首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Response of Pathogenic Vibrio Species to High Hydrostatic Pressure   总被引:3,自引:0,他引:3       下载免费PDF全文
Vibrio parahaemolyticus ATCC 17802, Vibrio vulnificus ATCC 27562, Vibrio cholerae O:1 ATCC 14035, Vibrio cholerae non-O:1 ATCC 14547, Vibrio hollisae ATCC 33564, and Vibrio mimicus ATCC 33653 were treated with 200 to 300 MPa for 5 to 15 min at 25°C. High hydrostatic pressure inactivated all strains of pathogenic Vibrio without triggering a viable but nonculturable (VBNC) state; however, cells already existing in a VBNC state appeared to possess greater pressure resistance.  相似文献   

2.
Vibrio cholerae is capable of transforming into a viable but nonculturable (VBNC) state, and, in doing so, undergoes alteration in cell morphology. In the study reported here, Vibrio cholerae O1 and O139 cells were maintained in laboratory microcosms prepared with 1% Instant Ocean and incubated at 4 degrees C, i.e., conditions which induce the VBNC state. Cells were fixed at different stages during entry into the VBNC state and, when no growth was detectable on solid or in liquid media, the ultrastructure of these cells was examined, using both transmission and scanning electron microscopy. As shown in earlier studies, the cells became smaller in size and changed from rod to ovoid or coccoid morphology, with the central region of the cells becoming compressed and surrounded by denser cytoplasm. Because the coccoid morphology, indicative of the VBNC state is common for Vibrio cholerae in the natural environment, as well as in starved cells (Baker et al., 1983; Hood et al., 1986) viability of the coccoid, viable but nonculturable cell was investigated. The percentage of coccoid (VBNC) cells showing metabolic activity and retention of membrane integrity was monitored using direct fluorescence staining (LIVE/DEAD BacLight Bacterial Viability kit), with 75 to 90% of the viable but nonculturable coccoid cells found to be metabolically active by this test. Furthermore, the proportion of actively respiring cells, using the redox dye, 5-cyano-2, 3-ditolyl tetrazolium chloride (CTC), relative to total cells, the latter determined by DAPI staining, ranged from 10 to 50%. VBNC coccoid cells retained the antigenic determinants of Vibrio cholerae O1 and O139, respectively, evidenced by positive reaction with monoclonal fluorescent antibody. Viability was further established by susceptibility of the VBNC cells to chlorine, copper sulfate, zinc sulfate, and formaldehyde. Since retention of cell membrane integrity is a determining characteristic of viable cells, DNA was extracted from VBNC cells in microcosms maintained for two months and for one year. Conservation of cholera toxin and toxin-associated genes, ctxA, toxR, tcpA, and zot in chromosomal DNA of VBNC cells was demonstrated using PCR and employing specific primers. It is concluded that not only do VBNC V cholerae O1 and O139 retain viability up to one year, but genes associated with pathogenicity are retained, along with chromosomal integrity.  相似文献   

3.
4.
Mucinase is a soluble haemagglutinin protease, which may be important for the survival of Vibrio cholerae in association with mucilaginous blue-green algae (cyanobacteria). A comparative survival study was carried out with an Anabaena sp. and a wild-type V. cholerae O1 strain hap+ gene (haemagglutinin-protease), together with its isogenic mutant hap (hap-deleted gene). A simple spread plate technique was followed to count culturable V. cholerae O1 on taurocholate tellurite gelatin agar plate. The fluorescent antibody technique of Kogure et al. (1979) was used for the microscopical viable count of V. cholerae O1. Polymerase chain reaction (PCR) and Southern blot hybridization were carried out to detect a lower number of viable but nonculturable (VBNC) V. cholerae O1 from the laboratory-based experiments. The wild and mutant V. cholerae O1 strains survived in culturable form for 22 and 10 days. respectively, in association with the Anabaena sp., with the difference being statistically significant (P < 0.01). The fluorescent antibody technique, PCR, and hybridization results also showed that the wild strain survived better in the VBNC state than did the mutant VBNC strain in association with an Anabaena sp. These results indicate that the enzyme mucinase may play an important role in the association and long-term survival of V. cholerae O1 with a mucilaginous blue-green alga, Anabaena sp.  相似文献   

