. incana is diploid (2n = 2x = 8) and tetraploid (2n = 4x = 16, 17), andC. heldreichiana is always dekaploid (2n = 10x = 40). The Giemsa positive bands, usually pairs of dots, are mainly centromeric inC. incana, while they are terminal inC. sibthorpiana (on the short arm of all chromosomes) and inC. heldreichiana (on both arms of all chromosomes). Intercalary C-bands are scarce and usually variable within karyotypes, individuals, and species. The most variable karyotype both in Feulgen and Giemsa preparations is that ofC. incana, in which also supernumerary chromosomes were observed, which are polysomic to standard set members. On the basis of morphological and karyological data the evolutionary relationships among the threeCrepis taxa are discussed.  相似文献   

20.
Chromosome numbers are determined from 37 populations attributed to 22 taxa of JapaneseArisaema. Of them, chromosome numbers ofA. limbatum var.conspicuum (2n=26),A. minus (2n=26),A. nambae (2n=28) andA. seppikoense (2n=26) are determined for the first time. New chromosome numbers, 2n=26, are reported forA. aequinoctiale, A. limbatum, A. stenophyllum, A. undulatifolium andA. yoshinagae. Three modes of basic chromosome numbers,x=14,x=13 andx=12, occur in JapaneseArisaema. Precise karyotypic comparisons of 20 taxa reveal that taxa withx=14 andx=13 share 26 major chromosome arms and have an obvious chromosomal relationship. One of two submeta-centric chromosomes inx=13 corresponds to two telo-centric chromosomes inx=14. InA. ternatipartitum with 2n=6x=72, ten out of 12 basic chromosomes are the most similar in size and arm ratio with larger ten chromosomes ofA. ringens among JapaneseArisaema examined. A basic chromosome number ofx=14 is the commonest in the genusArisaema and the remaining basic chromosome numbers,x=13 andx=12, seem to be derived through dysploidal reduction by translocating large segments of major arm of telo-centric chromosome onto other minor arm of telo-centric followed by loss of the remainings including a centromere, and by loss of two telo-centrics fromx=14, respectively. Some systematic problems of JapaneseArisaema are discussed based on new cytological data.Arisaema hatizyoense, A. minus andA. nambae are accepted as independent species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号