5.
Viable but nonculturable (VBNC) Vibrio cholerae non-O1/non-O139, V. parahaemolyticus, enterohemorrhagic Escherichia coli, enterotoxigenic E. coli, enteropathogenic E. coli, Shigella flexneri, and Salmonella enterica were converted to the culturable state by co-culture with selected eukaryotic cells, e.g., HT-29, Caco-2, T84, HeLa, Intestine 407, and CHO cells.  相似文献   

6.
Vibrio cholerae O1 is natural to the aquatic environment and can cause gastrointestinal infections when it is consumed from contaminated bivalves. Under unfavorable conditions, this bacterium enters into a viable but nonculturable state. Immunofluorescence and polymerase chain reaction (PCR) methods were a useful alternative for detecting this microorganism without a pre-enrichment step. We investigated the detection limit of the direct fluorescent antibody (DFA)-direct viable count (DVC) and PCR techniques for the identification of V. cholerae O1 in mussel ( Mytilus edulis ) samples. When 103 cfu/mL V. cholerae O1 were inoculated in samples, 102–103 bacteria mL−1 were determined by immunofluorescence tests and 67% of the samples were positive by PCR assay. No significant difference ( T statistic value = 6.5, P =  0.2049) between DFA and DFA-DVC procedures was observed. No presence of endogenous V. cholerae O1 was detected .

PRACTICAL APPLICATIONS


Vibrios are considered the major cause of identifiable illness and death from shellfish consumption. In Argentina, the viable but nonculturable (VBNC) forms of Vibrio cholerae O1 were identified in samples of water and plankton. Because of these facts, it is relevant to research the presence of V. cholerae O1 in aquatic bivalves. Immunofluorescence and polymerase chain reaction methods are a useful alternative to traditional enrichment testing for detecting both culturable and VBNC forms of V. cholerae O1. In this work, it was demonstrated that these methods were sensitive and efficient for detecting V. cholerae O1 in mussels without a pre-enrichment step. Moreover, they can be a useful tool for the rapid detection of this pathogen in the seafood industry.  相似文献   

7.
8.
Aims:  The aim was to characterize the viable but nonculturable (VBNC) state of Vibrio cincinnatiensis and its resuscitation.
Methods and Results:  Vibrio cincinnatiensis VIB287 was cultured in sterilized seawater microcosms at 4°C. Plate counts, direct viable counts and total counts were used. A large population of the V. cincinnatiensis became nonculturable after approx. 50 day at 4°C. Electron microscopy revealed that the VBNC cells changed from rod to coccoid and decreased in size. Resuscitation of VBNC cells was achieved by temperature upshift in nutrition of yeast extract and peptone by addition of catalase or compound vitamin B. The VBNC and resuscitative cells were intraperitoneally injected into zebra fish separately. No death was observed in the group inoculated with the VBNC cells.
Conclusions:  Vibrio cincinnatiensis VIB287 could enter VBNC state in adverse environments. Resuscitation of VBNC cells occurred by addition of compound vitamin B or catalase to VBNC cells containing nutrient. The resuscitative cells might retain their pathogenicity.
Significance and Impact of the Study:  The study confirmed that V. cincinnatiensis could enter into VBNC state in seawater at low temperature and resuscitated. The resuscitative cells retained their pathogenicity, which may be important in future studies of ecology of V. cincinnatiensis .  相似文献   

9.
We compared induction of the viable-but-nonculturable (VBNC) state in two Vibrio spp. isolated from diseased corals by starving the cells and maintaining them in artificial seawater at 4 and 20 degrees C. In Vibrio tasmaniensis, isolated from a gorgonian octocoral growing in cool temperate water (7 to 17 degrees C), the VBNC state was not induced by incubation at 4 degrees C after 157 days. By contrast, Vibrio shiloi, isolated from a coral in warmer water (16 to 30 degrees C), was induced into the VBNC state by incubation at 4 degrees C after 126 days. This result is consistent with reports of low-temperature induction in several Vibrio spp. A large proportion of the V. tasmaniensis population became VBNC after incubation for 157 days at 20 degrees C, and V. shiloi became VBNC after incubation for 126 days at 20 degrees C. Resuscitation of V. shiloi cells from cultures at both temperatures was achieved by nutrient addition, suggesting that starvation plays a major role in inducing the VBNC state. Our results suggest that viable V. shiloi could successfully persist in the VBNC state in seawater for significant periods at the lower temperatures that may be experienced in winter conditions, which may have an effect on the seasonal incidence of coral bleaching. For both species, electron microscopy revealed that prolonged starvation resulted in transformation of the cells from rods to cocci, together with profuse blebbing, production of a polymer-like substance, and increased membrane roughness. V. shiloi cells developed an increased periplasmic space and membrane curling; these features were absent in V. tasmaniensis.  相似文献   

10.
AIMS: To determine the host range of the Vibrio harveyi myovirus-like bacteriophage (VHML) and the cholera toxin conversion bacteriophage (CTX Phi) within a range of Vibrio cholerae and V. mimicus and V. harveyi, V. cholerae and V. mimicus isolates respectively. METHODS AND RESULTS: Three V. harveyi, eight V. cholerae and five V. mimicus isolates were incubated with VHML and CTX Phi. Polymerase chain reaction (PCR) was used to determine the presence of VHML and CTX Phi in infected isolates. We demonstrated that it was possible to infect one isolate of V. cholerae (isolate ACM #2773/ATCC #14035) with VHML. This isolate successfully incorporated VHML into its genome as evident by positive PCR amplification of the sequence coding part of the tail sheath of VHML. Attempts to infect all other V. cholerae and V. mimicus isolates with VHML were unsuccessful. Attempts to infect V. cholerae non-01, V. harveyi and V. mimicus isolates with CTX Phi were unsuccessful. CONCLUSIONS: Bacteriophage infection is limited by bacteriophage-exclusion systems operating within bacterial strains and these systems appear to be highly selective. One system may allow the co-existence of one bacteriophage while excluding another. VHML appears to have a narrow host range which may be related to a common receptor protein in such strains. The lack of the vibrio pathogenicity island bacteriophage (VPI Phi) in the isolates used in this study may explain why infections with CTX Phi were unsuccessful. SIGNIFICANCE AND IMPACT OF THE STUDY: The current study has demonstrated that Vibrio spp. bacteriophages may infect other Vibrio spp.  相似文献   

11.
Vibrio vulnificus, a Gram-negative bacterium found in estuarine waters, is responsible for over 95% of all seafood-related deaths in the United States. As a result of a temperature downshift to 5 degrees C, this organism enters the viable but nonculturable (VBNC) state. Changes in the membrane fatty acid (FA) composition of V. vulnificus may be a contributing factor to the ability of this organism to enter into and survive in the VBNC state. This hypothesis was tested by incubating the organism at 5 degrees C in artificial sea water and analyzing the cells' FAs during the initial hours of temperature and nutrient down-shift. Prior to downshift, the predominant FAs were 16:0, 16:1 and 18:0. During the first four hours of downshift, statistically significant changes occurred in 15:0, 16:1, 16:0, 17:0, and 18:0. These results indicate that changes in FA composition occur prior to entry of V. vulnificus into the VBNC state, suggesting that the ability to maintain membrane fluidity may be a factor in this physiological response. Cells in which fatty acid synthesis was inhibited did not survive, indicating that active fatty acid metabolism is essential for entry of cells into the VBNC state.  相似文献   

12.
Vibrio cholerae can enter a viable but non-culturable (VBNC) state when it encounters unfavourable environments; VBNC cells serve as important reservoirs and still pose threats to public health. The genetic regulation of V. cholerae entering its VBNC state is not well understood. Here, we show a confrontation strategy adapted by V. cholerae O1 in which it utilizes a quorum sensing (QS) system to prevent transition into a VBNC state under low nutrition and temperature conditions. The upregulation of hapR resulted in a prolonged culturable state of V. cholerae in artificial sea water at 4°C, whereas the mutation of hapR led to fast entry into the VBNC state. We also observed that different V. cholerae O1 natural isolates with distinct QS functions present a variety of abilities to maintain culturability during the transition to a VBNC state. The strain groups with higher or constitutive expression of QS genes exhibit a greater tendency to maintain the culturable state during VBNC induction than those lacking QS functional groups. In summary, HapR-mediated QS regulation is associated with the transition to the VBNC state in V. cholerae. HapR expression causes V. cholerae to resist VBNC induction and become dominant over competitors in changing environments.  相似文献   

13.
AIMS: This work analysed factors that influence the induction of viable but nonculturable (VBNC) state in the common enteric pathogen, Vibrio parahaemolyticus. The susceptibility of the VBNC cells to environmental stresses was investigated. METHODS AND RESULTS: Bacterium was cultured in tryptic soy broth-3% NaCl medium, shifted to a nutrient-free Morita mineral salt-0.5% NaCl medium (pH 7.8) and further incubated at 4 degrees C in a static state to induce the VBNC state in 28-35 days. The culturability and viability of the cells were monitored by the plate count method and the Bac Light viable count method, respectively. Cells grown at the optimum growth temperature and in the exponential phase better induced the VBNC state than those grown at low temperature and in the stationary phase. Low salinity of the medium crucially and markedly shortened the induction period. The VBNC cells were highly resistant to thermal (42, 47 degrees C), low salinity (0% NaCl), or acid (pH 4.0) inactivation. CONCLUSIONS: Optimal conditions for inducing VBNC V. parahaemolyticus were reported. The increase in resistance of VBNC V. parahaemolyticus to thermal, low salinity and acidic inactivation verified that this state is entered as part of a survival strategy in an adverse environment. SIGNIFICANCE AND IMPACT OF THE STUDY: The methods for inducing VBNC V. parahaemolyticus in a markedly short time will facilitate further physiological and pathological study. The enhanced stress resistance of the VBNC cells should attract attention to the increased risk presented by this pathogen in food.  相似文献   

14.
Many bacterial species are known to become viable but nonculturable (VBNC) under conditions that are unsuitable for growth. In this study, the requirements for resuscitation of VBNC‐state Vibrio cholerae cells were found to change over time. Although VBNC cells could initially be converted to culturable by treatment with catalase or HT‐29 cell extract, they subsequently entered a state that was not convertible to culturable by these factors. However, fluorescence microscopy revealed the presence of live cells in this state, from which VBNC cells were resuscitated by co‐cultivation with HT‐29 human colon adenocarcinoma cells. Ultimately, all cells entered a state from which they could not be resuscitated, even by co‐cultivation with HT‐29. These characteristic changes in VBNC‐state cells were a common feature of strains in both V. cholerae O1 and O139 serogroups. Thus, the VBNC state of V. cholerae is not a single property but continues to change over time.  相似文献   

15.
16.
A viable but non-culturable (VBNC) bacterial state was originally detected in studies in environmental microbiology. In particular, this state has been demonstrated for a number of human pathogens (Escherichia coli, Salmonella enteritidis, Vibrio cholerae, Legionella pneumophila and Campylobacter jejuni). The presence of VBNC cells poses a major public health problem since they cannot be detected by traditional culturing methods and the cells remain potentially pathogenic under favourable conditions. But, as far as we know, the VBNC state has not been yet described in Listeria monocytogenes. In most studies, this has been assessed by the Kogure procedure based on cellular elongation in the presence of DNA gyrase inhibitors. The antibiotic used was nalidixic acid in order to prevent DNA replication, only efficient in Gram-negative bacteria studies. In this study, we describe a new DVC procedure to detect and count viable of L. monocytogenes suspended in filtered, sterilized distilled water. We used different concentrations of ciprofloxacin, efficient both in Gram-negative and Gram-positive bacteria. Bacteria cells were removed and resuspended in BHI broth, with yeast extract and ciprofloxacin. The mixture was incubated at different incubation times at 37 degrees C. After different incubation times, cells were filtered through an isopore polycarbonate black membrane filter and covered with a DAPI solution or orange acridine. The filters were prepared and examined by epifluorescence microscopy. Elongated cells were counted as viable cells, whereas normal size was regarded as nonactive ones. This method allows determination of ciprofloxacin concentration and incubation time optimal to detect maximum viable cells percentage in L. monocytogenes.  相似文献   

17.
Vibrio harveyi has been reported to enter into a viable but nonculturable (VBNC) state. One marine V. harveyi strain, SF1 became nonculturable when incubated in seawater microcosm at 4 °C within 60 days. We investigated protein expression in the exponential phase of V. harveyi SF1 and compared it to the VBNC state. Cytosolic proteins were resolved by two-dimensional polyacrylamide gel electrophoresis using pH 4–7 linear gradients. Among these proteins, sixteen proteins which were strongly downregulated or upregulated in the VBNC cells were identified by MALDI-TOF-TOF mass spectrometry. The results indicated that the differentially expressed proteins were mainly focused on stress response proteins and key components of central and intermediary metabolism, like carbohydrate metabolism, transport, and translation. This study provided clues for understanding the mechanism of adaptation to the VBNC state.  相似文献   

18.
Environmental control of growth and persistence of vibrios in aquatic environments is poorly understood even though members of the genus Vibrio are globally important pathogens. To study how algal-derived organic matter and temperature influenced the abundance of different Vibrio spp., Baltic Sea microcosms inoculated with Vibrio cholerae, Vibrio vulnificus, Vibrio parahaemolyticus, Vibrio alginolyticus and native bacterioplankton, were exposed to different temperatures (12-25 degrees C) and amended with dissolved organic matter from Nodularia spumigena (0-4.2 mg C L(-1)). Vibrio abundance was monitored by culture-dependent and molecular methods. Results suggested that Vibrio populations entered a viable but nonculturable state during the incubations. Abundance of Vibrio spp. and total bacterioplankton were orders of magnitude higher in microcosms amended with organic matter compared with reference microcosms. Vibrio cholerae abundances ranged from 0.9 to 1.9 x 10(5) cells mL(-1) in treatments amended with 4.2 mg C L(-1). Vibrio cholerae abundance relative to total bacterioplankton and other Vibrio spp. also increased >10-fold. In addition, V. vulnificus abundance increased in mesocosms with the highest organic matter addition (0.9-1.8 x 10(4) cells mL(-1)). Temperature alone did not significantly affect abundances of total bacterioplankton, total Vibrio spp. or individual Vibrio populations. By contrast, cyanobacterial-derived organic matter represented an important factor regulating growth and abundance of V. cholerae and V. vulnificus in brackish waters.  相似文献   

19.
The role of surface proteins in Vibrio cholerae attachment to chitin particles in vitro was studied. Treatment of V. cholerae O1 ATCC 14034 and ATCC 14035 with pronase E reduced the attachment of bacteria to chitin particles by 57 to 77%. A statistically significant reduction was also observed when the attachment to chitin was evaluated in the presence of homologous Sarkosyl-insoluble membrane proteins (MPs) (67 to 84%), N-acetylglucosamine (GlcNAc) (62%), the sugar that makes up chitin, and wheat germ agglutinin (40 to 56%), a lectin that binds GlcNAc. The soluble oligomers N,N'-diacetylchitobiose or N,N', N"-triacetylchitotriose caused an inhibition of 14 to 23%. Sarkosyl-insoluble MPs able to bind chitin particles were isolated and visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; two of these peptides (molecular sizes, 36 and 53 kDa) specifically bind GlcNAc.  相似文献   

20.
VBNC Vibrio cholerae O139 VC‐280 obtained by incubation in 1% solution of artificial sea water IO at 4°C for 74 days converted to the culturable state when co‐cultured with CHO cells. Other eukaryotic cell lines, including HT‐29, Caco‐2, T84, HeLa, and Intestine 407, also supported conversion of VBNC cells to the culturable state. Conversion of VBNC V. cholerae O1 N16961 and V. cholerae O139 VC‐280/pG13 to the culturable state, under the same conditions, was also confirmed. When VBNC V. cholerae O139 VC‐280 was incubated in 1% IO at 4°C for up to 91 days, the number of cells converted by co‐culture with CHO cells declined with each additional day of incubation and after 91 days conversion was not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号